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In ultraperipheral relativistic heavy-ion collisions, a photon from the electromagnetic field of one
nucleus can fluctuate to a quark-antiquark pair and scatter from the other nucleus, emerging as a p°. The
p production occurs in two well-separated (median impact parameters of 20 and 40 F for the cases
considered here) nuclei, so the system forms a two-source interferometer. At low transverse momenta, the
two amplitudes interfere destructively, suppressing p® production. Since the p° decays before the
production amplitudes from the two sources can overlap, the two-pion system can only be described
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with an entangled nonlocal wave function, and is thus an example of the Einstein-Podolsky-Rosen

paradox. We observe this suppression in 200 GeV per nucleon-pair gold-gold collisions. The interference
is 87% =+ 5%(stat.) + 8%(syst.) of the expected level. This translates into a limit on decoherence due to
wave function collapse or other factors of 23% at the 90% confidence level.

DOI: 10.1103/PhysRevLett.102.112301

Relativistic heavy ions carry strong electromagnetic
fields which can be treated as sources of quasireal virtual
photons. When two ions collide, a large variety of two-
photon and photonuclear interactions can occur [1]. In
coherent vector meson photoproduction, a photon from
the field of one nucleus fluctuates into a virtual quark-
antiquark pair which scatters elastically from the other
nucleus, emerging as a real vector meson. p’ photopro-
duction has a large cross section, 8%—10% of the hadronic
cross section for gold-gold collisions at a center-of-mass
energy of 200 GeV per nucleon pair [2-4]. Photo-
production can occur at large impact parameters, b. For
p° photoproduction the median b is about 46 fm [5].

The (gg)N scattering that produces p° occurs via the
short-ranged strong force; the p° is produced within one of
the two ions. The p° source consists of two well-separated
nuclei. There are two possibilities: either nucleus 1 emits a
photon which scatters off nucleus 2 or vice versa. These
two possibilities are indistinguishable, and are related by a
parity transformation. Vector mesons have negative parity,
so the two amplitudes combine with opposite signs. The
nuclear separation can be accounted for with a transverse
momentum (py) dependent phase factor. The cross section
is [6]

o(pr, b, y) = |A(PT, b,y) — A(pr, b, —y) exp(ipr - 5)|2,
(D

where A(py, b, y) and A(py, b, —y) are the amplitudes at
rapidity y for p° production from the two photon direc-
tions. We take # = ¢ = 1 here. At midrapidity the ampli-
tudes for the two directions are equal, and

o(pr, b, 0) = 2|A(pr, b, 0)]’[1 — cos(pr - b)]. ()

The system acts as a 2-slit interferometer, with slit sepa-

ration b = Il; |. The cross sections at different b are added,
and the p7 spectrum is obtained by integrating Eq. (1) over
b. p° production is suppressed for py < 1/(b), where (b)
is the mean impact parameter.

The p° rapidity y and mass m, and the photon energy k;
are related by k;, = (my/2) exp(*y) where the subscript
refers to the two directions. Away from y = 0, k; # k», so
A(pr, b,y) # A(pr, b, —y), and the interference in Eq. (1)
is less than maximal.

There are two theoretical calculations of this interfer-
ence. Klein and Nystrand [6] calculated the interference
using a detailed nuclear form factor, averaging the photon
flux over the nucleus. Hencken, Baur, and Trautmann used

PACS numbers: 25.75.Cj, 03.75.—b, 13.60.Le, 25.20.Lj

a more detailed model of the photon profile and a Gaussian
form factor for the nucleus [7]. This work only considered
production at midrapidity (y = 0), and so cannot be di-
rectly compared with the data presented here. At y = 0, the
two calculations agree quite well.

If the p° production phase depends on the photon en-
ergy, this would introduce a y-dependent phase shift into
Eq. (1). This is not expected in the soft-pomeron model [8],
and we assume that this phase difference is negligible.

The produced p®’s decay almost immediately at two
well-separated points, so any interference must develop
after the decay, and involve the 77" 7~ final state. Since
the pions go in different directions, this requires an en-
tangled 77" 7~ wave function which cannot be factorized
into separate 77" and 7~ wave functions; this is an ex-
ample of the Einstein-Podolsky-Rosen paradox [9,10]. A
measurement of the two-source interference is sensitive to
any loss of quantum mechanical coherence, be it due to
interactions with the environment [11] or as a characteristic
of the p° decay.

Interference is also expected when the p° photoproduc-
tion is accompanied by mutual Coulomb excitation of the
two nuclei. This reaction proceeds primarily via three
independent single-photon subreactions (one to excite
each nucleus, and one to produce the p°) [5]. At a given
b, the cross section for the subreactions factorizes; the
probability for an n-photon reaction is P,(b) =

", Pi(b) [12], where P;(b) is the probability for sub-
reaction i. Therefore, these multiphoton reactions have
much smaller (b), and the effect of interference extends
to higher py [5]. Because of the different (b), multiphoton
interactions are important for studying this interference.
The Klein-Nystrand model uses measured photonuclear
cross sections for the mutual Coulomb excitation [13],
while Hencken, Baur, and Trautmann used the giant dipole
resonance, plus a correction. For e ¢~ production accom-
panied by nuclear breakup, using the measured mutual
breakup cross sections rather than the Hencken, Baur,
and Trautmann approach leads to a 20% larger cross
section [14]; a similar difference may apply for p°
photoproduction.

In this Letter we measure two-source interference in
200 GeV per nucleon-pair gold-gold collisions by studying
the transverse momentum (p7) spectrum of photoproduced
p?’s. These data were taken with the STAR detector. The
major detector component used here is a central time
projection chamber (TPC) [15] in a 0.5 T solenoidal mag-
net. The TPC tracked charged particles with pseudorapid-
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ity |n| < 1.0. We used two trigger detector systems, the
central trigger barrel (CTB) and two zero degree calorim-
eters. The CTB consisted of 240 scintillator slats sur-
rounding the TPC, detecting charged particles with pseu-
dorapidity |n| < 1.0 [16]. The zero degree calorimeters
detected neutrons emitted by the dissociating gold nuclei
with virtually unchanged longitudinal momentum
(100 GeV/c) and low py [17].

Data were collected with two different trigger condi-
tions. The first was a topology trigger which selected
events with roughly back-to-back pions in the CTB [3].
Nearly vertical pairs were excluded, to reduce contamina-
tion from cosmic rays. The second, minimum bias (MB)
trigger selected p® accompanied by mutual dissociation. In
these events, both nuclei broke up and released neutrons
into the two zero degree calorimeters. The cross section for
p° production accompanied by mutual Coulomb excitation
is about 7% [5] of the total p photoproduction cross
section, so the two data sets are essentially independent.

Events were required to have net charge zero and exactly
two reconstructed tracks which formed a vertex less than
50 cm longitudinally from the center of the TPC for the
MB sample, and 100 cm for the topology sample. The
difference is because events from the CTB based trigger
were distributed more broadly along this axis. For the
topology data, we exclude events with |y| < 0.05 to re-
move the remaining contamination from cosmic rays,
where a single muon track could be reconstructed as two
tracks with net charge 0, pr = 0 and y = 0. All tracks
were assumed to be pions, and were required to have a w7
invariant mass 550 MeV/c? <M, <920 MeV/c>.
These criteria produced a clean set of p° events, at some

cost in efficiency. The 550 MeV/c? mass cut removes
background from misidentified two-photon production of
lepton pairs. The background, estimated from the like-sign
pion pairs, was small, 1.4%.

To understand the effect of detector resolution, p° events
were generated following the Klein-Nystrand distributions,
and passed through the detector simulation and reconstruc-
tion. Figure 1 compares the rapidity and M ., distributions
of the data and simulations. The agreement is good for the
minimum bias data, less so for the topology data. This is
most likely due to an imperfect topology trigger simula-
tion; the effect of this is treated as a systematic error.

The applied cuts select both directly produced 7" 7~
pairs [18] and p°. Direct 7" 7~ and p° decays are indis-
tinguishable, so the two processes interfere. The p® mass
peak and direct pion fraction are consistent with earlier
gold-gold photoproduction studies [3]. The two subchan-
nels should have the same spin or parity and quantum
mechanical behavior, so we do not distinguish between
them. If 7 77~ pairs are produced by a different produc-
tion mechanism, such as pomeron-odderon interactions
[19], then this assumption might not hold.

Figure 2 compares the uncorrected || < 0.5 MB data
and simulations based on Refs. [2,5,6] with and without
interference, as a function of 1|, = p%. At RHIC energies,
the longitudinal component of the 4-momentum transfer is
small, so #; = t. The measured dN/dt spectrum is roughly
exponential, but with a significant downturn for 7, <
0.0015 GeV?, consistent with the predicted interference.
The no-interference histogram is almost exponential,
dN/dt = exp(—kt ), where k is related to the nuclear
radius [6,20], even though the Klein-Nystrand calculation

400

200

Entries (arb. units)

Topology

150 |
100 |

50 |

Entries (arb. units)

FIG. 1.

0.4 0.6 0.8 1 1.2
M., (GeV/c?)

Rapidity (left) and M, (right) of the 77+ 77~ distributions for the topology (exclusive p°, top) and MB (Coulomb breakup,

bottom) samples. The points with statistical error bars are the data, and the histograms are the simulations. The ‘“notch” in the
topology data around y = 0 is due to the explicit rapidity cut to remove cosmic-ray backgrounds.
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FIG. 2. Raw (uncorrected) p° ¢, spectrum in the range 0.0 <
ly| < 0.5 for the MB data. The points are data, with statistical
errors. The dashed (filled) histogram is a simulation with an
interference term (“‘Int’’), while the solid histogram is a simu-
lation without interference (‘“Nolnt”). The handful of events
histogrammed at the bottom of the plot are the wrong-sign
(mT @t + 7 1) events, used to estimate the combinatorial
background.

uses a Woods-Saxon distribution for the gold density. The
Hencken-Baur-Trautmann calculation uses a Gaussian dis-
tribution for the nuclear density, but is also fairly well fit by
an exponential. The interference in different y ranges is
determined using a Monte Carlo simulation which follows
the Klein-Nystrand calculations.

Figure 3 shows the efficiency corrected MB and topol-
ogy data. All four panels show a dip as t; — 0. As ex-
pected, this dip is broader for the MB data because (b) is
smaller. The suppression at 1, = 0 is larger for the small-
rapidity samples because the amplitudes for the two photon

directions are more similar. The efficiency is almost inde-
pendent of py, so Fig. 2 is not very different from the
efficiency corrected 7| spectra in Fig. 3. The main effect of
the detector response is py smearing due to the finite
momentum resolution.

The dN/dt spectrum is fit by the 3-parameter form

‘% — Aexp(—k[1 + c(R(t) — D], 3)
where
. Int(tJ_)
R(ZJ_) = I\I()Tt(ll) 4)

is the ratio of the simulated ¢, spectra with and without
interference. For t; > 0.01 GeV?, R(t;)— 1, but for
t; =0.01 GeV?, R(t;) # 1. A is the overall (arbitrary)
normalization, and ¢ gives the degree of spectral modifi-
cation; ¢ = 0 corresponds to no interference, while ¢ = 1
is the predicted Klein-Nystrand interference. Table I gives
the fit results.

R(t|) was determined using a simulation that includes
the detector response, and then fit to two analytic func-
tions: R(ty) = 3" ja;/(t; +0.012 GeV?)" and R(t)) =
31 ,a;t| . Our results use the first polynomial with n =
5; the second polynomial and different values of n were
used to estimate the fitting uncertainties.

The weighted average of the four ¢ values is ¢ = 0.84 =
0.05. The k values for the MB and topology data sets differ
by 15%. This may be due to the different b distributions.
The photon flux scales as 1/b?, so the photon flux on the
“near”” side of the nucleus is larger than on the ““far” side.
As b decreases, p° production is increasingly concentrated
on the near side, and the apparent production volume

150

3 | MB MB

i ‘Tl 0<lyl<0.5 | | 05<lyl<1
& Ll |4 | 4 T
S 100 ] |
2 L
[ L
g L
=
S 50
-l

1000 -
|

X Topology M1 Topology
&« A 0.05<lyl < 0.5 4 05<lyl<1
2
[}
g
=
]
2
T

0 0.002 0.004 0.006 0.008

ty [(GeV/c)3]

0.008 0.01

0.004
ty [(GeV/c)]

0.002 0.006

FIG. 3. Efficiency corrected ¢, spectrum for p° from (top) minium bias and (bottom) topology data, for midrapidity (left) and larger
rapidity (right) samples. The points are the data, while the solid lines are the results of fits to Eq. (3).
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TABLE 1.
denotes degrees of freedom).

The results of fitting Eq. (3) to the four data sets. Here, T is for topology. The x?/DOF are discussed in the text (DOF

Data set A k (GeV~2) c x?/DOF
MB, |y| <0.5 6, 471 = 301 299 = 12 0.92 = 0.07 45/47
MB, 0.5 < |y| < 1.0 5, 605 = 330 303 £ 15 0.92 = 0.09 76/47
T,0.05<|y| <05 11, 070 £ 311 350 =8 0.73 £0.10 53/47
T,05<|y| <10 12, 060 £ 471 333 =11 0.77 = 0.18 64/47

drops, reducing k. A calculation with different assumptions
may predict a different electric field variation which leads
to a smaller difference in k.

Two of the fits have y?/DOF significantly larger than 1.
The y? did not decrease with different fit functions for R(7),
variations of the nuclear radius in the interference calcu-
lations, background level, or modifications to the detector
simulation. When the y?/DOF > 1, we scale up the fit

errors on ¢ by /x>/DOF; this excess error may have
theoretical and/or experimental origin. With the scaled
errors, the weighted average is ¢ = 0.86 = 0.05.

Systematic errors come from instrumental effects, back-
ground, fitting, and theoretical issues. The major instru-
mental effects were due to the topology trigger; we apply a
10% systematic error to the topology data to account for
this.

This analysis is sensitive to any p° p-dependent effi-
ciency variation. The decay pions have a typical pr of
about 300 MeV/c, where the detection efficiency is high
and almost p; independent [15]. However, the p° p;
resolution, about 7.5 MeV/c, smears the 7| spectrum in
the two lowest 7 bins. To study detector effects, we fit the
raw (uncorrected) ¢, spectrum with the raw Monte Carlo
output; this reduced ¢ by 18% [21], mostly due to the py
smearing. We assume conservatively that the detector
simulation is only 80% effective, and assign a 4% system-
atic error on ¢ to account for nontrigger detector effects.

Backgrounds were estimated by including like-sign
pairs (w" 7" + 7 77) in the fits. ¢ changed by less than
0.5%. We assign a 1% systematic error due to backgrounds.

The uncertainty due to fitting was evaluated by compar-
ing results using the two different polynomial forms of R(r)
for both n = 4 and n = 5; ¢ varied by an average of 1%.
The effect of an imperfect form factor model was studied
by varying the nuclear radius in the simulations. A =20%
change in nuclear radius changed c by 3%. We assign a 4%
systematic error due to the fitting procedure.

The theoretical uncertainties are difficult to evaluate.
Our simulation follows Refs. [5,6] in detail, but those
calculations themselves contain uncertainties. The two
theoretical models agree well for exclusive p° production.
For p° production accompanied by mutual Coulomb exci-
tation, there is some disagreement, but the Klein-Nystrand
model has a more detailed excitation calculation, and so
may be more accurate. We assign a 5% systematic error
due to theoretical issues.

Combining these systematic errors in quadrature results
in an 8% (13%) systematic error for the MB (topology)
data. Adding the four results in quadrature, including the
systematic errors, leads to an interference that is 87% =
5%(stat.) * 8%(syst.) of the expected level.

Because p“’s decay so rapidly, yBct < (b), the p°
decay points are well separated in space-time, and the
two amplitudes cannot overlap and interfere until after
the decay occurs. The interference must involve the 77
final states [9]. This interference is only possible if the
postdecay 77 wave functions retain amplitudes for all
possible p® decays, at least until the wave functions from
the two ion sources overlap. The 7 77~ wave function is
not factorizable and is thus an example of the Einstein-
Podolsky-Rosen paradox [10]. Unlike previous tests of
nonlocality, the interference involves continuous variables,
momentum, and position [9].

In conclusion, we have measured the interference be-
tween p° production at two sources (the two nuclei) by
observing the "7~ decay products. We observe the
interference at 87% * 5%(stat.) * 8%(syst.) of the ex-
pected level. This shows that the final state wave func-
tion retains amplitudes for all possible decays, long
after the decay occurs. The maximum decoherence (loss
of interference) is less than 23% at the 90% confidence
level.
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