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Free expansion of a Lieb-Liniger gas: Asymptotic form of the wave functions
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The asymptotic form of the wave functions describing a freely expanding Lieb-Liniger gas is derived by
using a Fermi-Bose transformation for time-dependent states, and the stationary phase approximation. We find
that asymptotically the wave functions approach the Tonks-Girardeau �TG� structure as they vanish when any
two of the particle coordinates coincide. We point out that the properties of these asymptotic states can
significantly differ from the properties of a TG gas in a ground state of an external potential. The dependence
of the asymptotic wave function on the initial state is discussed. The analysis encompasses a large class of
initial conditions, including the ground states of a Lieb-Liniger gas in physically realistic external potentials. It
is also demonstrated that the interaction energy asymptotically decays as a universal power law with time,
Eint� t−3.
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I. INTRODUCTION

The physics of one-dimensional �1D� Bose gases in many
aspects differs from the physics encountered in higher-
dimensional systems. For example, the Lieb-Liniger �LL�
gas of �-interacting bosons in one spatial dimension becomes
less ideal as its density decreases �1�, and eventually ap-
proaches the Tonks-Girardeau �TG� limit of a gas of
“impenetrable-core” bosons �2� as it becomes sufficiently di-
luted. The interest in these 1D systems is greatly stimulated
by their experimental realization with atoms confined in tight
1D atomic wave guides �3–5�. The special features of effec-
tively 1D atomic gases �6–8� are reflected by properties of
nonequilibrium dynamics in these systems, which have be-
come accessible experimentally �5�. The possibility of find-
ing exact time-dependent solutions for LL �9–11� and TG
�12–22� evolution is of particular theoretical interest, as they
have the potential to provide insight beyond various approxi-
mation schemes.

Exact solutions for a homogeneous Bose gas with �repul-
sive� pointlike interactions of arbitrary strength c, and peri-
odic boundary conditions, were presented by Lieb and Lini-
ger in 1963 �1�. For attractive interactions, c�0, exact LL
wave functions were analyzed in Ref. �23�. The case of box
confinement for c�0 was studied in Ref. �24�. In the light of
recent experiments �3–5� exact studies of the LL model are
even more attractive today �25–29�. Besides providing in-
sight into the physics of 1D Bose gases, exact solutions can
serve as a benchmark for various approximations as well as
for numerical approaches �see, e.g., Refs. �29,30��. The cal-
culation of correlation functions of a LL gas from the wave
functions is a difficult task; these functions furnish observ-
ables like the momentum distribution of particles in the gas,
and were studied by using various approaches �e.g., see Refs.
�31–42��. Time-dependent phenomena in the context of LL

gases with finite-strength interactions have been addressed
by using both analytical �9–11� and numerical methods �see,
e.g., Refs. �43,44��. Irregular dynamics of a LL gas was stud-
ied numerically in a mesoscopic system in Ref. �43�. In Ref.
�10�, it was shown that phase imprinting by light pulses con-
serves the so-called cusp condition for the LL wave function
imposed by the interactions.

Exact solutions for 1D Bose gases are conveniently con-
structed by using the Fermi-Bose mapping techniques
�2,9,12,45�. In 1960 Girardeau discovered that the wave
function of a spinless noninteracting 1D Fermi gas can be
symmetrized such that it describes an impenetrable-core 1D
Bose gas �2�. This mapping is valid for arbitrary external
potentials �2�, for time-dependent problems �12�, and in the
context of statistical mechanics �45�. In fact, fermion-boson
duality in 1D exists for arbitrary interaction strengths
�46,47�. Furthermore, a time-dependent antisymmetric wave
function describing a 1D system of noninteracting fermions
can be transformed, by using a differential Fermi-Bose map-
ping operator, to an exact time-dependent solution for a LL
gas, as outlined by Gaudin �9�. This method is applicable in
the absence of external potentials and other boundary condi-
tions. Therefore, it is particularly useful to study free expan-
sion of LL gases from an initially localized state.

Free expansion of interacting Bose gases has recently at-
tracted considerable attention. It has been utilized in experi-
ments to deduce information on the initial state �see, e.g.,
Ref. �48�, and references therein�, and can be considered as a
quantum-quench-type problem which provides insight into
the relaxation of quantum systems �see, e.g., Refs. �49,50�,
and references therein�. Free expansion of a LL gas has been
analyzed in Ref. �14� by employing the hydrodynamic for-
malism �8�; it was shown that the density of the gas does not
follow self-similar evolution �14�. However, in 1D Bose sys-
tems, most exact many-body solutions are given for the TG
gas �14,16–18,22�. An important result is that the momentum
distribution of the freely expanding TG gas asymptotically
approaches the momentum distribution of free fermions
�16,17�. Recently, we have constructed a particular family of*hbuljan@phy.hr

PHYSICAL REVIEW A 78, 053602 �2008�

1050-2947/2008/78�5�/053602�9� ©2008 The American Physical Society053602-1

http://dx.doi.org/10.1103/PhysRevA.78.053602


exact solutions describing a LL gas freely expanding from a
localized initial density distribution �11�. It was shown that
for any interaction strength, the wave functions asymptoti-
cally �as t→�� assume TG form. Even though it is generally
accepted that 1D Bose gases become less ideal with decreas-
ing density, this intuition is mainly based on the studies of a
LL gas in equilibrium ground states �1�. Thus, a more rigor-
ous analysis of the expanding LL gas, which leads to a more
dilute system, but out of equilibrium, is desirable. In particu-
lar, it is interesting to study the dependence of the asymptotic
wave functions on the initial state, and to see how the initial
conditions are imprinted in the asymptotic states.

Here we study the asymptotic form of the wave function
describing a freely expanding Lieb-Liniger gas, which can be
constructed via the Fermi-Bose transformation and the sta-
tionary phase approximation. In Sec. II we describe the LL
model and the Fermi-Bose transformation. In Sec. III we
demonstrate that the asymptotic wave functions have Tonks-
Girardeau structure, that is, they vanish when any of the two
particle coordinates coincide. The dependence of the
asymptotic state on the initial state is discussed. We illustrate
that the properties of the asymptotic wave functions can sig-
nificantly differ from the properties of a TG gas in the
ground state of some external potential. This study general-
izes and adds upon our previous result from Ref. �11�, as the
initial conditions studied here encompass ground states for
generic external potentials and various interaction strengths.
From the next-to-leading order term in the asymptotic re-
gime, we deduce that the interaction energy of the LL gas
decays as a universal power law in time Eint� t−3. This is
illustrated on a particular example in Sec. IV, where we pro-
vide a further analysis of the particular family of time-
dependent LL wave functions studied in Ref. �11�. Explicit
expressions for the asymptotic form of the single-particle
density are provided in Sec. V. In Sec. VI we calculate the
asymptotic single-particle density for free expansion of a LL
gas from an infinitely deep box potential. We compare our
exact calculation with the hydrodynamic approximation in-
troduced in Ref. �8�, and employed in Ref. �14� in the con-
text of free expansion, obtaining good agreement for all val-
ues of the interaction strength.

II. LIEB-LINIGER MODEL

A system of N identical �-interacting bosons in one spatial
dimension is described by the many-body Schrödinger equa-
tion �1�

i
��B

�t
= − �

i=1

N
�2�B

�xi
2 + �

1�i�j�N

2c��xi − xj��B. �1�

Here, �B�x1 , . . . ,xN , t� is the time-dependent wave function,
and c is the strength of the interaction. It is assumed that the
initial wave function is localized, e.g., by the system being
trapped within some external potential, before, at t=0, the
trap is suddenly switched off and the gas starts expanding.
We are interested in the behavior of �B when t→�. Here the
spatial dimension is infinite xj � �−� ,��, i.e., we do not im-
pose any boundary conditions.

Due to the Bose symmetry of the wave function, it is
sufficient to express it in the fundamental sector of the con-
figuration space, R1 :x1�x2� ¯ �xN, where �B obeys

i
��B

�t
= − �

i=1

N
�2�B

�xi
2 . �2�

The � interactions create a cusp in the wave function when
two particles touch. This can be expressed as a boundary
condition at the borders of R1 �1� as follows:

�1 −
1

c
� �

�xj+1
−

�

�xj
�	

xj+1=xj

�B = 0. �3�

These boundary conditions can easily be rewritten for any
permutation sector. In the TG limit, i.e., for c→�, the cusp
condition implies that the wave function vanishes when two
particles are in contact: 
�B�x1 , . . . ,xj ,xj+1 , . . . ,xN , t�
xj+1=xj
=0 �2,12�.

Exact solutions of the time-dependent Schrödinger equa-
tion �1� can be obtained by using a Fermi-Bose mapping
operator �9,11� acting on fermionic wave functions: If
�F�x1 , . . . ,xN , t� is an antisymmetric �fermionic� wave func-
tion, which obeys the Schrödinger equation for a noninter-
acting Fermi gas,

i
��F

�t
= − �

i=1

N
�2�F

�xi
2 , �4�

then the wave function

�B,c = NcÔc�F, �5�

where

Ôc = �
1�i�j�N

�sgn�xj − xi� +
1

c
� �

�xj
−

�

�xi
�	 , �6�

is the differential Fermi-Bose mapping operator, and Nc is a
normalization constant, obeys Eq. �1� �9�. For the purpose of
completeness we outline, in the Appendix, the proof that the
wave function �5� obeys both the cusp condition imposed by
the interactions and the Schrödinger equation �2�.

III. FREE EXPANSION: ASYMPTOTICS

In this section we study the asymptotic form of time-
dependent LL wave functions �B,c, which are obtained by the
Fermi-Bose transformation �5�. All information on the initial
condition �B,c�x1 , . . . ,xN , t=0� is contained in the initial fer-
mionic wave function �F�x1 , . . . ,xN , t=0�.

�B,c�x1, . . . ,xN,0� = NcÔc�F�x1, . . . ,xN,0� . �7�

The initial bosonic wave function, which can be expressed in
this way, is assumed to describe a LL gas in its ground state
when trapped in some external potential V�x�, e.g., in a har-
monic oscillator potential, or some other trapping potential
used in experiments. We consider the evolution from this
initial state after the trapping potential has been suddenly
turned off, as studied in experiments to deduce information
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on the initial state �48�. The time-dependent fermionic wave
function �F�x1 , . . . ,xN , t�, which freely expands from the ini-
tial condition �F�x1 , . . . ,xN ,0�, can be expressed in terms of
its Fourier transform,

�F�x1, . . . ,xN,t� =� dk1 ¯ dkN

	 �̃F�k1, . . . ,kN�ei�j=1
N �kjxj−
�kj�t�, �8�

where 
�k�=k2, and

�̃F�k1, . . . ,kN� =
1

�2��N � dx1 ¯ dxN

	 �F�x1, . . . ,xN�e−i�j=1
N kjxj . �9�

By using the Fermi-Bose transformation, the time-dependent
bosonic wave function describing the freely expanding LL
gas can be expressed as

�B,c =� dk1 ¯ dkN 	 G�k1, . . . ,kN�ei�j=1
N �kjxj−
�kj�t�,

�10�

where the function G�k1 , . . . ,kN� is defined as

G�k1, . . . ,kN� = Nc�̃F�k1, . . . ,kN�

	 �
1�i�j�N

�sgn�xj − xi� +
i

c
�kj − ki�	 .

�11�

It should be noted that G�k1 , . . . ,kN� is not the Fourier trans-
form of �B,c because it depends on xj through the sgn�xj
−xi� terms.

The asymptotic form of the wave function �10� can be
obtained by evaluating the integral with the stationary phase
approximation. The phase �=� j=1

N �kjxj −
�kj�t� is stationary
when �� /�kj =0. Let 
kj�� denote the kj values for which

� �


�kj
�

kj�
= xj − 2kj�t = 0,

that is, kj�=xj /2t. The phase can be rewritten as


�
k�� = 
�
k��� − t�
j=1

N

�kj − kj��
2.

The leading term of the integral in Eq. �10�, as well as the
next-to-leading term, can be evaluated by expanding
G�k1 , . . . ,kN��G�
k�� in a Taylor series around the station-
ary phase point 
k�� as follows:

�B,c = ei��
k����G�
k��� � dk1 ¯ dkNe−it�j=1
N �kj − kj��2

+ �
i=1

N ��G�
k��
�ki

�

k��
� dk1 ¯ dkN�ki − ki��e

−it�j=1
N �kj − kj��2

+
1

2! �
i,j=1

N ��2G�
k��
�ki�kj

�

k��
� dk1 ¯ dkN�ki − ki���kj − kj��

	e−it�l=1
N �kl − kl��2

+ ¯ 	 . �12�

The remaining integrals in the three terms written out in this
expansion can be calculated analytically. The second term
involving the first derivatives of G�
k�� vanishes. The third
term is nonvanishing only for i= j. Thus Eq. �12� reduces to

�B,c = ei��
k������

t
e−i�/4�N

	 �G�
k��� −
i

4t
�
i=1

N � �2G�
k��
�ki

2 �

k��

+ ¯ 	 . �13�

From Eq. �13� we obtain in leading order the asymptotic
wave function

�� � t−N/2 �
1�i�j�N

�sgn�xj − xi� +
i

c
�kj� − ki��	

	 �̃F�k1�, . . . ,kN� �ei�j=1
N �kj�xj−
�kj��t�, �14�

which is written in a more convenient form in terms of the
variables � j =xj / t as follows:

�� � t−N/2 �
1�i�j�N

�sgn�� j − �i� +
i

2c
�� j − �i�	

	 �̃F��1/2, . . . ,�N/2�e�i/4��j=1
N �j

2t. �15�

Equation �15� is the main result of this paper. Evidently the
asymptotic form of the LL wave function �� has the TG
form. Namely, the Fourier transform of a fermionic wave

function �̃F��1 /2, . . . ,�N /2� is antisymmetric, which implies
that �� is zero whenever �i=� j �i� j�. Furthermore, �� is
symmetric under the exchange of any two coordinates �i and
� j. This clearly shows that a localized LL wave function
during free expansion asymptotically approaches a wave
function with the TG structure. However, it should be em-
phasized that the properties of the asymptotic state are not
necessarily similar to the wave function describing TG gas in
equilibrium, in the ground state of some external potential.
The connection between the initial and the asymptotic state
is illustrated below.

In the derivation of Eq. �15� we have analyzed LL wave
functions which are obtained through the Fermi-Bose trans-
formation �5�. This class of wave functions is quite general
and corresponds to numerous situations of practical rel-
evance. Let us discuss the case in which the initial bosonic
wave function �B0=�B,c�x1 , . . . ,xN ,0� is a ground state of a
repulsive LL gas in an experimentally realistic external po-
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tential V�x�, e.g., a harmonic oscillator potential. The eigen-
states of the LL system in free space are of the form

�
k� = N�
k��Ôc det �eikmxj�m,j=1
N , �16�

where the set of N real values 
k�= 
km 
m=1, . . . ,N�
uniquely determines the eigenstate; the normalization con-
stant is given by

1

N�
k��
=��2��NN!�

i�j

�1 + � kj − ki

c
�2	

�see Ref. �33��. In free space, there are no restrictions on the
numbers km. If periodic boundary conditions are imposed as
in Ref. �1� �i.e., the system is a ring of length L�, the wave
numbers kj must obey a set of coupled transcendental equa-
tions �1,25,26,29,39� which depend on the strength of the
interaction �see, e.g., Ref. �26��. The LL eigenstates �
k� pos-
sess the closure property �9� and they are complete �51�.
Thus, our initial state �B0 can be expressed as a superposi-
tion of LL eigenstates,

�B0 = �

k�

b�
k���
k� = Ôc�

k�

N�
k��b�
k��det �eikmxj�m,j=1
N , �17�

where the coefficients b�
k�� can be obtained by projecting
the initial condition �B0 onto the LL eigenstates. By compar-
ing Eqs. �7� and �17� we find that the initial fermionic wave
function is

�F0 = Nc
−1�


k�
N�
k��b�
k��det �eikmxj�m,j=1

N . �18�

Since we have assumed that V�x� is an experimentally real-
istic smooth function, �F0 is also smooth and differentiable

such that the operator Ôc can be applied.
The connection between the asymptotic state �15� and the

initial state �B0 is made through the Fourier transform of the

initial fermionic wave function �̃F�
k��. More insight into the
connection between the initial state and the asymptotic state

can be made by expressing �̃F�
k�� through the coefficients
b�
k�� utilized in the expansion �17�. First, let us note that the
coefficients b�
k��=b�k1 ,k2 , . . . ,kN� are antisymmetric with
respect to the interchange of any two arguments ki and kj�i
� j�. This follows from the fact that the LL eigenstates �
k�
possess the same property �see Ref. �33��. By using this
property of b�
k��, Eq. �18� can be rewritten as

�F0 = Nc
−1�


k�
N�
k��b�
k���

P

�− �Pei�j=1
N kPjxj

= Nc
−1�

P
�

k�

N�kP1,kP2, . . . ,kPN�

	 b�kP1,kP2, . . . ,kPN�ei�j=1
N kPjxj

= Nc
−1N!�


k�
N�
k��b�
k��ei�j=1

N kjxj . �19�

By comparing Eqs. �19� and �8� we obtain

�̃F�
k�� = Nc
−1N!N�
k��b�
k�� . �20�

Evidently, the Fourier transform of the initial fermionic wave

function �̃F�
k�� is directly proportional to the projections
b�
k�� of the initial bosonic wave function onto the LL eigen-
states. From this relation we can conclude that the
asymptotic wave function �15� has TG structure as a conse-
quence of the antisymmetry of the coefficients b�
k��, which
originates from the antisymmetry of the LL eigenstates with
respect to kj arguments �33�. It is also worthy to note that Eq.
�10�, and therefore our main result, can be obtained without
explicit use of the Fermi-Bose transformation; by writing
the time-dependent LL states as �B,c=�
k�b�
k���
k�
	exp�−i� jkj

2t�, and after employing the antisymmetry of
b�
k�� �equivalently as in Eq. �19�� one obtains Eq. �10�.
Formulae �15� and �20� provide, under general conditions,
the asymptotic form of the wave functions for the freely
expanding LL gas, and the connection between these
asymptotic states and the initial states.

For the sake of the clarity of the paper, let us illustrate the
asymptotic state of the LL gas on a particular example. Sup-
pose that initially the LL gas is in the ground state, enclosed
in an infinitely deep box of length L. The ground state �B0
for this potential was found by employing the superposition
of the Bethe ansatz wave functions in Ref. �24�. The coeffi-
cients b�
k�� can be relatively easily found for a few particles
by employing a computer program for algebraic manipula-
tion �MATHEMATICA�. In Fig. 1 we illustrate the initial state
and the asymptotic state for the case of N=3 particles, and
for values of c=0.2, 1, 2, and 10, by showing the contour
plots of the probabilities 
�B0�L /2,x2 ,x3�
2 �left column� and

���0,�2 ,�3�
2 �right column�. Thus, one particle is fixed in
the center of the system, while the plots illustrate the prob-
ability of finding the other two particles in space. The left
column illustrating the initial states shows that the system
becomes more correlated with increasing interaction strength
c and it enters the TG regime for sufficiently large c �e.g., for
c=10 depicted in Fig. 1�g� the ground state of the system is
in the TG regime�. The right column illustrating the
asymptotic state shows that the wave function is zero when-
ever two of the coordinates coincide. However, it is impor-
tant to note that the properties of the asymptotic wave func-
tions, even though they possess the TG structure, can
significantly differ from the properties of the TG gas in the
equilibrium ground state. This can be seen by comparing the
asymptotic state in Fig. 1�b�, and the TG ground state shown
in Fig. 1�g�. The asymptotics of Fig. 1�b� is obtained after
free expansion from a weakly interacting ground state �c
=0.2�; from Fig. 1�b� we observe that when one particle is
fixed at zero, there is still a relatively large probability of
finding the other two particles to the left and to the right of
the fixed one. In contrast, for the TG ground state shown in
Fig. 1�g�, if one particle is fixed in the center of the system,
the other two are on the opposite sides of that one. Further-
more, by comparing the asymptotic states in Figs. 1�b�, 1�d�,
1�f�, and 1�h�, we see that their properties depend on the
interaction strength c. It is worthy to mention again that free
expansion can be utilized to deduce information on the initial
state �see, e.g., Refs. �48�, and references therein�; free 1D
expansion can distinguish between different initial regimes
of the LL gas �14�.

JUKIĆ et al. PHYSICAL REVIEW A 78, 053602 �2008�

053602-4



Let us now address the case of attractive interactions. For
c�0, the cusp condition assumes a form that is identical to
that for c�0 �see, e.g., Ref. �25��. Therefore, by acting on
some fermionic time-dependent wave function obeying Eq.

�4� with the Fermi-Bose transformation operator Ôc�0, one
obtains an exact solution for the attractive time-dependent

LL gas in the form Ôc�0�F �see the Appendix�; our deriva-
tion holds for this family of wave functions. Experiments
where the attractive quasi-1D Bose gas is suddenly released
from a trapping potential were used to study solitons made
of attractively interacting Bose-Einstein condensate �BEC�
�52�. Exact studies of such a system within the framework of
the LL model are expected to provide deeper insight into
nonequilibrium phenomena beyond the Gross-Pitaevskii
mean-field regime, where interesting dynamical effects can
occur �53,54�.

It should be noted that the time scale it takes for the LL
system to reach the TG regime depends on the initial condi-
tion. The next-to-leading term of the asymptotic wave func-
tion is suppressed relative to the leading term by a factor 1 / t,
as obtained by the stationary phase expansion in Eq. �13�.
From this we can deduce the scaling of the interaction en-
ergy, defined as

Eint = 2c� dx1 ¯ dxN
�B,c
2 �
1�i�j�N

��xi − xj� , �21�

as t→�. Since the interaction strength c is finite, and since
the asymptotic density 
����1 , . . . ,�N , t�
2 equals zero for any
pair of arguments being equal, �i=� j, one concludes that as-
ymptotically the leading term of the interaction energy van-
ishes. Since the first correction to the leading TG term of the
wave function is of order t−1, and since ��xi−xj�= t−1���i
−� j�, the interaction energy asymptotically decays to zero as
Eint� t−3. This power law decay of the interaction energy is
illustrated in the following section.

IV. EXAMPLE: FERMIONIC WAVE FUNCTION
EXPANDING FROM A HARMONIC TRAP

In Ref. �11�, we have constructed a particular family of
time-dependent wave functions describing a freely expand-
ing LL gas. The wave functions were obtained by acting with
the Fermi-Bose mapping operator onto a specific time-
dependent fermionic wave function,

�F � exp�− i
N2�

2
��t� −

� − i�2t

4 �
j=1

N � xj

b�t�	2�
	 b�t�−N2/2 �

1�i�j�N

�xj − xi� , �22�

which describes free expansion of noninteracting fermions in
one spatial dimension. The initial fermionic wave function at
t=0 corresponds to a fermionic ground state in a harmonic
trap V�x�=�2x2 /4 �see, e.g., Ref. �55��. Here, � corresponds
to the trapping frequency, b�t�=�1+ t2�2, and ��t�
=arctan��t� /�. The limiting form of the LL wave function,
�B,c(�1b�t� , . . . ,�Nb�t� , t), for t→�, was shown to have the
following form characteristic for a TG gas.

�B,c„�1b�t�, . . . ,�Nb�t�,t…

� b�t�−N/2exp�− i
N2�

2
��t� −

� − i�2t

4 �
j=1

N

� j
2�

	 �
1�i�j�N

g�� j − �i� + O�1/t� , �23�

where g���= 
�
+ i��2 /2c. Equation �15� is a generalization
of this result given first in Ref. �11�. Since Eq. �15� was
obtained with the help of the stationary phase approximation,
whereas Eq. �23� is obtained straightforwardly from the
exact form of the specific LL wave function �see Ref. �11��,
it is worthy to verify that Eq. �15� reproduces Eq. �23� as
a special case. In order to do so, we calculate the Fourier
transform of the initial fermionic wave function, i.e.,

(a) (b)

(c) (d)

(e) (f)

(g) (h)

FIG. 1. �Color online� Contour plots illustrating free expansion
of N=3 bosons from the ground state of a LL gas in a box with
infinitely high walls �L=��. The left column depicts the initial
ground state 
�B0�L /2,x2 ,x3�
2, and the right column depicts the
asymptotic state 
���0,�2 ,�3�
2, for c=0.2 ��a� and �b��, c=1 ��c�
and �d��, c=2 ��e� and �f��, and c=10 ��g� and �h��. The density of
the asymptotic state is zero when two coordinates �i and � j�i� j�
coincide.
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�F�x1 , . . . ,xN ,0� from Eq. �22�. Interestingly, the Fourier
transform has exactly the same functional form as the initial
condition in x space.

�̃F � e−�j=1
N kj

2/� �
1�i�j�N

�kj − ki� . �24�

By plugging this form into Eq. �15� we obtain

�� � t−N/2e−�j=1
N �j

2/�4��e�i/4��j=1
N �j

2t

	 �
1�i�j�N

�
� j − �i
 +
i

2c
�� j − �i�2	 . �25�

After replacing � j =xj / t with �� j =�xj /b�t�, which asymptoti-
cally approaches �� j �xj / t=� j, we obtain the functional
form identical to Eq. �23�. This verifies the validity of Eq.
�15� in the special case studied in Ref. �11�.

In order to verify the asymptotic power law decay of the
interaction energy Eint obtained in the previous section, let us
calculate the time evolution of Eint for the specific family of
LL wave functions discussed in this section. We calculate
integral �21� for N=3 particles, and �=2. Given these param-
eters, Eint depends on the strength of the interaction c and
time t. Figure 2 illustrates time evolution of the interaction
energy for three values of c; displayed curves depict the ratio
Eint�t� /E, where E denotes the total energy, which is a con-
stant of motion. Evidently, after some initial transient period
the interaction energy starts its asymptotic power law decay
Eint�t�� t−3. It should be noted that the contribution of the
interaction energy to the total energy depends on the interac-
tion strength c. This is illustrated in Fig. 3, which shows
Eint�t� /E as a function of c at three points in time. At t=0,
the contribution of the interaction energy to the total energy
is nonmonotonous with the increase of c; it is zero at c=0
and in the TG limit c→�, with a specific maximal value in
between. The form of the curve is preserved for finite values
of t, with the evident decay of the interaction energy to zero
as t→�. Note that an equivalent nonmonotonous behavior of
the interaction energy as a function of c was found for the
Lieb-Liniger gas in the ground state for c�0 and with peri-
odic boundary conditions �25�.

V. ASYMPTOTIC SINGLE-PARTICLE DENSITY

Given the asymptotic form of the wave function, we
finally consider the asymptotic form of the single-particle
density, which is of considerable interest for experiment.
The single-particle density is defined as �c�x , t�
=N�dx2¯dxN
�B,c�x ,x2 , . . . ,xN , t�
2. For studying asymptot-
ics, it is convenient to define the asymptotic form in terms of
the rescaled coordinates �=x / t.

����� = N�tN�
−�

�

d�2 ¯ d�N
����,�2, . . . ,�N,t�
2 �26�

Here the normalization constant N� is chosen such that
�d������=N, the total number of particles, while the factor
tN cancels the trivial time scaling of the asymptotic single-
particle density.

For the specific asymptotic form of the wave function
�25� we can analytically calculate the asymptotic form of the
density for a few particles. As an example, for N=3, the
normalization constant is

N�,N=3 =
c6

�2�3�9�8c6 + 48c4� + 90c2�2 + 45�3�
, �27�

while the single-particle density has the following structure:

����� = N�,N=3
��2

8c6 e−�2/�2���32c6�3�2 + �4�

+ 16c4�33�3 − 3�2�2 + 9��4 + �6�

+ 2c2�465�4 − 60�3�2 + 90�2�4 + 20��6 + �8�

+ 3��165�4 − 60�3�2 + 30�2�4 + 4��6 + �8�� .

�28�

This expression shows that the Gaussian shape of the single-
particle density is modulated with the N-hump structure
characteristic for the single-particle density of a TG gas in
the ground state of some external potential. The correspond-
ing density �28�, in terms of �=� /�, is shown in Fig. 2 of
Ref. �11�. It should be noted that such an asymptotic form of
the single-particle density corresponds to a particular family
of time-dependent wave functions obtained in Ref. �11�. For
different initial conditions one can obtain a different shape of

0.1 1 10
t

0.001

0.01

0.1

1

E
in

t/E

c=1
c=5
c=10
Asymptotic forms

FIG. 2. �Color online� Time evolution of the interaction energy
Eint�t�, expressed in units of the total energy E. The three curves
correspond to values of c=1 �solid line�, c=5 �dashed line�, and c
=10 �dotted line�. The straight lines depict the asymptotic power
law behavior of the interaction energy, Eint�t�� t−3 �see the text for
details�.

10 40
c

0

0.5

E
in

t/E

t=0
t=0.5
t=1

FIG. 3. �Color online� The ratio Eint /E as a function of the
interaction strength c, at three values of time, t=0 �solid line�, t
=0.5 �dotted line�, and t=1 �dashed line� �see the text for details�.
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the asymptotic single-particle density as follows from Eqs.
�15� and �20�; the asymptotic single-particle density depends

on �̃F�
k��, that is, b�
k��.

VI. COMPARISON WITH THE HYDRODYNAMIC
APPROXIMATION

Besides providing insight into the physics of interacting
time-dependent many-body systems, our motivation to study
exact solutions of such systems is to utilize those solutions as
a benchmark against various approximations. Free expansion
of a Lieb-Liniger gas has been studied in Ref. �14� by em-
ploying the formalism introduced in Ref. �8�, referred to as
the hydrodynamic approximation. This formalism can be
written in the form of a nonlinear evolution equation for a
single-particle wave function �H�x , t� �see Eq. �9� in Ref.
�14��,

i
��H�x,t�

�t
= −

�2�H

�x2 + V�x��H + c2f� c


�H
2��H, �29�

where 
�H�x , t�
2 denotes the single-particle density normal-
ized to �
�H�x , t�
2dx=N, while the function f , which appears
in the nonlinear term, is defined in Ref. �8�, and also tabu-
lated in Ref. 19 of Ref. �8�. The potential is V�x�=0 during
free expansion. The hydrodynamic approximation was used
to obtain Eq. �29�, which is written in units corresponding to
the Lieb-Liniger model of Eq. �1�. The nonlinear equation
above reduces to the standard Gross-Pitaevskii equation for
small interactions, and to the nonlinear equation from Ref.
�56� for strong interactions �14�. The hydrodynamic approxi-
mation overestimates the coherence in the system, and there-
fore it may not be accurate for analyzing observables
strongly connected to coherence. However, it is reasonable to
compare the exact asymptotic form of the single-particle
density after free expansion with the asymptotic form ob-
tained from the hydrodynamic approximation.

Let us follow upon our example from Sec. III; that is, let
us consider the asymptotic form of the single-particle density
����� of a LL gas, which is initially in the ground state of a
box with infinitely high walls; the length of the box is L
=�. The calculation of the exact single-particle �SP� density
demands performing multidimensional integration over N
−1 variables, which is not a simple task. For this reason, the
number of particles in our calculation of the exact SP density
is N=3. For the initial condition of the hydrodynamic ap-
proach �H�x , t=0�, we could choose �H�x , t=0�=�N /L
within the box, and zero otherwise. This would be a good
initial condition in the thermodynamic limit �large N, N /L
=const�. However, since for our exact calculation we used
N=3, we have chosen, in order to be able to compare be-
tween the two approaches, the hydrodynamic initial field
�H�x , t=0�=�nexact, where nexact is the exact SP density of
the initial ground state �this can be calculated by employing
Ref. �24��. Figure 4 displays the exact asymptotic form of the
SP density, and the hydrodynamic asymptotic SP density.
The latter is obtained numerically by solving Eq. �29� with
the standard split-step Fourier technique; the nonlinear term
in Eq. �29�, that is, the function f�c / 
�H�x�
2�, is calculated

by using values tabulated in Ref. 19 of Ref. �8�. The
asymptotic dynamics in the hydrodynamic approach occurs
after sufficiently long propagation, when the SP density starts
exhibiting self-similar propagation �see also �14��.

The agreement is qualitatively excellent for all values of
the interaction strength, and quantitatively excellent for c
�1. The width of the SP density as a function of �=x / t
indicates the velocity of the expansion of the cloud. The
asymptotic FWHM �full-width-at-half-maximum� expansion
velocity is in good agreement for all values of c. The hydro-
dynamic approximation does not reproduce small humps in
the SP density, characteristic in the TG regime after expan-
sion from the ground state; this discrepancy is expected to be
smaller if we had calculated expansion from the ground state
with large N, where the hydrodynamic approximation is ex-
pected to work even better.

Another possible comparison that can be made with the
hydrodynamic approximation is the following. The LL wave
function, which is utilized as the initial condition in Sec. IV

and Ref. �11�, is obtained by acting with the operator Ôc onto
the fermionic ground state �F0 in the harmonic trapping po-
tential V�x�=�2x2 /4. This wave function can approximate the

ground state only when the commutator �Ôc ,V�x�� can be
neglected �11�. The SP density of this state can be compared
with the static hydrodynamic density obtained in Ref. �8� for
the LL gas in a harmonic trap. Due to the properties of the

operator Ôc �11� and the fermionic ground state in the har-
monic trap �F0, it is straightforward to verify that the shape

of the SP density corresponding to the state Ôc�F0 scales as
��x�→��x /s� /s under the transformation �→� /s2, c→c /s;
that is, the shape of the SP density does not change under this
transformation. The same is true for the shape of the
�ground-state� SP density obtained with the hydrodynamic
approach, which has been shown �8� to depend on a single
parameter �= � 3N�

4c2 �2/3 that is invariant under the transforma-
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FIG. 4. �Color online� The asymptotic form of the SP density
obtained exactly �black solid line�, and with the hydrodynamic ap-
proach �red dotted line�. The parameters used in the calculation are
N=3, L=�, c=1 �a�, c=2 �b�, c=5 �c�, and c=10 �d� �see the text
for details�.
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tion �→� /s2, c→c /s. This is fully analogous to the case of
a homogeneous LL gas where the only governing parameter
�=c /n is invariant under a simultaneous rescaling of the
interaction strength c and the linear particle density n �1�.
The shape of the SP density of the state Ôc�F0 �calculated for
N=3� agrees with the shape obtained in Ref. �8� only in the

Tonks-Girardeau limit ���1� where Ôc�F0 is a good ap-
proximation for the ground state. If we reduce the interaction
strength c by keeping � fixed, thereby increasing �, the two
SP densities will no longer have a similar shape; this stems

from a simple fact that Ôc�F0 is an excited state for suffi-

ciently small values of c, because the commutator �Ôc ,V�x��
cannot be neglected, whereas the hydrodynamic solution ap-
proximates the ground state.

VII. CONCLUSION

We have derived the asymptotic form of the wave func-
tion describing a freely expanding Lieb-Liniger gas. It is
shown to have the Tonks-Girardeau structure �see Eq. �15��;
that is, the wave functions vanish when any two of the par-
ticle coordinates coincide. We have pointed out that the prop-
erties of these asymptotic states can significantly differ from
the properties of a TG gas in a ground state of an external
potential �see Fig. 1�. The dependence of the asymptotic state
on the initial state is discussed �see Eq. �20��. The analysis
was performed for time-dependent Lieb-Liniger wave func-
tions which can be obtained through the Fermi-Bose trans-
formation �5�. This encompasses initial conditions which
correspond to the ground state of a repulsive Lieb-Liniger
gas in physically realistic external potentials. Thus, our
analysis characterizes the free expansion from such a ground
state, after the potential is suddenly switched off. In deriving
our main result, Eq. �15�, we have used the stationary phase
approximation. This generalizes and adds upon the result
from Ref. �11�, which was derived for a particular family of
time-dependent Lieb-Liniger wave functions. We have dem-
onstrated that the interaction energy of the freely expanding
LL gas asymptotically decays according to a power law,
Eint� t−3. Furthermore, we have calculated the asymptotic
single-particle density for free expansion of a LL gas from an
infinitely deep box potential. We have compared our exact
calculation with the hydrodynamic approximation introduced
in Ref. �8�, and employed in Ref. �14� in the context of free
expansion, obtaining good agreement for all values of the
interaction strength. As a possible future avenue of research,
we point out that the methodology employed here for the
analysis of asymptotic wave functions has the potential to be
exploited further to study the evolution of various observ-
ables �e.g., the momentum distribution which was studied for
a TG gas �16�� and correlations �e.g., see �57�, and references
therein� during free expansion.
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APPENDIX: FERMI-BOSE TRANSFORMATION

In this Appendix we outline the proof that the wave func-
tion �5� obeys both the cusp condition imposed by the inter-
actions and Eq. �2�, i.e., that it obeys Eq. �1�. Without loss of
generality we restrict our discussion to the fundamental per-
mutation sector R1. Let us write the differential operator as

Ôc=�1�i�j�NB̂ij, where

B̂ij = �1 +
1

c
� �

�xj
−

�

�xi
�	 . �A1�

We first show that the wave function �5� obeys the cusp
condition �3� �see Ref. �33��. Consider an auxiliary wave
function

�AUX�x1, . . . ,xN,t� = B̂j+1,jÔ�F = B̂j+1,jB̂j,j+1Ôj,j+1� �F,

�A2�

where the primed operator Ôj,j+1� = Ô / B̂j,j+1 omits the factor

B̂j,j+1 as compared to Ô. The auxiliary function can be writ-
ten as

�AUX = �1 −
1

c2� �

�xj+1
−

�

�xj
�2	Ôj,j+1� �F. �A3�

It is straightforward to verify that the operator

B̂j+1,jB̂j,j+1Ôj,j+1� in front of �F is invariant under the ex-
change of xj and xj+1. On the other hand, the fermionic wave
function �F is fully antisymmetric with respect to the inter-
change of xj and xj+1. Thus, �AUX�x1 , . . . ,xj ,xj+1 , . . . ,xN , t� is
antisymmetric with respect to the interchange of xj and xj+1,
which leads to

�AUX
�x1, . . . ,xj,xj+1, . . . ,xN,t�
xj+1=xj
= 0. �A4�

This is fully equivalent to the cusp condition �3�,

B̂j+1,j�B
xj+1=xj

=0. Thus, the wave function �5� obeys con-
straint �3� by construction.

Second, from the commutators ��2 /�xi
2 , Ôc�=0 and

�i� /�t , Ôc�=0 follows that if �F obeys Eq. �4�, then �B obeys
Eq. �2�, which completes the proof.

If we use the expression

B̂ij = �sgn�xj − xi� +
1

c
� �

�xj
−

�

�xi
�	 , �A5�

we obtain Ôc=�1�i�j�NB̂ij as in Eq. �6�, which is valid in-
side any sector of the configuration space �see �9��. Note that
for c→�, one recovers Girardeau’s Fermi-Bose mapping

�2�, where the operator Ôc=�=�1�i�j�N sgn�xj −xi� maps a
noninteracting fermionic to a bosonic Tonks-Girardeau wave
function.
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