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Electronic Raman scattering in a multiband model for cuprate superconductors
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Charge-charge, current-current, and Raman correlation functions are derived in a consistent way using the
unified response theory. The theory is based on the improved description of the conduction electron coupling
to the external electromagnetic fields, distinguishing further the direct and indirect �assisted� scattering on the
quasistatic disorder. The two scattering channels are distinguished in terms of the energy and momentum
conservation laws. The theory is illustrated on the Emery three-band model for the normal state of the
underdoped high-Tc cuprates which includes the incoherent electron scattering on the disorder associated with
the quasistatic fluctuations around the static antiferromagnetic �AF� ordering. It is shown, for the first time
consistently, that the incoherent indirect processes dominate the low-frequency part of the Raman spectra,
while the long-range screening which is dynamic removes the long-range forces in the A1g channel. In the
mid-infrared frequency range the coherent AF processes are dominant. In contrast to the nonresonant B1g

response, which is large by itself, the resonant interband transitions enhance both the A1g and B1g Raman
spectra to comparable values, in good agreement with experimental observation. It is further argued that the AF
correlations give rise to the mid-infrared peak in the B1g Raman spectrum, accompanied by a similar peak in
the optical conductivity. The doping behavior of these peaks is shown to be correlated with the linear doping
dependence of the Hall number, as observed in all underdoped high-Tc compounds.

DOI: 10.1103/PhysRevB.75.094508 PACS number�s�: 74.25.Gz, 78.30.�j, 74.72.Dn

I. INTRODUCTION

Multiband models often present several energy scales of
the same order of magnitude, related to various anticrossings
of the bands. One such interesting example is the Emery
model for the high-Tc cuprates. The effective band structure
of this model exhibits hybridization gaps related to the anti-
crossings of three bands associated with the CuO2 unit cell,
as well as the dimerization pseudogaps related to the antifer-
romagnetic �AF� fluctuations, all of the order of 0.1 eV. The
obvious prerequisite for the understanding of the high-Tc su-
perconductivity, which in turn is associated with energies of
the order of 0.01 eV, is the correct identification of the origin
of the 0.1 eV energy scales. In the attempt to distinguish
among the 0.1 eV energy scales, one is left only with the
difference in the associated behaviors in the momentum
space, i.e., with the corresponding coherence factors, to use
the band language. As is well known, the coherence factors
reflect the crystal symmetry and experimental probes sensi-
tive to the associated selection rules, such as infrared con-
ductivity and Raman scattering,1–9 are well suited for the
study of the coherence factors. The motivation of the present
paper is to discuss theoretically the existing Raman data
from such a point of view. This is accompanied here by the
solution of several long-standing problems which concern
the electronic Raman scattering in general.

More specifically, the experimental Raman investigations
of the effects of superconductivity on the Drude part of the
B2g spectra of YBa2Cu3O7−x �Ref. 7� and Bi2Sr2Ca1Cu2O8+x
�Ref. 10� confirmed the conclusions of other experiments11,12

that the superconducting gap/pseudogap is of the order of
25 meV, with a predominant dx2−y2 symmetry. In addition,
the B1g spectra in underdoped La2−xSrxCuO4 �Ref. 13� and
Bi2Sr2Ca1Cu2O8+x �Ref. 6� compounds show at temperatures
up to room temperature a strong two-magnon peak at

0.1–0.3 eV and a secondary structure at a frequency about 3
times lower. Both scales exhibit the same doping behavior.
The smaller scale is therefore usually associated with the
single-paramagnon AF pseudogap.5,6,12,13 Similar scales ap-
pear in other experiments, in particular in measurements of
the specific heat.12 Equally important are the overdoped cu-
prates where 0.1 eV energy scales are observed in featureless
mid-infrared spectra in optical conductivity and Raman
experiments.1,2,5,6 The latter are usually associated with the
strong quasiparticle damping effects, that is, with the scatter-
ing from the uncorrelated spin disorder, rather than with the
AF paramagnons and the concomitant disorder.

The small energy scales of the order of 0.1 eV and less
occur in the Emery three-band model for the high-Tc cu-
prates in the limit of large repulsive interaction on the Cu
site.14 This interaction is renormalized out by introducing the
auxiliary bosons,15 which forbid the double occupancy of the
Cu site, i.e., by introducing the Mott charge correlations. The
result for finite doping is the effective band structure with
bands broadened by the scattering of fermions on bosons.
The single-particle dispersions obtained on the hole-doped
side within the paramagnetic noncrossing-approximation
�NCA� �Ref. 16� or dynamical mean-field theory17 ap-
proaches are similar to those found by the simple mean-field
slave-boson �MFSB� theory,15,18 when the latter is supple-
mented by harmonic boson fluctuations around the mean-
field saddle point. The band dispersions introduce the non-
magnetic energy scales of the order of 0.1 eV and less, in
particular through the splitting between the resonant band
and the main band. The band broadening ��k ,�� of the non-
Fermi-liquid type is related to the inelastic scattering on an-
harmonic �slave� bosons, which describe the Cu-O charge
fluctuations irrespective of the spin. ��k ,�� is itself charac-
terized by the energy scales of 0.1 eV. The Raman back-
ground corresponding to the charge fluctuations was evalu-
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ated within the NCA.16 It reflects the same nonmagnetic
0.1 eV energy scales, in particular through the processes of
charge excitations from the main oxygen band to the reso-
nant band. The agreement between the calculated
single-particle18 and electron-hole Raman16 properties and
the corresponding ARPES �Refs. 19–22� and Raman2,4 mea-
surements on La2−xSrxCuO4 family of materials is remark-
able.

In this kind of approach the magnetic effects manifest as
perturbations in terms of AF paramagnons.23 The associated
pseudogap energy �AF is well below 0.1 eV. Until now, the
bosonic effects of paramagnons were estimated only by
omitting the band broadening due to bosonic charge fluctua-
tions. This amounts to the use of the MFSB theory, supple-
mented by the coupling of the Fermi liquid to the
paramagnons.23 Such an approximation conserves the 0.1 eV
energy scales in the band dispersion and allows for the
�in�elastic scattering on paramagnons. The corresponding in-
elastic processes turn out to be more important23 on the hole-
doped side than on the electron-doped side of the “nonmag-
netic normal state” extrapolated close below the
superconducting Tc. The whole hierarchy of energy scales,
and especially the assertion that the relevant nonmagnetic
energy scales are larger than �AF, which itself is larger than
Tc, is obviously of essential importance for the understanding
of high-Tc superconductivity.

In order to investigate carefully the energy scale hierar-
chy, this paper is focussed on the effect of the AF paramag-
nons on the Raman response, introducing further simplifica-
tions which nevertheless conserve the main nonmagnetic and
magnetic scales at and below 0.1 eV. The nonmagnetic
scales below 0.1 eV are retained in the fermion dispersion.
The AF correlations are described by the AF gap �AF instead
of the pseudogap24 and by the bosonic fluctuations �mag-
nons� around the AF state. Both steps are usually considered
as legitimate for temperatures below �AF.25 In this way, the
inelastic scattering on magnons is neglected �in addition to
that on charge fluctuations�. This omits in particular the an-
tiadiabatic magnon effects on the single-particle spectrum of
holes23 at energies very much below �AF. The whole ap-
proach reduces in this way to the MFSB three-band theory
with the AF dimerization which includes �only� the elastic
scattering on the �intrinsic AF and extrinsic� disorder. Even
with such drastic simplifications the problem is a serious
one.

This paper investigates in detail the Raman spectra of the
underdoped cuprates and distinguishes among the coherence
factors associated in the reciprocal space with the nonmag-
netic and magnetic scales which appear in the problem. The
usual Raman analysis of the high-Tc cuprates starts from the
simple Abrikosov and Genkin approach.26 The latter treats
the bilinear Raman excitations as nonresonant and calculates
the Raman intraband contributions starting from the free
electron limit.16,27–35 This is replaced here by the description
of the electron-photon coupling effects which is more appro-
priate for the analysis of the relevant coherence factors for a
nearly half-filled tight-binding band. In such a discussion it
is obviously important to account also for the decoherence
effects, associated at least with the elastic scattering of
charge carriers on the quasistatic disorder.

Associated is the problem of the screening of the long-
range Coulomb forces in the presence of the disorder.16,28–39

This problem is usually treated in the Raman �and infrared�
analysis by the field-theory approximation �FTA�. In this ap-
proach the long-range forces are screened off by the coherent
long-range screening and the elastic scattering on the disor-
der is taken to break the translational symmetry, i.e., the
momentum conservation laws. The two steps may thus seem
to be either contradictory or to amount to double counting.
By distinguishing the �direct� processes with the quasiparti-
cle momentum conservation, from the �indirect� processes,
which do not conserve the momentum, we show therefore
that the two steps in question can be reconciled. The momen-
tum conservation processes are subject to the coherent long-
range screening, while the other processes do not imply
long-range forces at all.

Being interested here primarily in the interband scales we
extend the above single-band considerations to the multiband
case. The role of interband transitions is twofold here. First,
the quasiparticles can be excited resonantly from the conduc-
tion band to the other bands. Second, the excited quasiparti-
cles relax back into the conduction band, assisted by the
elastic scattering on the disorder. The former effect is treated
by replacing the usual static-Raman-vertex approximation
�SRVA� by the elastic-Raman-vertex approximation �ERVA�.
This represents a natural extension of the recent multiband
optical conductivity analysis40,41 to the Raman case. Such an
approach gives access to the most important nonmagnetic
single-particle scales of the Emery model. On the other hand,
it is shown that the additional elastic scattering on the disor-
der, associated with the interband transitions, can be included
into the �indirect� processes, which do not conserve the qua-
siparticle momentum.

The result of these steps is the theory of the electronic
Raman scattering in multiband models, the Emery model for
the high-Tc cuprates in particular, which can be compared to
the experimental findings. As the analogous theory applies
also to the conductivity, this approach, as a whole, estab-
lishes the relation among a number of measurable quantities
including the dc conductivity and the Hall number, all sensi-
tive to the anomalous features in the quasiparticle spectrum
close to the Fermi level, such as hybridization or dimeriza-
tion �pseudo�gaps and the van Hove singularities. It appears
that the AF dimerization gap produces the intensity maxi-
mum in the B1g Raman channel as well as in the optical
conductivity, while the low-lying B2g spectrum remains un-
affected. In addition, the number of the van Hove singulari-
ties is doubled, which restores approximately the local
electron-hole symmetry in the conduction band. This agrees
fully with the measured doping dependence of the Hall num-
ber in the underdoped electron- and hole-doped regimes.1,42

The small 0.1 eV energy scale observed in all these experi-
ments in the underdoped cuprates is thus associated here
with the AF dimerization rather than with the nonmagnetic
scales of the same order of magnitude. Such interpretation
requires however further confirmation through the theory be-
yond the MFSB level.

The paper is organized as follows. In Sec. II the response
of the electronic system to external transverse vector fields is
formulated for a multiband model and applied to the Emery
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three-band model where the local field corrections are ab-
sent. The contributions of the direct and indirect electron-
hole pair excitations to the Raman correlation functions are
determined, including the screening by the multiband RPA
�random phase approximation� dielectric function. The struc-
ture of the low-frequency �Drude� contribution to the Raman
correlation functions is given in Secs. III and IV. The relation
between the ERVA and SRVA is discussed in Sec. V. The
predictions of the model with AF correlations for the Hall
number, the optical conductivity, and the corresponding con-
tributions to the B1g and B2g Raman spectra are given in Sec.
VI, and compared to the experimental data. Section VII con-
tains the concluding remarks.

II. MULTIBAND MODEL HAMILTONIAN

A. Emery three-band model

We consider the conduction electrons described by the
reduced version of the quasi-two-dimensional Emery three-
band model,14 in which the second-neighbor bond energy tpp
is set to zero, and the short-range interactions Vpd and Vpp are
approximately included in the copper and oxygen single-
particle energies. The Hamiltonian is

H = H0 + H1� + H2� + Hext. �1�

H0 is the effective single-particle term. The electron quasi-
elastic scattering on the disorder is described by H1�. H2�
=Hc+HAF represents the two-particle interactions, including
both the long-range Coulomb forces �Hc� and the residual
interactions responsible for the AF correlations �HAF�. Hext

describes the coupling of the conduction electrons to the ex-
ternal fields.

Using the slave-boson approach to treat the limit of large
Hubbard interaction on the copper site Ud, the effective
MFSB single-particle Hamiltonian15 can be written in the
representation of the nondiagonal translationally invariant
states as

H0 = �
ll�k�

�H0
ll��k�lk�

† lk�� + H.c.� , �2�

with the orbital index l, l�=d, px, py. Here the diagonal and
off-diagonal matrix elements have the well-known form:
H0

ll�k�=El−2t� cos kza3, H0
dp��k�=2itpd

effsin 1
2k ·a�, with �

=x ,y, and H0
pxpy�k�=−4tpp sin 1

2k ·a1 sin 1
2k ·a2 �a1 ,a2, and a3

are the primitive vectors of the tetragonal lattice in question�.
El are the renormalized site energies, tpd

eff is the renormalized
first-neighbor bond energy, tpp is the second-neighbor bond
energy, and t� is the interplane bond energy. Using the trans-
formations

lk�
† = �

L

Uk�l,L�Lk�
† , �3�

H0 is diagonalized in terms of three bands

H0 = �
Lk�

EL�k�Lk�
† Lk�, �4�

with the band indices L=c for the nearly half-filled �conduc-
tion� bonding band and L=N , P for the nonbonding and an-

tibonding bands �which are empty in the hole picture used
here�. For tpp=0, the structure of EL�k� and Uk�l ,L� is well
known.15,43

The effects of the AF correlations on the Raman spectral
functions is approximated here by replacing the coupling of
the conduction band electrons to the AF fluctuations by their
coupling to the QAF mode, which is taken as frozen in. The
effect of bosons with the wave vectors close to QAF on the
quasiparticle dispersion is thus neglected, i.e., the pseudogap
is replaced by the gap ��k� involved in HAF,23,24

HAF = �
k�

���k�ck�
† ck±QAF� + H.c.� . �5�

On the other hand, the lifetime effects associated with slow
AF fluctuations can be included in the H1� quasielastic scat-
tering on the disorder,44,45

H1� = �
Lkk��

V1
LL�k − k��Lk�

† Lk��. �6�

This implies the adiabatic approximation in the quasiparticle
scattering on bosons, i.e., the boson frequency lower than the
temperature of interest.23 As already pointed out in the Intro-
duction, the corresponding corrections are not expected to
affect much the conclusions which concern the 0.1 eV scale
in the underdoped compounds, below the two-magnon
resonance.5,6 This is the range to which we restrict ourselves
here, while discussing some basic questions, which concern
the Raman scattering itself.

Finally, the long-range forces are given by

Hc = �
q�0

2�

vq2 q̂�− q�q̂�q� , �7�

with q̂�q� being the charge density operator,

q̂�q� = �
LL�

�
k�

eqLL��k,k + q�Lk�
† Lk+q�� , �8�

and the qLL��k ,k+q� are the related dimensionless intraband
and interband charge vertices �see Appendix C and Eq. �12��.

B. Electromagnetic coupling

The coupling of the conduction electrons to the electro-
magnetic fields polarized in the � and/or � direction follows
from the minimal gauge-invariant substitution,40,46,47

Hext = H1
ext + H2

ext

= −
1

c
�
q�

A��q�Ĵ��− q� −
e2

2mc2

	 �
qq���

A��q − q��A��q��
̂���− q;2� . �9�

Here

Ĵ��q� = �
LL�

�
k�

J�
LL��k�Lk�

† Lk+q�� ,
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̂���q;2� = �
LL�

�
k�


��
LL��k;2�Lk�

† Lk+q�� , �10�

are, respectively, the current density and bare Raman density
operators.26,40 The explicit form of the current vertices,

J�
LL��k�, and the bare Raman vertices, 
��

LL��k ;2� for the tpp

=0 Emery three-band model are given in Appendix A.
The coupling �9� can be completed with the coupling to

the external scalar fields Vext�q�,

H0
ext = �

q
Vext�q�q̂�− q� , �11�

used in the longitudinal response theory �see Appendix C�. It
is important to notice that, due to the absence of the local
field corrections48,49 in the Emery model, the long-
wavelength charge vertices �q=��q�ê� is small� satisfy the
general relation43,50

eqL�L�k + q,k� � e�L,L� + �1 − �L,L���
�

�q�J�
L�L�k�

EL��k + q� − EL�k�
,

�12�

with the longitudinal current vertices J�
L�L�k� identical to the

transverse current vertices given by Eqs. �10�.

III. RAMAN CORRELATION FUNCTIONS IN PURE
SYSTEMS

In the mean-field slave-boson theory15 used here, the
physical Raman correlation functions are proportional to the
corresponding correlation functions of the auxiliary fermions
described by the band structure associated with Eqs. �4� and
�5�. It goes without saying that the same conclusions hold for
the physical fermions with the negligible local interactions
Ud. The simplest operative way to determine the Raman cor-
relation functions of this three-band auxiliary fermion model
is to consider the Goldstone theorem for the thermodynamic
potential in the Matsubara representation with H�=Hext

+H2�+H1� representing the perturbation, and collect all
fourth-order contributions in the vector fields A��q�� and
A��q��. It is convenient to divide this procedure into four
steps. First, the H�=Hext case provides the definition of the
Raman vertex functions in the multiband model under con-
sideration, with particular care devoted to the resonant en-
hancement of the Raman scattering processes. Second, for
H�=Hext+Hc, we shall define the direct contributions to the
Raman correlation functions and reconsider the role of the

long-range screening in the pure multiband models. Third, by
considering the perturbation H�=Hext+Hc+H1�, we shall in-
troduce the distinction between the direct and indirect
�disorder-assisted� electron-hole excitations and discuss
which of these processes dominate the Raman spectra mea-
sured in the high-Tc cuprates. Finally, by including HAF, we
shall study the influence of the low-frequency excitations
across the AF �pseudo�gap on both the Drude part and the
related low-lying interband part of the Raman spectrum.

A. Raman vertex functions in pure systems

In the absence of the disorder and AF scattering pro-
cesses, the direct summation of the fourth-order diagrams in
the vector fields A��q�� and A��q�� leads to Fig. 1�a�, repre-
senting the Raman correlation function in the ideal lattice,
approximately given by its intraband contribution. Namely,
in the high-Tc cuprates, the interband excitation energies are
of the order of typical optical energies, 1.75–2.75 eV, which
is far above the largest Raman shift �defined below� mea-
sured in experiments ���
1 eV�. Consequently, the inter-
band contributions to the Raman correlation functions can
safely be neglected in the ideal lattice. As will be seen below,
the AF correlations introduce the possibility of the low-lying
“interband” excitations requiring the generalization �Sec.
III B� of Fig. 1�a�.

Thus, in a pure system �denoted by p� we have

���,��
p �q,�,�i� �

1

v �
kk��


��
cc �k,�i,�s�

1

�
Dp

cc�k,k+,k+�,k�,��

	
��
cc �k�,�s,�i� , �13�

where Dp
cc�k ,k+ ,k+� ,k� ,�� is the intraband electron-hole

propagator in the ideal lattice, defined by

1

�
Dp

LL��k,k+,k+�,k�,�� = �k,k�

fL�k� − fL��k + q�

�� + EL�k� − EL��k + q� + i�
,

�14�

for the band indices L=L�=c. fL�k�� f�EL�k�� is the Fermi-
Dirac distribution function. Furthermore, the 
��

cc �k ,�i ,�s�
are the related intraband Raman vertices,

FIG. 1. �a� The purely elec-
tronic intraband Raman correla-
tion functions in a pure system.
�b� The Raman vertex �full rect-
angle� shown in terms of the bare
Raman vertex �full circle� and the
interband current vertices �open
circles�.
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��
cc �k,�i,�s� = −

m

e2 �
L�c

� J�
Lc�k�J�

cL�k�
��i − ELc�k� + i�

−
J�

cL�k�J�
Lc�k�

��s + ELc�k� + i�
	 + 
��

cc �k;2� , �15�

and k+=k+q. Here �i ,q� ,� and �s ,q� ,� are the frequen-
cies, wave vectors, and polarization indices of the incoming
and scattered photons, respectively. �=�i−�s is the Raman
shift, q=q�−q�, and ELL��k�=EL�k�−EL��k�. Equation �15�
is gauge invariant in the limit �→0. As mentioned at the
beginning of this section, both the scattering processes on the
disorder and the AF correlations are absent in 
��

cc �k ,�i ,�s�.
The diagrammatic representation of the Raman vertices is

shown in Fig. 1�b�. The first term on the right-hand side is
the quadratic coupling term, while the latter two represent
the bilinear contributions. The resonant nature of the Raman
scattering processes refers to the bilinear terms. The resonant
effects are large in the high-Tc cuprates because, as men-
tioned above, the interband excitation energies ELc�k� in Eq.
�15� are of the order of typical optical energies. In addition to
the resonant condition, ELc�k�� ��i and/or ELc�k�� ��s,
the efficiency of the resonant enhancement of the Raman
scattering processes depends also on the relaxation processes
in the intermediate interband photon absorptions or emis-
sions that are omitted here. Although, in principle, these re-
laxation processes must be treated on an equal footing with
the relaxation processes in the electron-hole propagators
DLL��k ,k+ ,k+� ,k� ,��, we shall use below an approximate
treatment, by including the former phenomenologically �see
Sec. III A 2� and the latter by using the direct summation
method �Sec. IV�.

1. Effective mass theorem

Let us consider the �i=�s=0, �→0 limit of Eq. �15�. The
result is the static Raman vertex of the form


��
cc �k� = 
��

cc �k;2� +
m

e2 �
L�c

2J�
Lc�k�J�

cL�k�
ELc�k�

. �16�

Here the symmetry relation J�
Lc�k�=J�

cL�k� has been used.
This expression can be combined with the relation


��
cc �k� = �

m

�2

�2Ec�k�
�k� � k�

to obtain the “effective mass” theorem

�
m

�2

�2Ec�k�
�k� � k�

= 
��
cc �k;2� +

m

e2 �
L�c

2J�
Lc�k�J�

cL�k�
ELc�k�

. �17�

Equation �17� �and Eq. �19�� holds even when its left-hand
side is dependent on k, i.e., beyond the effective mass ap-
proximation in the vicinity of the Fermi level. The result is
appropriate for any multiband model with the holelike �mi-
nus sign, the case considered here� or electron-like �plus
sign� dispersion of the conduction electrons.

Equation �17� turns out to be important for both the
conductivity-sum-rule analyses and the transport-coefficient

studies, in particular when the AF term �5� is included. Ac-
tually, Eq. �17� represents a partial conductivity sum rule for
three bands,40 which holds when the photon frequencies are
small with respect to the transition frequencies into all other
bands. When the high-frequency transitions are included in
the present approach the “effective mass” is replaced by the
free carrier mass, i.e., the present tight-binding �Wannier�
approach49 satisfies the general sum rule established by Abri-
kosov and Genkin.26,27

The theorem states that the zero-frequency electron-hole
pairs �corresponding to the formal limit �i ,�s→0� can be
excited by the electromagnetic fields through the bare qua-
dratic electron-photon coupling and/or through the bilinear
term in which the first-order �high-frequency� interband ex-
citations appear as virtual intermediate states.

2. Elastic-Raman-vertex approximation

Since the Raman shift �=�i−�s is small in comparison
with the typical values of �i or �s, it is reasonable, in the
numerical calculation in Sec. V, to use the elastic-Raman-
vertex approximation


��
cc �k,�i,�s� � 
��

cc �k,�i,�i� � 
��
cc �k,�i� , �18�

in which the zero-frequency processes ��i ,�s�0� are ap-
proximately separated from the higher-frequency absorption
or emission processes. The phenomenological treatment of
the interband relaxation processes in the resonant channel
then gives rise to the general gauge-invariant expression
which reduces to Eq. �15� in the limit �inter /�i→0


��
cc �k,�i� = 
��

cc �k� −
m

e2 �
L�c

���i�2J�
Lc�k�J�

cL�k�
ELc

2 �k�

	
2ELc�k�

���i + i � �inter�2 − ELc
2 �k�

�19�

�again J�
Lc�k�=J�

cL�k� is used�.
It is useful now to incorporate the symmetry properties of

the Emery three-band model into Eqs. �15� and �19�. First,
we remember that the analysis of the electronic Raman spec-
tra of the high-Tc cuprates is usually focussed on the in-plane
polarization of the electromagnetic fields �� ,�=x ,y�. It is
thus convenient to arrange the Raman vertices according to
the irreducible representations of the D4h point group.31,37,51

The resulting Raman vertices are of the form 
�
cc�k ,�i�, with

the label �=A1g, B1g, and B2g representing the A1g, B1g, and
B2g Raman channels, respectively. The symmetrized vertices
are


A1g

cc �k,�i� = 
xx
cc�k,�i� + 
yy

cc�k,�i� ,


B1g

cc �k,�i� = 
xx
cc�k,�i� − 
yy

cc�k,�i� ,


B2g

cc �k,�i� = 
xy
cc�k,�i� . �20�

It should be noticed here that the Raman correlation func-
tions of the tetragonal high-Tc cuprates are diagonal in this
representation. The orthorhombic distortion of the CuO2
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plane, which occurs in some compounds �YBa2Cu3O7−x, for
example�, mixes these three channels. However, as previ-
ously estimated,43 the mixing is typically of the order of 1/10
and is neglected in the present analysis.

B. Long-range screening in pure systems

The effects of the long-range Coulomb forces on the Ra-
man correlation functions are given in the usual
way.29,30,33,36,38,39,43 In absence of the incoherent scattering
processes those functions are described by the diagrams in
Fig. 2�b�. The screened correlation function �̃�,��q ,� ,�i� is
given by

�̃�,��q,�,�i� = ��,��q,�,�i� + ��,1�q,�,�i�

	
4�e2

q2��q,��
�1,��q,�,�i� . �21�

The coupling function ��,1�q ,� ,�i� is defined by Eq. �13�,
with 
��

cc �k ,�i�
��
cc �k� ,�i� replaced by 
�

cc�k ,�i�qcc�k�
+q ,k��. The dielectric function in Eq. �21� has the form

��q,�� = ���q,�� −
4�e2

q2 �1,1�q,�� , �22�

with e2�1,1�q ,�� representing the charge-charge correlation
function given by

e2�1,1�q,�� =
1

v�
LL�

�
kk��

e2qLL��k,k + q�qL�L�k� + q,k��

	
1

�
DLL��k,k+,k+�,k�,�� . �23�

Here DLL��k ,k+ ,k+� ,k� ,�� is the electron-hole propagator
defined in Appendix C.

For the B1g and B2g Raman channels, the coupling func-
tions ��,1�q ,� ,�i� vanish for symmetry reasons, and the
long-range forces do not affect the Raman spectra in the B1g
and B2g channels. Furthermore, it is useful to separate the
constant term in the A1g Raman vertex from the dispersive
term,26,27 
A1g

cc �k ,�i�= 
̄A1g

cc ��i�+ 
̂A1g

cc �k ,�i�, in the way that
�̂A1g,1�q ,� ,�i�=0 �notice that 
�

cc�k ,�i�= 
̂�
cc�k ,�i� for �

=B1g ,B2g�. In this way �̂�,1�q ,� ,�i�=0 for all three Raman
channels. �The hat in �̂�,1�q ,� ,�i� indicates that only the
dispersive part of the vertex 
�

cc�k ,�i�, 
̂�
cc�k ,�i�, is included

FIG. 2. �a� The Raman correlation functions in a general case with the long-range forces and the quasielastic scattering processes taken
into account. The full rectangle is the Raman vertex of Fig. 1�b�. The shaded box includes the electron-hole self-energy contributions
associated with both the long-range forces and the scattering processes on the disorder. �b� The long-range screening of the Raman
correlation functions in the case where the scattering processes on the disorder are absent. The open circles represent the charge vertices and
the dashed line is the long-range force 4�e2 /q2.

FIG. 3. Two typical quadratic �a� and bilinear �b� direct Raman
scattering processes in the conduction band proportional to �H1��

2.
The self-energy parts on the diagrams treated as constant are en-
circled �Ref. 41�. The crosses represent the quasielastic scattering
H1�.

FIG. 4. The direct �1→2→3� and indirect �forward, 1→2
→4→5, or backward, 1→2→4→6� bilinear Raman scattering
processes in the conduction band. The solid lines represent the three
effective fermionic bands �the indices c, P, and N� for the typical
values of the model parameters �pd

eff=0.66 eV and tpd
eff=0.73 eV

�Refs. 40 and 54�. The energies are measured with respect to the
energy of the 2p� oxygen orbitals, so that the dispersionless non-
bonding band is placed at Ep=0. The dashed lines are the photon
dispersions, and the dotted-dashed line is the Fermi energy
�=−1.793 eV corresponding to the hole doping �=0.1.
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in ��,1�q ,� ,�i�.� Consequently, the dispersive terms

̂�

cc�k ,�i� are unaffected by the long-range screening, at least
in pure systems, while the constant term 
̄A1g

cc ��i� is screened
in the same way as the monopole charge
qcc�k ,k+q��1.45,46,52

The Raman spectra, associated with imaginary part of Eq.
�21�, comprise the incoherent electron-hole contributions
characterized by the cutoff frequency of the order of qvF and,
for the A1g channel, by the plasmon contribution related to
the screening of 
̄A1g

cc ��i�. These spectra are directly related
to the dynamical structure factor S�q ,��=−Im
�̃1,1�q ,���.
The intensity of both the collective and incoherent electron-
hole contributions to −Im
�̃�,��q ,� ,�i�� is proportional to
small q2. These types of signals have never been detected in
the high-Tc cuprates,1,30 in contrast to the semiconducting
systems, such as GaAs �qvF�50 cm−1�.53 In the high-Tc cu-
prates, the measured Raman spectra are roughly proportional
to the optical conductivity, with the intensity proportional to
the channel-dependent relaxation rates. This leads us to study
the scattering of the quasiparticles on the disorder.

IV. RAMAN CORRELATION FUNCTIONS IN SYSTEMS
WITH DISORDER

A. Incoherent scattering

This section deals with the contributions of the incoherent
quasielastic scattering to the Raman correlation functions
�̃�,��q ,� ,�i�, including the Coulomb screening effects. The
discussion starts from the low order scattering on the disor-
der, continues by the summations to high orders and adds the
Coulomb screening at the end. In this discussion it is conve-
nient to distinguish between the direct and indirect processes,
as further explained below.

1. Direct processes

As illustrated in Fig. 3, for all correlation functions con-
sidered in this paper �charge-charge, current-current, and Ra-
man correlation functions�, the probability for the direct

electron-hole pair creation is proportional to fc�k�− fc�k+q�
and associated with the resonance condition ���Ec�k�
−Ec�k+q�. The corresponding scattering paths 1→3 and 1
→2→3 are shown in Fig. 4. The direct scattering on the
disorder can be roughly incorporated in the correlation func-
tions in the standard phenomenological way.52 Alternatively,
one can apply the gauge-invariant treatment to sum the direct
processes shown in Fig. 5 in powers of �H1��.2 The gauge
invariance conserves the number of charge carriers in the
scattering processes.46 As shown in Appendix C, for �
�qvF, the latter approach gives the unscreened, direct
charge-charge correlation function �intraband and interband
contributions� of the form

e2�1,1
d �q,��

=
1

v �
��LL�k�

q��
2

�2 � ��

EL�L�k+,k�
nLL�
�J��

LL��k��2

	
fL�k� − fL��k+�

�� + i � ���
LL��k,�� + ELL��k,k� −

EL�L�
2 �k,k+�

��

,

�24�

where q=���q��ê��, nLL=1, nLL=2, ���
LL��k ,��

=Im
���
LL��k ,��� and ELL��k ,k+�=EL�k�−EL��k+�.

Equation �24� can be easily generalized to other correla-
tion functions. For the quasielastic scattering Im
�cc�k ,���
��i

c,d �here, the index i=1, �, and � for the charge, current,
and Raman vertices, respectively�. In the dynamical limit, we
thus obtain the universal expression for the unscreened, di-
rect intraband correlation functions

�i,j
d �q,�� = �

��

q��
2

�

1

� + i�i
c,d

�atpd
eff�2

v0�2 ni,j
d ��� . �25�

Here n1,1
d ��� is the effective density of states at the Fermi

energy given by

n1,1
d ��� = −

1

N
�
k�

�qcc�k,k + q�j��
cc �k��2

� fc�k�
�Ec�k�

, �26�

while n�,�
d ���, n�,�

d ���, and n�,1
d ��� are obtained by replacing

�qcc�k ,k+q��2=1 in Eq. �26� with �j�
cc�k��2, �
�

cc�k ,�i��2, and

�

cc�k ,�i�qcc�k+q ,k�, respectively. Finally, j�
cc�k�

= �J�
cc�k� / �eatpd

eff� is the dimensionless current vertex, Eq.
�A5�, and v0 is the unit cell volume. For the electromagnetic
fields �i=� ,�� the wave vector q=���q��ê�� is perpendicular
to the polarization of the fields; i.e., q��=qz for the symme-
trized Raman vertices in Eq. �20�.

The RPA series for the screened direct contribution to the
Raman correlation functions is illustrated in Fig. 6�a�, and is

FIG. 5. A few direct contributions to the Ra-
man correlation functions in powers of �H1��

2, ac-
cording to Eqs. �C9�, �C8�, and �C4�. The full
rectangle is the effective Raman vertex of Fig.
1�b�.

FIG. 6. The Coulomb screening of the direct �a� and indirect �b�
processes in the Raman response functions in presence of the quasi-
elastic scattering. The dotted box includes the electron-hole self-
energy contributions associated with the quasielastic scattering
processes.
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given by inserting the expression �25� into Eq. �21�. As can
be easily seen, the intensity of both the plasmon and
electron-hole incoherent contributions to −Im
�̃�,�

d �q ,� ,�i��
remains proportional to small q2. Figure 6�b� represents the
quadrupolar analog of the well-known Hopfield series.45 It
will be argued below that the latter is not important for the
Raman scattering on the high-Tc superconductors.

2. Indirect processes

Omitting again the Coulomb screening to begin with, the
disorder-assisted, indirect electron-hole contribution is asso-
ciated to fc�k�− fc�k��, with uncorrelated k and k� �see the
1→4→5 processes shown in Fig. 4 and the related diagrams
in Fig. 7�a�, as well as the 1→2→4→5 processes repre-
sented by the diagram in Fig. 7�b��. These types of processes
become important when ��� �Ec�k�−Ec�k+q��, with the
resonance at ���Ec�k�−Ec�k��. This is a typical situation
encountered in the absorption and/or emission of photons by
conduction electrons, i.e., in the intraband optical-
conductivity and Raman experiments on metals. On the other
hand, the indirect Raman scattering processes 1→2→7
→6, shown in Fig. 7�c�, are directly related to the indirect
interband optical conductivity.52 For the time-dependent H1�
they are essential for the Raman analysis of the insulating
and semiconducting systems.3 In the present case, H1� in-
cludes only the quasi-elastic scattering and therefore the dia-
gram in Fig. 7�c� has the resonant behavior similar to the
diagram in Fig. 7�b�. Thus the processes in Fig. 7�c� can be
included in the effective Raman vertex �19� and will not be
discussed hereafter.

The direct and indirect scattering processes, shown in Fig.
8�a�, are large in the high-frequency limit ���H1��

2�. The first
qualitatively important corrections to the indirect high-
frequency term come from the second and third term in Fig.
8�b� which are proportional to �H1��

4 /�, i.e., they are singular

in the zero-frequency limit. The consistent treatment of the
indirect Raman scattering processes requires thus the sum-
mation to infinity of the most singular terms in powers of
�H1��

2 /�. This requires summing the singular contributions to
all orders in �H1��

2 /� in order to obtain the description which
is correct in both the high- and low-frequency limits.

As explained in Ref. 41 in the example of optical conduc-
tivity, the gauge-invariant treatment of the single-particle
self-energy and vertex corrections in the indirect processes
gives rise to effective vertices in which there is a complete
cancellation of the scattering processes associated with the
constant terms in the bare vertices. In the case of optical
conductivity, this means that the indirect processes in the
charge-charge correlation functions are absent altogether be-
cause the effective vertex �qcc�k ,k�−qcc�k� ,k���V1

cc�k
−k�� / ���� vanishes due to the fact that qcc�k ,k��1. In the
Raman case, the effective vertices �
�

cc�k ,�i�
−
�

cc�k� ,�i��V1
cc�k−k�� / ���� in ��,�

id �� ,�i� are given by the
sum of two terms shown in Fig. 9�a�, setting 
�

cc�k ,�i�
= 
̄�

cc��i�+ 
̂�
cc�k ,�i�, and reduce to �
̂�

cc�k ,�i�
− 
̂�

cc�k� ,�i��V1
cc�k−k�� / ����. The contribution to

��,�
id �� ,�i� of the constant terms 
̄�

cc��i�, present only in the
�=A1g channel, thus vanishes, in analogy with the case of
optical conductivity. In this way, ��,�

id �� ,�i�= �̂�,�
id �� ,�i� with

the hat again indicating that only the dispersive terms

̂�

cc�k ,�i� in the Raman vertices contribute to ��,�
id �� ,�i�.

Turning now to the evaluation of �̂�,�
id �� ,�i�, we first note

that the leading high-frequency contribution to �̂�,�
id �� ,�i�

consists of the two self-energy and two vertex-correction
terms shown in Fig. 9�c�. The summation of the most singu-
lar diagrams in powers of �H1��

2 /� can be performed by us-
ing the self-consistent form of the electron-hole propagator,41

as illustrated in Fig. 9�d�. �For more details see Ref. 41.� This
approach gives

FIG. 7. Three typical indirect Raman scattering processes proportional to �H1��
2. The first two include the incoherent scattering of

conduction electrons while the third shows the incoherent scattering in the empty band�s� �the notation is the same as in Fig. 4�. The effective
vertices are encircled �Ref. 41�.

FIG. 8. �a� The direct and indirect high-
frequency contributions �proportional to �H1��

2� to
the Raman correlation functions �Fig. 3 and Figs.
7�a� and 7�b��. �b� A few indirect leading terms in
powers of �H1��

2.
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�̂�,�
id ��,�i� � −

1

v �
kk��

� fc�k�
�Ec�k�

��V1
cc�k − k���2�

�� + � ��
cc�k,��


̂�
cc�k,�i�

	�
̂�
cc�k,�i� − 
̂�

cc�k�,�i��
1

�
�D0

cc�k,k�,��

+ D0
cc�k�,k,��� , �27�

where �1/ � �D0
cc�k ,k� ,�� is a useful abbreviation for

1

�� + Ec�k� − Ec�k�� + i � �
.

Here �¯� denotes averaging over the momentum transfer by
the disorder. ��

cc�k ,�� is the channel-dependent electron-
hole self-energy,

���
cc�k,�� = − �

q�

��V1
cc�q� − k��2��1 −


̂�
cc�q�,�i�


̂�
cc�k,�i�



	

1

�
�D0

cc�k,q�,�� + D0
cc�q�,k,��� . �28�

The result of the summation of diagrams in powers of
�H1��

2 /� is thus

�̂�,�
id ��,�i� �

1

v�
k�

�
̂�
cc�k,�i��2

� fc�k�
�Ec�k�

��
cc�k,��

�

	�1 +
− ��

cc�k,��
�

+ �− ��
cc�k,��
�


2

+ ¯ 	
= −

1

v�
k�

�
̂�
cc�k,�i��2

� fc�k�
�Ec�k�

− ��
cc�k,��

� + ��
cc�k,��

. �29�

This result has the correct limit for small �� in comparison
with typical damping energies.

It is important to realize here that the expression �29� is
obtained under an assumption that is valid for the quasielas-
tic scattering processes, namely that the real part of ��

cc�k ,��
is negligibly small. In this case, we can write ��

cc�k ,��
� i Im
��

cc�k ,���� i��
c,id. This can be easily generalized to

weakly inelastic incoherent scattering by introducing
��

c,id���. On the other hand, the introduction of HAF, Eq. �5�,
leads to large coherent effects in Re
��

cc�k ,���. This requires
the reexamination of the single-particle Hamiltonian H0
+HAF, with those coherence effects related to HAF incorpo-

rated also in new effective vertices, and not only in
Re
��

cc�k ,���. The description of this procedure is post-
poned to Sec. VI C.

The generalization to other correlation functions gives the
universal expression

�̂i,i
id��� =

− i�i
c,id

� + i�i
c,id

1

v0
n̂i,i

id��� , �30�

for �i
cc�k ,��� i�i

c,id, i=1,� ,�. Here n̂�,�
id �� ,�i� is the effec-

tive channel-dependent density of states at the Fermi energy
of the form

n̂�,�
id ��,�i� = −

1

N
�
k�

�
̂�
cc�k,�i��2

� fc�k�
�Ec�k�

, �31�

and n̂1,1
id ��� and n̂�,�

id ��� are obtained by replacing

�
̂�
cc�k ,�i��2 in Eq. �31� with (q̂cc�k ,k�)2=0 and ( ĵ�

cc�k�)2

= (j�
cc�k�)2, respectively. Also, we define the related effective

densities ni,j
id �� ,�i� and n̄i,j

id �� ,�i� using the total vertices and
the constant part of vertices instead of �
̂�

cc�k ,�i��2 in Eq.
�31�. Evidently, �1

c,id=0 and �̂1,1
id ���=0. Also, n1,1

d ���
� n̂�,�

id ��� and �1
c,d���

c,id. Both those results are required by
the continuity equation and the gauge invariance of the in-
traband optical conductivity.41

Let us finally mention the Coulomb screening problem.
The effects of the Coulomb forces on the indirect processes
are described by the Hopfield series of diagrams shown in
Fig. 6�b�, which is an analog of the Hopfield series studied in
the context of the optical conductivity.41,45 This series is free
of the q−2 singularity and, for a sufficiently large relaxation
rate ��

c,id �with the critical relaxation rate ��,0
c,id defined pre-

cisely in the following subsection�, does not affect the spec-
tra in a critical manner. Therefore, these corrections �starting
with the second term in Fig. 6�b�� are neglected in the
present analysis, i.e., we take �̃�,�

id �� ,�i�� �̂�,�
id �� ,�i�.

B. Direct vs indirect contributions

When the direct and indirect processes are combined, we
obtain the total Raman correlation function in the form

�̃�,�
total�q,�,�i� � �̃�,�

d �q,�,�i� + �̂�,�
id ��,�i� , �32�

where

FIG. 9. �a� The effective Raman vertex �open
rectangle� in the indirect processes, �
̂�

cc�k ,�i�
− 
̂�

cc�k� ,�i��V1
cc�k−k�� / ����. �b� The expansion

of the indirect contribution to the Raman correla-
tion functions in powers of �H1��

2 /�, with the
leading term explicitly shown in �c�. The shaded
box is the electron-hole propagator which is ob-
tained by the self-consistent solution of the equa-
tion shown in �d� �Ref. 41�. The diamond is the
electron-hole self-energy containing both the
single-particle self-energy and vertex corrections.
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�̃�,�
d �q,�,�i� = �̂�,�

d �q,�,�i� + �̄�,�
d �q,�,�i�

+ �̄�,1
d �q,�,�i�

4�e2

q2��q,��
�̄1,�

d �q,�,�i� ,

�33�

using again the separation of vertices 
�
cc�k ,�i�= 
̄�

cc��i�
+ 
̂�

cc�k ,�i� and the corresponding separation of �i,j
d �q ,� ,�i�.

There is a well-defined exclusion rule here. The constant
terms in the vertices participate in the direct processes and
are screened by the long-range Coulomb forces. On the con-
trary, only the dispersive terms participate in the indirect
processes. They are independent of the wave vector q and
are thus nearly unaffected by the long-range screening. The
intensity of the former processes is proportional to small q2,
except in the static metallic limit, and the intensity of the
latter process is proportional to the channel-dependent relax-
ation rates ��

c,id.
To find out which of these two processes dominate the

correlation functions of the high-Tc cuprates, we now com-
pare the imaginary parts of the expressions �25� and �30�. For
n�,�

d �� ,�i�� n̂�,�
id �� ,�i� and ��

c,d���
c,id, we obtain the condi-

tion ���aqtpd
eff. Furthermore, −Im
��,�

id �� ,�i�� is character-
ized by a maximum at �=��

c,id, and the critical damping
energy is given roughly by ���,0

c,id�aqtpd
eff, with aq�10−3

typically. For the 3D systems and tpd
eff=1 eV, the result is

��,0
c,id / �2�c��10 cm−1. For the usual experimental geometry

in the high-Tc cuprates �q��=qz and n�,�
d �� ,�i�

��t� / tpd
eff�2n̂�,�

id �� ,�i��, on the other hand, the critical relax-
ation rate is ��,0

c,id / �2�c��aqt�, i.e., well below 10 cm−1.
Based on this estimates, for frequencies of the outmost ex-
perimental interest, � / �2�c��50 cm−1, the direct processes
can be omitted and we continue the analysis with the ap-
proximate expression

�̃�,�
total�q,�,�i� � �̂�,�

id ��,�i� . �34�

The measured Raman spectra −Im
�̃�,�
total�� ,�i�� are thus pro-

portional to −Im
�̂�,�
id �� ,�i�� of Eq. �30� for arbitrary �.

For comparison with experimental and previous theoreti-
cal results, it is useful to rewrite the effective densities
n̂�,�

id �� ,�i� in terms of the related densities ni,j
id �� ,�i�, which

involve the total Raman vertices. For this purpose, we notice
that the constant terms 
̄�

cc��i�, defined by n�,1
d �� ,�i�

= 
̄�
cc��i�n1,1

d ���, can be formally expressed in terms of the
effective density of states ni,j

id �� ,�i� in the following way:


̄�
cc��i� �

n�,1
id ��,�i�
n1,1

id ���
. �35�

This finally leads to

n̂A1g

id ��,�i� =
nA1g

id ��,�i�n1,1
id ��� − �nA1g,1

id ��,�i��2

n1,1
id ���

,

n̂�
id��,�i� = n�

id��,�i�, � = B1g,B2g �36�

�using the abbreviation n̂�
id�� ,�i�� n̂�,�

id �� ,�i��.

C. Comparison with the usual field-theory approach

For the sake of comparison with the common field-theory
approaches �FTA� it is appropriate to notice that
�̃�,�

d �q ,� ,�i� of Eq. �33� can be rewritten as

�̃�,�
d �q,�� = ���,�

d �q,�� −
��,1

d �q,���1,�
d �q,��

�1,1�q,�� 	
+

��,1
d �q,���1,�

d �q,��
�1,1�q,����q,��

, �37�

in the simplified notation ��i is omitted and it is noted that
�1,1

d �q ,��=�1,1�q ,���. The relation �37� is also the starting
point of the FTA analyses of the electronic Raman
scattering,29,33,35,39 and is the source of controversies regard-
ing the role of the long-range screening in the Raman scat-
tering.

Most of the FTA Raman analyses28,33,34,39 use the standard
approximation for the transverse correlation functions26,45 to
study the Raman spectra in the B1g and B2g channels. In this
case, �̃�,��q ,�� equals ��,��q ,��, with ��,��q ,�� given by
the diagram of Fig. 2�a� for ��,�

d �q ,�� in which the momen-
tum relaxation is replaced by the energy relaxation. Equiva-
lently, this can be formulated by redefining the single-
electron Green functions with respect to the Green functions
used in the charge-charge correlation functions.26,45 For the
scattering on the disorder, this leads roughly to ��,��q ,��
=��,�

FTA���=��,�
id ���−��,�

id �0�, with ��,�
id ��� given by Eq. �30�.

The same approximation was extended to the A1g channel of
the high-Tc cuprates in Ref. 16. This is a reasonable approxi-
mation for the nearly half-filled conduction band with the
Raman vertices treated explicitly, because the resulting ratio
�A1g,1

d �q ,�� /�1,1
d �q ,�� turns out to be negligibly small, as

shown below in Sec. V B.
On the other hand, the usual approximate description of

the Raman vertices used in the FTA approaches generates
�A1g,1

d �q ,�� /�1,1
d �q ,�� comparable to unity. This induces a

quite large constant term in the A1g Raman vertex, and, con-
sequently, activates the long-range forces, as does our ap-
proach for a partially filled conduction band. The FTA ap-
proaches combine further the Coulomb screening in the
expression �37� with the aforementioned approximation for
the transverse correlation functions ��,��q ,��. The Coulomb
term in Eq. �37� is first removed on taking29,33 �̃1,1�q ,��
��vFq�2 /�pl

2 , i.e., the static screening on the ideal lattice in
��q ,��. Next, the momentum relaxation in �i,j

d �q ,�� is re-
placed in the braces of Eq. �37� by the energy relaxation.
Again, this amounts roughly to the replacement of �i,j

d �q ,��
by �i,j

FTA���=�i,j
id ���−�i,j

id �0�. In this way, one obtains the
common field-theory expression28,29,33,39 for the screened Ra-
man correlation function in all three channels �̃�,��q ,��
� �̃�,�

FTA���, where the �i,j
d �q ,�� are replaced by

�i,j
FTA��� =

�

� + i�i,j
c,id

1

v0
ni,j

id ��� �38�

in the braces of Eq. �37�. At frequencies ���pl, the form of
the resulting Im
�̃�,�

FTA���� is thus quite similar to the imagi-
nary part of our expression �34� �combined with �30�, �35�,
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and �36��. The background of this result is that the large
Coulomb term introduced by FTA for any band filling is
removed therein by the static screening.

However, instead of removing the last term in Eq. �37� by
the use of the static screening on the ideal lattice,29,33 our
approach determines explicitly the role of the long-range
forces in the presence of the disorder for the typical Raman
regime ��vFq�, with the Raman vertices treated explicitly.
It turns out that the last term �negligible for the half-filling� is
removed from the A1g response for the partially filled band
by the dynamic, rather than by the static screening of the
long-range Coulomb forces involved in the direct processes.
This screening is characterized by �i,j

d �q� ,���q�
2 /�2 in all

susceptibilities appearing in the last term of Eq. �37�. In ad-
dition, our approach shows immediately that for ���i,j

c,id Eq.
�37� is valid in the impurity-free form, i.e., that the plasmon
peak does not appear in the Raman response due to the
�i,j

d �q� ,���q�
2 /�2 behavior. In contrast to that, the FTA does

not give a clear recipe how to extend its treatment of the last
term in Eq. �37� to the frequencies ���pl. It is noteworthy
that if ��q ,�� were to be replaced here by the usual plasma
expression for the impurity-free lattice but the behavior of
other �i,j

d �q ,��’s in this term was kept constant in the small q
limit, using the expression �38�, the observation of the plas-
mon would be predicted in the Raman scattering, with a
magnitude comparable to that of the single-particle term in
�̃�,�

FTA���. This behavior, common in some semiconductors,53

does not occur in the high-Tc cuprates.
In summary, the Coulomb screening, instead of being all-

important in the Raman response of the high-Tc cuprates is
not important at any �. Equations �36� and �30�, although
widely used, are thus derived here for the first time in a
consistent manner for �
�i,j

c,id and extended to frequencies
around the intraband plasmon frequency.

V. INTRABAND RAMAN SPECTRAL FUNCTIONS

In order to illustrate the importance of the enhancement of
the electronic Raman spectra by the interband resonance, we
shall consider now the bare correlation functions ��,�

id �� ,�i�,
�=A1g ,B1g ,B2g, in the Drude regime of the HAF=0 case,
using �i� the static-Raman-vertex approximation,

�

cc�k ,�i ,�s��
�
cc�k�, usual in most of the current

literature,28–36 and �ii� the elastic-Raman-vertex
approximation.39,55 Also, the reduced correlation function
�̂A1g,A1g

id �� ,�i� will be compared to �A1g,A1g

id �� ,�i� to estimate
the reduction effects present in Eq. �36�. Since, in the nu-
merical calculations discussed below, the 3D nature of the
problem appears only in the relaxation rates, which are as-
sumed to be independent of the wave vector and frequency,
we set t��0 and replace the 3D integrations in the correla-
tion functions by 2D integrations.

A. Intraband (Drude) Raman scattering

With ��
cc�k ,��� i��

c,id, the spectral functions related to
the Drude part of electronic Raman spectra are given by

− Im
�̂�,�
id ��,�i�� �

���
c,id

�2 + ���
c,id�2

1

v0
n̂�

id��,�i� . �39�

For ��
c,id��c,id, the three Raman channels are still distin-

guished by the effective Raman density of states n̂�
id�� ,�i�

�whatever is tpp�.
Furthermore, the comparison with the intraband optical

conductivity

Re
���
c ���� =

��
c,id

�2 + ���
c,id�2� eatpd

eff

�

2 1

v0
n�

id��� , �40�

with �eatpd
eff / � �2n�

id��� /v0�e2n��
eff /m, where n��

eff is the effec-
tive number of conduction electrons per unit cell �discussed
in more detail in Sec. VI A�, gives an analog of the well-
known relation valid in simple Drude metals,

− Im
�̂�,�
id ��,�i�� � � Re
���

c ���� . �41�

�Notice that n̂�
id����n�

id���, because the constant term in the
current vertex is equal to zero, i.e., j��−k�=−j��k�.� Here it
applies to the CuO2 plane ��=x ,y and �=A1g ,B1g ,B2g�. This
relation has been verified in the measured spectra of the
overdoped high-Tc cuprates,1,2,4–7 where the relaxation rates
��

c,id and ��
c,id have been replaced by �������0�+��.

The SRVA version of these expressions, which sets �i
=0 in Eq. �39�, was first derived by Zawadowski and
Cardona28 and then extended to the case of strong quasi-
particle damping ���0� in Refs. 16, 30, and 34. For the
overdoped compounds, the ��0 single component intraband
term is the only contribution relevant to the experimental
spectra. On the other hand, in the underdoped regime, the
complete model includes both the Drude contribution �39�
and the contributions of the low-lying excitations across the
AF �pseudo�gap,1,2,56–58 discussed further in Sec. VI C.

B. Static-Raman vertex approximation

We present now the bare spectra −Im
��,�
id �� ,�i�� relevant

for the Drude regime. First we discuss the validity of the
SRVA ��i=0 in Eq. �31��. As mentioned above, the three-
band model used in the present calculation includes the site
energy splitting �pd

eff=Ep−Ed and the first-neighbor bond-
energy tpd

eff, but neglects the second-neighbor bond-energy
tpp,14,15,43 which restricts our physical discussion to the
La2CuO4 family, where tpp does not seem to play an all im-
portant role.

The effective density of states n���� was evaluated
previously40 for the parameters required to give a reasonable
agreement with the measured spectral weight of the visible
conductivity in the La2CuO4-based compounds. Using the
same parameters, n���� is calculated now in the SRVA. Fig-
ure 10 shows this effective density of states, representing an
appropriate measure for both the maxima in the Drude part
of the Raman spectra, Eq. �39�, and the corresponding spec-
tral weights. The most striking result is that in the doping
range of interest, 0
�
0.3, the ratio nB1g

��� /nA1g
��� is

large �typically nB1g
��� /nA1g

����50�. This enhancement is
related to the fact that, for tpp=0, the factor �
A1g

cc �k��2 be-
comes negligible in comparison with �
B1g

cc �k��2 for the Fermi
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energy close to the van Hove energy. This prediction of
SRVA is however physically unacceptable, since the mea-
sured nB1g

��� /nA1g
����1.5–7

Using the definition of the constant terms 
̄�
cc��i�,

n�,1
d �� ,�i�= 
̄�

cc��i�n1,1
d ���, we can write

n̂�
id��� = n�

id��� − �n�,1
d ���

n1,1
d ���


2

n1,1
id ��� �42�

in the simplified notation ��i is omitted�. This expression
�and its approximate version �36� as well� reveals the exis-
tence of two qualitatively different regimes: �i� For the
nearly half-filled conduction band, i.e., for the Fermi energy
close to the van Hove energy, the second term is negligible
�n�,1

d ��� crosses zero at ��0.3, and n1,1
d ��� is singular for

���vH�. For ���vH, the constant term in the A1g Raman
vertex is negligibly small. �ii� On the contrary, for the doping
well away from half-filling, the dispersive terms in the ver-
tices are negligible, leading to the strong reduction effects in
Eq. �42� with n̂A1g

id ����nA1g

id ���.
To simplify the discussion of the resonant effects and the

effects of the AF correlations, in the rest of the article we
consider the effective density of states n̂�

id����n�
id���. For

0
�
0.3, the corrections are of the order of few percent,
i.e., they are comparable to the effects of the orthorhombic
distortion on �̃�,�

total�q ,� ,�i� which have been already ne-
glected here.

C. Elastic-Raman-vertex approximation

We calculate therefore the effective density of states
n��� ,�i� in the ERVA, i.e., retaining �i in Eq. �31�, for the
hole doping �=0.1 and the damping energies ��inter=0.1 and
0.15 eV. In Fig. 11 we show the results for the model param-
eters used above ��pd

eff=0.66 eV and tpd
eff=0.73 eV�. For ��i

�0, the large nB1g
�� ,�i� intraband term, associated with van

Hove singularities, is large with respect to the interband

nA1g
�� ,�i� term. For ��i around EN�k�−��1.8 eV �N for

the nonbonding band�, the resonant �interband� contribution
to nA1g

�� ,�i� is nearly equal to the sum of the static �intra-
band� and resonant �interband� terms in nB1g

�� ,�i�. In the
maximum, the comparable interband contributions dominate.
This energy range corresponds to EN�k�−�
 ��i
 �EN�k�
−Ec�k��max, because for tpp=0, the optical excitations be-
tween the conduction and antibonding bands are negligible.43

For tpp large enough, the latter excitations become important
as well, and resonant effects are extended to the energy re-
gion EN�k�−�
 ��i
 �EP�k�−Ec�k��max �i.e., between 1.7
and 4 eV�. Due to the resonant enhancement of the Raman
scattering processes, we find the ratio nB1g

�� ,�i� /nA1g
�� ,�i�

consistent with the experimental observation. Notice, how-
ever, the reduction of the resonant effect with increasing
damping energy ��inter �inset of the figure�.

The spectral weight of the B2g channel relative to two
other channels turns out to be one order of magnitude
smaller than the one usually found in experiments. This re-
flects the fact that various processes described by other pa-
rameters of the three-band model, and in particular by the
direct oxygen-oxygen hopping tpp, are absent here. It should
be noticed that tpp opens an additional channel in the
electron-photon coupling �see Eq. �A3�� involving predomi-
nantly the electronic states in the nodal kx=ky region of the
Fermi surface. As easily seen, this leads in the first place to
the enhancement of the B2g Raman spectra giving the contri-
butions proportional to tpp in 
B2g

cc �k ,�i�, additional to the
contributions of the indirect oxygen-oxygen hopping pro-
cesses ���tpd

eff�2� shown in Figs. 10 and 11.
We notice finally that, if the contributions of

Im

�
CC�k ,�i�� to n��� ,�i� are neglected, one obtains the

resonant structure characterized by two peaks split approxi-
mately by the energy 2��inter, as represented in the inset of
Fig. 11 by the dotted line. Similar dependence of the Raman
spectra on the photon frequencies was already proposed in
the multiband study of the electron-mediated photon-phonon
coupling functions.55

FIG. 10. The dependence of the effective density of states on the
Fermi energy �, for �pd

eff=0.66 eV, tpd
eff=0.73 eV, and tpp=0. The

label �=1 denotes the ordinary density of states �divided by a factor
of 5�, and �=A1g, B1g, and B2g correspond to three Raman polar-
izations. For clarity the B2g density of states is multiplied by 10.
The hole picture is used, i.e., the upper band boundary corresponds
to the hole doping �=1 �measured with respect to half-filling�. The
doping range 0
�
0.3, relevant to the hole doped high-Tc cu-
prates, is indicated by two arrows.

FIG. 11. Inset: The resonant enhancement of the A1g density of
states nA1g

for �=0.1 ��=−1.793 eV in Fig. 10�, and ��inter

=0.1 eV �solid and dotted line� and 0.15 eV �dashed line�. The
dotted �solid, dashed� line represents the contributions of the real
�real and imaginary� part�s� in 
�

cc�k ,�i� to nA1g
. Main figure: The

total bare effective density of states for all three Raman channels for
��inter=0.1 eV. The B2g spectrum is again multiplied by 10.
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It should be noticed that most of the recent Raman studies
are focussed only on the B1g and B2g channels. These two
channels scan the complementary parts of the Fermi surface
�the vicinity of the van Hove points in B1g and the nodal
region of the Brillouin zone in B2g� and almost all relevant
physics is present in the related spectra.7,13,58 Our compari-
son with the experimental data, given in Sec. VI C, will be
thus also limited to these two channels.

VI. EFFECTS OF THE ANTIFERROMAGNETIC
ORDERING

In order to make our analysis of the coherence factors
analytically tractable we shall restrict it here to the situations
in which the direct oxygen-oxygen hopping tpp is not quali-
tatively important and set it equal to zero. Such is the case of
La2CuO4 based families for the doping not too far from the
optimal doping, where the Fermi surface is nearly square.

The effective AF potential ��k� is assumed to be of the
dx2−y2 symmetry, ��k�=0.5�AF�cos k ·a1−cos k ·a2�. This
potential dominantly affects the states close to the van Hove
points, leads to the dimerization of the bands, and is accom-
panied by the low-lying interband processes characterized by
a threshold energy proportional to the magnitude �AF. Two
subbands of the conduction band will be denoted by the in-
dices L=C �upper band� and L=C �lower band�. For the
half-filled conduction band of the tpp=0 model, QAF leads to
the ideal nesting of the Fermi surface and, correspondingly,
the relevance of this perturbation grows with decreasing hole
doping.

In other cases, the interplay between tpp and ��k� is prob-
ably responsible for the anomalies regarding, e.g., the devel-
opment of both the Fermi surface shape23 and the optical
conductivity with doping. Namely, for tpp large enough with
respect to tpd

eff, even small changes in the hole doping could
produce dramatic changes in the electrodynamic features of
the electron system �this might be analogous to the situation
found in the quasi-one-dimensional Bechgaard salts59�.
ARPES measurements in the YBa2C3O7−x and Bi-based
cuprates21,22 are indicative of such a regime, not discussed
here.

A. Hall coefficient

In the three-band model with the magnetic field normal to
the conduction plane, the room-temperature Hall coefficient
is of the form RH�1/ �ecnH�, where nH is the effective Hall
number given by nH=nxx

effnyy
eff /nxy

eff. The diagonal and off-
diagonal effective numbers of charge carriers read as40,60,61

n��
eff = −

m

e2

1

v�
k*�

�J�
CC�k��2 � fC�k�

�EC�k�
, �43�

nxy
eff =

m

e2

1

v�
k*�

� fC�k�
�EC�k�

Jx
CC�k��
yy

CC�k�Jx
CC�k� − 
xy

CC�k�Jy
CC�k��

�44�

��=x or y�. The structure of the intraband current vertices,
J�

CC�k� �J�
cc�k��, and the static Raman vertices,


��
CC�k� �
��

cc �k��, for the �AF�0 ��AF=0� case is deter-
mined in Appendix B �A�. For �AF�0 ��AF=0�, k*�k� re-
fers to the new �old� Brillouin zone. The dc conductivity can
be scaled by the diagonal effective numbers, as well, accord-
ing to the relations �40� and �43�, ���

dc =e2n��
eff / �m��

c,id�.
The effective numbers �43� and �44� are extremely sensi-

tive to the correlation effects. In order to illustrate this de-
pendence, the numbers nxx

eff and nH are calculated with and
without the potential ��k� of the dx2−y2 symmetry and are
compared to the experimental observations in La2−xSrxCuO4
�Refs. 1 and 42� showing that �i� the change of the sign of nH
occurs nearly at �0�0.25; �ii� nH�� in the underdoped com-
pounds; and �iii� n��

eff �� for �→0. The results are given in
Fig. 12 for �AF=0 and 50 meV. The main figure illustrates
the well-known fact that for a pair of bonding and antibond-
ing bands the critical doping �0, which separates the elec-
tronlike doping region�s� from the holelike one�s�, is shifted
for finite tpd

eff /�pd
eff �tpp=0� from �=0 in the positive �negative�

direction for the lower �upper� band, breaking in this way a
simple electron-hole symmetry in each of these two bands.
For the wide conduction band, characterized by �pd

eff

=0.66 eV and tpd
eff=0.73 eV, this results in �0�0.27, in

agreement with the observation �i�. The measured linear
�-dependences of nxx

eff �iii� and nH �ii� can be related to the
mid-infrared �MIR� gap structure, as seen from the inset of
Fig. 12. It should also be noticed that, for �AF not too large,
the position of �0 is only slightly dependent on �AF. More
importantly, due to the doubled number of zeros of
�2EC�k� /�k��k� �which appear above and below the original
van Hove energy �vH�, the effective number nxy

eff has two
zeros, resulting in an additional critical doping within the
electron-doped range. In crude terms, this restores the
electron-hole symmetry of the phase diagram of the high-Tc
cuprates, which is seen in the Hall coefficient
measurements.1,42

FIG. 12. Main frame: Effective numbers nxx
eff and �nH� �represent-

ing also the dc conductivity and the inverse Hall coefficient, scaled
by e2 / �mv0�x

c,id� and ec /v0, respectively� as a function of the dop-
ing level for �AF=0. Inset: The effect of the AF correlations on nxx

eff

and �nH� for the dx2−y2 symmetry perturbation ��k� with �AF

=50 meV, in the hole-doped region. The critical doping �0, where
nxy

eff=0, is labeled by arrows. n and p denote, respectively, the region
of electronlike �nH ,nxy

eff
0� and holelike �nH ,nxy
eff�0� behavior of

the charge carriers.
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B. Optical conductivity

The dependence of the low-frequency conductivity on the
symmetry and magnitude of the dimerization potential ��k�
is analyzed in detail in Refs. 40 and 41. For the sake of
completeness we enumerate here the most important results.
The two-component �AF�0 intraband conductivity reads

���
intra��� � �1

i

�

e2n��
eff

m

�

� + i��
c,id − �2i����

MIR��� , �45�

with the effective number of conduction electrons, n��
eff , and

the MIR polarizability, ���
MIR���, given by

n��
eff =

1

v�
k*�


��
CC�k��1 − fC�k�� , �46�

���
MIR��� =

1

�2

1

v�
k*�

����2�J�
CC�k��2

ECC
2 �k�

	
2ECC�k��fC�k� − 1�

��� + i � ��
MIR�2 − ECC

2 �k�
. �47�

The renormalization factors �1 and �2 in Eq. �45� serve here
to model the effects of fluctuations of auxiliary bosons on the
low-frequency optical excitations.40 The vertex J�

CC�k� and
the energy difference ECC�k� are given in Appendix B.

Figure 13 illustrates the typical low-frequency spectra
measured in La2CuO4.12, compared to the model predictions.
In spite of its simplicity, the model �45�–�47� with tpp=0 can
explain why the MIR structure in La2CuO4.12 is nearly inde-
pendent of temperature.56 Namely, at temperatures below the
room temperature, the position of the MIR maximum
��MIR�90 meV is well above the relaxation rate ���

MIR and
correspondingly ��MIR�2�AF, independent of ���

MIR. This
situation strongly contrasts with those observed in the Bech-
gaard salts59 or in Bi2SrCuO6 �Ref. 57� where small Drude
spectral weights �i.e., v0n��

eff �1� reveal the interplay be-

tween tpp �or tb in the Bechgaard salts� and the energy scale
2�AF.47

C. B1g and B2g Raman spectra

Next, we extend the discussion of the AF effects to the
electronic Raman spectra. In the hole-doped regime, the
Drude-like contributions and the low-lying transitions
through the AF �pseudo�gap are given by Eq. �39� and by

− Im
��,�
MIR��,�1�� �

1

N
�
k*�

�
�
CC�k,�1��2�fC�k�

− 1�Im� 2ECC�k�

��� + i � ��
MIR�2 − ECC

2 �k�� ,

�48�

respectively. Neglecting the effects of ��k� on the interme-
diate interband processes and applying the static approxima-
tion for the low-frequency part of the Raman vertex, the
elastic Raman vertices in the expressions �39� and �48� cal-
culated at tpp=0 are given by


�
CC�k,�i� � 
�

cc�k,�i�cos2 ��k�
2

+ 
�
cc�k ± QAF,�i�sin2 ��k�

2
,


�
CC�k,�i� �

1

2
�
�

cc�k,�i� − 
�
cc�k ± QAF,�i��sin ��k� .

�49�

��k� is an auxiliary phase defined in Appendix B.
Again, for �AF� tpd

eff ,�pd
eff, the dx2−y2 symmetry of ��k�

causes significant effects in the Raman spectra only for rela-
tively small doping ��
0.15� when the Fermi energy � is
close to the van Hove singularities. The most important
qualitative results are illustrated in Fig. 14 for �=0.1 and
�AF=0, 45 meV.

First of all, we observe in Fig. 14 that the MIR peak in the
optical conductivity is accompanied by a similar peak in the
Raman spectra, but only in the B1g channel. As a result, the
Raman spectral density increases with frequency towards a
maximum in the B1g channel, at ���2�AF, in contrast to the
B2g channel, where it decreases immediately after the fre-
quency ��� ���

c,id. This agrees qualitatively with the Ra-
man experimental results.

Second, the observed13 doping-induced weakening of the
Drude part of the B1g spectra by one order of magnitude with
respect to the B2g spectra below ��0.15, can be related to
the �pseudo�gap features in the electron dispersion in the
vicinity of the original van Hove points. Namely, the B1g
effective density of states at the Fermi level �shown in Fig.
10� is strongly suppressed for ��vH−� � 
�AF. This contrasts
with the B2g case where the spectra come dominantly from
the nodal region of the Fermi surface, unaffected by ��k�.

FIG. 13. The optical conductivity �45� for the anisotropic-s po-
tential ��k�=�AF�0.5+0.125�cos k ·a1−cos k ·a2�2�1/2 with �AF

=45 meV, �pd
eff=0.66 eV, tpd

eff=0.73 eV, �=0.1, �1=0.18, and �2

=0.4. Main figure: ���
c,id=30 meV and ���

MIR=50 meV �suitable to
T=200 K spectra in the La2CuO4 based compounds�. Inset: ���

c,id

=15 meV and ���
MIR=25 meV �T�100 K�. The data measured in

La2CuO4.12 at T=200 K �Ref. 56� connected by the dotted line are
given for comparison.
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VII. CONCLUSION

The electronic Raman correlation functions have been
calculated here for the Emery three-band model, using the
distinction between the direct and indirect scattering on the
quasistatic disorder. It is shown that there is a simple exclu-
sion rule connecting these two scatterings and the long-range
Coulomb screening. The direct processes concern the con-
stant terms in the vertices. They are strongly affected by the
long-range screening, and, in the dynamic limit, participate
in the correlation functions through the contributions propor-
tional to small q2. The indirect processes include only the
dispersive terms in the vertices. They are nearly unaffected
by the long-range forces, and their contributions to the cor-
relation functions are proportional to the channel-dependent
relaxation rates. It is shown so that in the high-Tc cuprates
the contributions of the direct processes to the Raman corre-
lation functions can be safely neglected. Using the elastic
approximation for the Raman vertices in two �with and with-
out the AF dimerization gap ��k�� analytically solvable ver-
sions of the tpp=0 Emery three-band model, we show than
that the resonant Raman scattering processes remove a large
discrepancy between the spectral weights of the A1g and B1g
Raman channels obtained in the static approximation for the
Raman vertices. The resulting spectra agree reasonably well
with experimental findings. It is also shown that the anoma-
lous MIR peak in the optical conductivity, observed in the
underdoped compounds, is correlated with the corresponding
structure which appears only in the B1g Raman channel, as
well as with the measured linear �-dependence of the Hall
number. This relation is explained here in terms of the
��k��0 AF correlations. On the other hand, the ��k�=0
Emery model used to fit the overall band structure, a part of
which is seen in the ARPES data,18 leads to different results.
Particularly important in this respect are Raman selection
rules. The small energy scales observed in the Raman scat-
tering, just as in the ARPES data,23 are therefore better re-

lated to the AF correlations within the conduction band than
to the low-energy interband transitions in the strongly corre-
lated ��k�=0 metallic state.
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APPENDIX A: THREE-BAND VERTEX FUNCTIONS

The coupling of the vector potential A�r� to the conduc-
tion electrons of the Emery three-band model is given in the
usual way,47 by replacing the hole creation �and annihilation�
operators in the bare Hamiltonian H0 by

l̃n�
† = ln�

† eie/��c��Rn+rl�·A�Rn+rl� �A1�

�similar for l̃n��. Here Rn and rl are, respectively, the Bravais
lattice vector and the position in the primitive cell of the
orbital labeled by the index l. The Taylor expansion in the

vector potential of H̃0 to the second order leads to

H̃0 − H0 � Hext = �
ll�kq�

�H0
ll��k,q�lk+q�

† lk�� , �A2�

where

�H0
ll��k,q� � −

1

c

e

�
�
�

�H0
ll��k�

�k�

A��q�

+
e2

2mc2

m

�2 �
q���

�2H0
ll��k�

�k� � k�

A��q − q��A��q�� .

�A3�

In the Bloch representation, Hext is given by the expression
�9�, with the vertex functions

J�
LL��k� =

e

�
�
ll�

�H0
ll��k�

�k�

Uk�l,L�Uk
*�l�,L�� ,


��
LL��k;2� = −

m

�2�
ll�

�2H0
ll��k�

�k� � k�

Uk�l,L�Uk
*�l�,L�� �A4�

�� ,�=x ,y�.
The number of channels in the electron-photon coupling

is equal to the number of independent bond energies; tpd
eff and

tpp in the Emery three-band model for the in-plane processes.
For the tpp=0 three-band model, one obtains the dimension-
less in-plane current and bare Raman vertices ��=x or y� of
the form40

j�
cc�k� = tpd

eff2ukvk

tk
sin k · a�,

j�
cP�k� = tpd

effuk
2 − vk

2

tk
sin k · a�,

FIG. 14. The B1g �a� and B2g �b� electronic Raman spectra ob-
tained by ERVA for the dx2−y2 symmetry potential ��k�. The param-
eters are �pd

eff=0.66 eV, tpd
eff=0.73 eV, �=0.1, ��i=2 eV, ���

MIR

=50 meV, and ��inter=0.1 eV. The curves A �B�: �AF=0 �45� meV
and ���

c,id=30 meV. The curves C: �0=45 meV and ���
c,id

=15 meV �with the Drude �dotted line� and MIR �dashed line� con-
tributions indicated as well�. The B2g spectrum is multiplied by 10.
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jx
cN�k� = tpd

eff2uk

tk
sin

1

2
k · a2 cos

1

2
k · a1,

jy
cN�k� = − tpd

eff2uk

tk
sin

1

2
k · a1 cos

1

2
k · a2, �A5�

and


��
cc �k;2� = ��,�

m

mxx

�pd
effukvk

tk
sin2 1

2
k · a�, �A6�

respectively, with

J�
LL��k� =

eatpd
eff

�
j�
LL��k� . �A7�

uk, vk, and tk are the auxiliary functions defined in Ref. 43,
and mxx=�2�pd

eff / �2a2�tpd
eff�2� is the in-plane mass scale ��a1 �

= �a2 � =a�.

APPENDIX B: VERTEX FUNCTIONS WITH
ANTIFERROMAGNETIC DIMERIZATION

The AF dimerization of the conduction band Ec�k� caused
by HAF is solved elsewhere.40 Apparently, HAF can also de-
scribe dimerizations other than AF �spin-Peierls, charge-
density waves�. That is, there is no explicit spin-dependence
in the dispersions of the bands in this Appendix.

The vertex functions important for the present analysis
can be shown in terms of the auxiliary phase defined by

tan ��k� =
2��k�

Ec�k� − Ec�k ± QAF�
. �B1�

The static Raman vertex and the current vertices relevant to
both the effective numbers �43� and �44� and the optical con-
ductivity �45� are given, respectively, by


��
CC�k� = 
��

cc �k�cos2 ��k�
2

+ 
��
cc �k ± QAF�sin2 ��k�

2

−
m

e2

2�J�
CC�k��2

ECC�k�
, �B2�

and

J�
CC�k� = J�

cc�k�cos2 ��k�
2

+ J�
cc�k ± QAF�sin2 ��k�

2
,

J�
CC�k� =

1

2
�J�

cc�k� − J�
cc�k ± QAF��sin ��k� . �B3�

Here ECC�k�=EC�k�−EC�k� and

EC,C�k� =
1

2
�Ec�k� + Ec�k ± QAF��

±�1

4
�Ec�k� − Ec�k ± QAF��2 + �2�k� .

�B4�

Similarly, the approximate expressions for the total Raman
vertices are given by the expressions �49�.

APPENDIX C: LONGITUDINAL RESPONSE THEORY IN
MULTIBAND MODELS

We consider the Hamiltonian �1� with H2�=0 and Hext

given by Eq. �11�. H1� includes only the quasielastic scatter-
ing processes on the disorder. We introduce the retarded
electron-hole propagator DLL��k ,k+ ,k+� ,k� , t� defined by
�hereafter q=q�ê��

DLL��k,k+,k+�,k�,t�

= − i��t���Lk�
† �t�Lk+q�� �t�,Lk�+q�

� †�0�Lk���0��� ,

�C1�

and the related induced density

�nLL��k,k+,�� � �nLL��k� = �
k�

1

�
DLL��k,k+,k+�,k�,��

	qL�L�k+�,k��Vext�q,�� . �C2�

The equation of motion for DLL��k ,k+ ,k+� ,k� , t� can be set
into a form analogous to the Landau equation

��� + EL�k� − EL��k+���nLL��k�

= �fL�k� − fL��k+��qL�L�k+,k�Vext�q,��

− i � Im
��
LL��k,����ñLL��k� , �C3�

where �ñLL��k� is the contribution to �nLL��k� which is pro-

portional to J�
L�L�k� and

���
LL��k,�� � − �

q�

�V1�q���2
1

�
�D0

LL��k,k+ + q�,��

+ D0
LL��k + q�,k+,����1 −

J�
L�L�k + q��

J�
L�L�k�



�C4�

is the electron-hole self-energy for the case V1
LL�q��

�V1�q��, and

1

�
D0

LL��k,k�,�� =
1

�� + EL�k� − EL��k�� + i � �
. �C5�

In expression �C3� the fact that the real part of the electron-
hole self-energy is negligible for the quasielastic scattering
on disorder is taken into account.

The total induced density �nLL��k� consists of the induced

charge and current densities �denoted by �n0
LL��k� and

�n1
LL��k� �Ref. 46��, satisfying the �intraband� continuity

equation ���n0
LL�k�+ELL�k ,k+��n1

LL�k�=0. The solution of
the Landau equation �C3�, together with the definition for the
total optical conductivity

j�
ind��� =

1

v �
LL�k�

J�
LL��k��n1

LL��k� = ������E�
ext��� �C6�

and with the relation
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qL�L�k+,k�Vext�q,�� �
�J�

L�L�k�
EL�L�k+,k�

iE�
ext��� , �C7�

�corresponding to Eq. �12� combined with the relation
q�Vext�q ,��= iE�

ext���� gives

������ =
i

�

1

v �
LL�k�

� ��

EL�L�k+,k�
nLL�
�J�

LL��k��2

	
fL�k� − fL��k+�

�� + i � ��
LL��k,�� + ELL��k,k� −

EL�L�
2 �k,k+�

��

.

�C8�

Here nLL=1 in the intraband channel, nLL=2 in the interband

channel, ��
LL��k ,��=Im
��

LL��k ,��� and ELL��k ,k��=EL�k�
−EL��k��. The related long-wavelength susceptibility and the
dielectric function become

e2�1,1�q,�� = − �
�

iq�
2

�
������ ,

��q,�� = 1 +
4�i

�q2�
�

q�
2������ , �C9�

with q=��q�ê�. The expressions �C8� and �C9� are the gen-
eralization of the well-known single-band Landau response
functions.46 Obviously, to obtain Eqs. �22� and �23� of the
main text we must include the contributions beyond the
three-band model, as well, by adding ���q ,��−1 to the
above expression for ��q ,��.
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