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Ground-state properties of a one-dimensional strongly interacting Bose-Fermi mixture
in a double-well potential
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We calculate the reduced single-particle density matrix �RSPDM�, momentum distribution, natural orbitals
and their occupancies, for a strongly repulsive one-dimensional Bose-Fermi mixture in a double-well potential
with a large central barrier. We assume that all particles have the same mass, and fermions are spin polarized.
For mesoscopic systems, we find that the ground-state properties qualitatively differ for mixtures with even
number of particles �both odd-odd and even-even mixtures� in comparison to mixtures with odd particle
numbers �odd-even and even-odd mixtures�. For even mixtures the momentum distribution is smooth, whereas
the momentum distribution of odd mixtures possesses distinct modulations; the differences are observed also in
the off-diagonal correlations of the RSPDM, and in the occupancies of natural orbitals. The calculation is based
on a formula which enables efficient calculation of the RSPDM for mesoscopic mixtures in various potentials.
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I. INTRODUCTION

The experiments with interacting ultracold atomic gases
loaded in various external potentials offer great opportunities
for probing versatile many-body states �e.g., see �1� for a
review�, from weakly interacting gases up to strongly corre-
lated states. Interactions between the atoms can be tuned in
some cases �e.g., by employing Feshbach resonances�, while
external potentials can assume various shapes including op-
tical lattices, elongated and transversely tight traps and many
others. Systems of interacting atoms in double-well poten-
tials exhibit particularly interesting phenomena which were
studied over the years, for example, a bosonic Josephson
junction �2–5�, squeezing and entanglement of matter waves
�6,7�, matter wave interference �8,9�, and recently exact
many-body quantum dynamics in a one-dimensional �1D�
quantum well �10�. In this work we focus on a strongly re-
pulsive Bose-Fermi mixture of particles in a 1D double well
potential.

The achievement of quantum degeneracy in Bose-Fermi
mixtures �11–18� has stimulated many studies of these sys-
tems. In 1D geometry, several theoretical approaches ex-
plored such mixtures. For example, the mean-field approxi-
mation has been utilized to study phase separation �19�.
However, for strongly correlated systems, which are more
likely to occur in one-dimensional than in three-dimensional
systems, the mean field approach is not appropriate. These
systems can be studied by using exactly solvable models
and/or sophisticated numerical calculations. Luttinger liquid
theory has been used to study pairing instabilities and phase
diagrams �20,21�; �the Luttinger liquid theory can describe
the low-energy properties of these systems� �20,21�. Numeri-
cal calculations were used to obtain the phase diagram for

mixture with unequal masses �22�. One-dimensional Bose-
Fermi mixture with a finite coupling strength and without an
external trapping potential were studied in Refs. �23–25�.
Recently, an exactly solvable model describing 1D Bose-
Fermi mixtures with strong interactions has been studied in
Ref. �26�. The ground-state wave functions for arbitrary ex-
ternal potentials were constructed; in the model, strong �“im-
penetrable core”� interactions are present between bosons,
bosons and fermions, whereas fermions are mutually nonin-
teracting and they are spin polarized. The correlation func-
tions including the one-body density matrix were addressed
for the ring geometry and the harmonic confinement �26�.
The ground-state properties and expansion dynamics were
further explored in Ref. �27�.

The solution of the model presented in Ref. �26� follows
the Fermi-Bose mapping idea to calculate exact wave func-
tions in the so called Tonks-Girardeau �TG� model of
“impenetrable-core” bosons �28�. This model has been ex-
perimentally realized several years ago �29,30�, with atoms
in tight transversely confined atomic waveguides �31�, at low
temperatures, and with strong effective interactions �31–33�.
Besides the wave functions �28�, the correlation functions
such as the reduced single-particle density matrix �RSPDM�
and related quantities including distributions of momenta,
natural orbitals and their occupancies, have been studied for
the TG system over the years �34–45� for the ground states
on the circle �34,38�, in harmonic confinement �36–39�, for
excited “dark-soliton” eigenstates �43�, in a split-trap poten-
tial �44,45�, and also for time-dependent states �e.g., see
�40–42��.

Here we study ground-state properties of a strongly repul-
sive Bose-Fermi mixture in a double-well potential; we use
the model from Ref. �26� where all particles are assumed to
have the same mass, and fermions are spin polarized. As a
first step, we derive a formula which enables efficient calcu-
lation of the RSPDM for mesoscopic mixtures in various*hbuljan@phy.hr
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potentials; it reduces to a calculation of RSPDM for TG
bosons �42� in an incoherent mixed state. The formula is
employed to calculate the RSPDM, momentum distribution,
natural orbitals and their occupancies, for the ground state of
a mixture in a double well. For mesoscopic systems, we find
that the ground state properties qualitatively differ for mix-
tures with even number of particles �both odd-odd and even-
even mixtures� in comparison to mixtures with odd particle
numbers �odd-even and even-odd mixtures�. For even mix-
tures the momentum distribution is smooth, whereas the mo-
mentum distribution of odd mixtures possesses modulations;
the differences are observed also in the off-diagonal correla-
tions of the RSPDM, and in the occupancies of natural orbit-
als.

II. MODEL

We study a mixture of NB bosons and NF spin-polarized
fermions in one-dimensional geometry, in a ground state of
an external potential V�x�. Bosons and fermions experience
the same external potential, and their masses are assumed to
be approximately equal. This condition can be satisfied for
combination of bosonic and fermionic isotopes of the same
element, such as 39�41�K-40K, or Yb with several stable iso-
topes, and 86�84�Rb-87�85�Rb �for detailed discussion, see �23�
and references therein�. Bosons interact via a very strong
repulsive contact potential, that is, their interaction is in the
Tonks-Girardeau regime. Fermions are mutually noninteract-
ing. Interaction between bosons and fermions is also a very
strong repulsive contact potential. The total number of par-
ticles is denoted with N=NB+NF. The resulting Hamiltonian
reads

Ĥ = ĤB + ĤF + ĤBB + ĤBF, �1�

where

ĤB = �
j=1

NB �−
�2

�xBj
2 + V�xBj�� ,

ĤF = �
j=1

NF �−
�2

�xFj
2 + V�xFj�� ,

ĤBB = �
1�i�j�NB

gBB��xBj − xBi� ,

ĤBF = �
j=1

NB

�
i=1

NF

gBF��xBj − xFi� ,

with V�x� being some external potential and gBB and gBF are
the coupling constants.

The ground state for this system for finite but very strong
repulsive interactions �i.e., gBB and gBF are sufficiently large
to be approximately treated as if they are infinite� can be
approximately written as �26�

��xF1, . . . ,xFNF
,xB1, . . . ,xBNB

�

= �
1�i�j�NB

sgn�xBj − xBi��
j=1

NB

�
i=1

NF

sgn�xBj − xFi�

��S�xF1, . . . ,xFNF
,xB1, . . . ,xBNB

� . �2�

Here,

�S�x1, . . . ,xN� =
1

	N!
�

P�SN

�− �P�Pj1
�x1� . . . �PjN

�xN� , �3�

denotes a Slater determinant wave function constructed from
the single-particle wave functions � j�x�, which are the N
lowest single-particle eigenstates of the potential V�x�,

−
d2� j�x�

dx2 + V�x�� j�x� = Ej� j�x� , �4�

j=1,2 , . . . ,N=NF+NB. In Eq. �3�, P denotes a permutation
from the group SN. For the clarity of the exposition, it is
convenient to define the following quantities. Let us consider
a subset of single-particle states, chosen from the set

� j�x� � j=1, . . . ,N� by crossing out k single-particle states;
let J= 
j1 , j2 , . . . , jk� denote the indices of the crossed states,
and L= 
l1 , l2 , . . . , lN−k� the indices of the remaining states
�obviously J�L=�, J�L= 
1, . . . ,N��. We define the Slater
determinant state

�S
�j1,j2,. . .,jk��x1, . . . ,xN−k�

=
1

	�N − k�!
�

P�SN−k

�− �P�Pl1
�x1� . . . �PlN−k

�xN−k� , �5�

where P is a permutation of indices �l1 , l2 , . . . , lN−k�. Thus,
the indices upon �S

�j1,j2,. . .,jk� denote the crossed out states,
rather than the ones used in the Slater determinant.

Let �TG
�j1,j2,. . .,jk�=A�S

�j1,j2,. . .,jk� denote a symmetric Tonks-
Girardeau state obtained by acting with a unit antisymmetric
function A=�1�i�j�N−ksgn�xj −xi� upon �S

�j1,j2,. . .,jk�. The
RSPDM of the state �TG

�j1,j2,. . .,jk� will be denoted by �TG
�j1,j2,. . .,jk�,

�TG
�j1,j2,. . .,jk��x,y� = �N − k�
 dx2 . . . dxN−k

��TG
�j1,j2,. . .,jk��x,x2 . . . ,xN−k��

��TG
�j1,j2,. . .,jk��y,x2 . . . ,xN−k� . �6�

The quantities �S, �TG, and �TG etc. will refer to states and
the correlation functions obtained from the full set of single-
particle states 
� j�x� � j=1, . . . ,N�.

III. FORMULA FOR THE RSPDM

We are interested in properties of the ground state of the
Bose-Fermi mixture described by the state �2�. To explore
the one-particle observables of this Bose-Fermi mixture, we
need to construct the RSPDM of the bosonic and the fermi-
onic subsystems, respectively. The one-body density matrix
for the bosonic part of the mixture is defined as
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	NB,NF
�x,y� = NB
 dxF1 . . . dxFNF

dxB2 . . . dxBNB

� ���xF1, . . . ,xFNF
,x,xB2, . . . ,xBNB

�

� ��xF1, . . . ,xFNF
,y,xB2, . . . ,xBNB

� . �7�

It is straightforward to verify that 	NB,NF
�x ,y� can be calcu-

lated from the RSPDM describing N Tonks-Girardeau
bosons, 	NB,NF

�x ,y�=NB /N�TG�x ,y�. This correlation func-
tion can be efficiently calculated by using the procedure de-
rived in Ref. �42� �the procedure was recently also general-
ized to describe hard-core anyonic gases �46��.

The calculation of the density matrix describing the fer-
mionic component of the mixture,


NB,NF
�x,y� = NF
 dxF2 . . . dxFNF

dxB1 . . . dxBNB

� ���x,xF2, . . . ,xFNF
,xB1, . . . ,xBNB

�

� ��y,xF2, . . . ,xFNF
,xB1, . . . ,xBNB

� , �8�

is much more involved. The derivation can be reduced to
calculations of the RSPDM for an incoherent mixed TG state
as follows:


NB,NF
�x,y� =

NF

N!

 dxF2 . . . dxFNF

dxB1 . . . dxBNB

��
i=1

NB

sgn�x − xBi�sgn�y − xBi�

��
�1

��x� . . . �N
� �x�

�1
��xF2� . . . �N

� �xF2�
] � ]

�1
��xFNF

� . . . �N
� �xFNF

�

�1
��xB1� . . . �N

� �xB1�
] � ]

�1
��xBNB

� . . . �N
� �xBNB

�

�
��

�1�y� . . . �N�y�
�1�xF2� . . . �N�xF2�
] � ]

�1�xFNF
� . . . �N�xFNF

�

�1�xB1� . . . �N�xB1�
] � ]

�1�xBNB
� . . . �N�xBNB

�

� . �9�

The determinants above can be expanded along their second
row according to the Laplace formula, after which the inte-
gral over xF2 is trivially performed,


NB,NF
�x,y� =

NF

N!

 dxF3 . . . dxFNF

dxB1 . . . dxBNB�
i=1

NB

sgn�x − xBi�sgn�y − xBi� �
j,l=1

N

�− �2+j�− �2+l
 � j
��xF2��l�xF2�dxF2

��
�1

��x� ¯ � j−1
� �x� � j+1

� �x� ¯ �N
� �x�

�1
��xF3� ¯ � j−1

� �xF3� � j+1
� �xF3� ¯ �N

� �xF3�
] ] ] ]

�1
��xFNF

� ¯ � j−1
� �xFNF

� � j+1
� �xFNF

� ¯ �N
� �xFNF

�

�1
��xB1� ¯ � j−1

� �xB1� � j+1
� �xB1� ¯ �N

� �xB1�
] ] ] ]

�1
��xBNB

� ¯ � j−1
� �xBNB

� � j+1
� �xBNB

� ¯ �N
� �xBNB

�

�
��

�1�y� ¯ �l−1�y� �l+1�y� ¯ �N�y�
�1�xF3� ¯ �l−1�xF3� �l+1�xF3� ¯ �N�xF3�

] ] ] ]

�1�xFNF
� ¯ �l−1�xFNF

� �l+1�xFNF
� ¯ �N�xFNF

�

�1�xB1� ¯ �l−1�xB1� �l+1�xB1� ¯ �N�xB1�
] ] ] ]

�1�xBNB
� ¯ �l−1�xBNB

� �l+1�xBNB
� ¯ �N�xBNB

�

�
=

NF

N�NF − 1��j=1

N


NB,NF−1
�j� �x,y� , �10�
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where we have used �� j
��xF2��l�xF2�dxF2=� jl. The index j in


NB,NF−1
�j� means that the single-particle state � j has been

crossed out from the Slater determinant used in the formula
for the ground state, see Sec. II. Thus, we have derived a
recursion formula which reduces the calculation of the fer-
mionic RSPDM 
NB,NF

�x ,y�, to the calculation of N fermi-
onic correlation functions, 
NB,NF−1�x ,y� �with one fermion
less in the mixture�. By successively applying the recursive
formula above, it is straightforward to obtain


NB,NF
�x,y� =

NF ! �NB + 1�!
N!

� �
1�j1�. . .�jNF−1�N


NB,1
�j1,. . .,jNF−1��x,y�

=
NF ! NB!

N! �
1�j1�. . .�jNF−1�N

�TG
�j1,. . .,jNF−1��x,y� .

�11�

The correlation functions 
NB,1
�j1,. . .,jNF−1��x ,y� correspond

to a mixture with one fermion and NB bosons; it is
straightforward to see from the definition of 
NB,NF

that

NB,1

�j1,. . .,jNF−1�
��TG

�j1,. . .,jNF−1�, i.e., the system with just one extra

fermion has identical RSPDM �up to a normalization con-
stant� to the system with NB+1 TG bosons placed in the
proper single-particle orbitals.

Thus, the density matrix 
NB,NF
�x ,y� is equal �up to a

proportionality constant� to a sum of density matrices of TG
states from an ensemble. Each TG state from the ensemble
describes NB+1 TG bosons; these states are constructed by
choosing NB+1 orbitals from the full set of single-particle
states 
� j�x� � j=1, . . . ,N�. Apparently, there are � N

NB+1 � such
states, i.e., there are � N

NB+1 � terms in the sum �11�. Thus, the
density matrix 
NB,NF

�x ,y� is equivalent to the density matrix
of NB+1 bosons in a mixed TG state; the mixed state is an
incoherent superposition of the ground state and many ex-
cited TG states, each of which is constructed by some choice
of NB+1 orbitals as stated above. The calculation thus re-
duces to applying the algorithm of Ref. �42�. Numerical cal-

culations become too time consuming if the number of terms
in the sum �11� is too large. Nevertheless, it can be per-
formed efficiently for mesoscopic systems.

From the RSPDM, one can extract observables such as
the momentum distribution, and important quantities such as
the natural orbitals �NOs� and their occupancies. For ex-
ample, the fermionic momentum distribution is given by

n
�k� =
1

2�

 dxdyeik�x−y�
NB,NF

�x,y�; �12�

the eigenfunctions of the fermionic RSPDM, 

,i�x�, are
called the NOs,


 dx
NB,NF
�x,y�

,i�x� = �
,i

,i�y�, i = 1,2, . . . ;

�13�

the eigenvalues �
,i are the occupancies of these orbitals.
The bosonic momentum distribution n	�k�, NOs 
	,i�x�, and
occupancies �	,i, are defined by using equivalent relations
for the bosonic RSPDM.

IV. MIXTURE IN A SPLIT TRAP

In this section we apply the presented formalism to study
the RSPDM, momentum distribution, natural orbitals and
their occupancies for a Bose-Fermi mixture in a double well
potential of the form

V�x� = Vho�x� + VG�x� = �2x2 + V0e−�x/��2
, �14�

where the parameter � �V0� denotes the width �height, re-
spectively� of the Gaussian barrier which splits the harmonic
potential. We note in passing that the presented result may
depend on the shape of the double-well potential �e.g., for
the split-box potential� as will be discussed below. Here we
work in dimensionless units; the connection to physical units
can be made straightforwardly: for example, if m is the mass
of bosons �which is equal to the mass of fermions�, and xunit
the unit of space �which can be chosen at will�, then the unit
of energy is Eunit=�2 / �2mxunit

2 �. The single-particle eigen-
states of the potential V�x� are calculated numerically by
employing a simple and standard scheme: the x space is dis-

−10 −5 0 5 10
0

0.5

1

1.5

2

k

n µ

Nf=6,Nb=0
Nf=6,Nb=1
Nf=6,Nb=2
Nf=6,Nb=3
Nf=6,Nb=4

FIG. 1. �Color online� Momentum distributions n
�k� for
NF=6 �all curves� and NB=0,1 ,2 ,3 ,4; curves are ordered from
bottom to top and shifted by a constant for better visibility.

−10 −5 0 5 10
0

0.5

1

1.5

2

k

n µ

Nf=7,Nb=0
Nf=7,Nb=1
Nf=7,Nb=2
Nf=7,Nb=3

FIG. 2. �Color online� Momentum distributions n
�k� for
NF=7 �all curves� and NB=0,1 ,2 ,3: curves are ordered from bot-
tom to top and shifted by a constant for better visibility.
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cretized in 1024 equidistant points, the second-derivative op-
erator is represented in a simple tridiagonal matrix form, and
finally the single-particle eigenstates are found by diagonal-
izing the tridiagonal matrix which represents the single-
particle Hamiltonian.

In what follows we present results of numerical simula-
tions for the double-well parameters �=0.3 and V0=230; the
harmonic trap frequency parameter is �2=7.5. It should be
emphasized that we have focused our attention to the cases
when the splitting potential is sufficiently high, say, when V0
is at least several times larger than the energy of the Nth
single-particle state of the potential Vho�x�. Thus, all our con-
clusions should be understood to hold in this limit. The mo-
mentum distribution of the bosonic component was shown to
be equivalent to that of N TG bosons placed within V�x� and
this case has already been addressed in Ref. �44�. Thus, we
first turn our attention to the behavior of the fermionic mo-
mentum distribution in the mixture n
�k�, as a function of the
number of particles. Figure 1 shows n
�k� for NF=6 and
NB=0,1 ,2 ,3 ,4, while Fig. 2 shows the same quantity for
NF=7 and NB=0,1 ,2 ,3. From these figures we observe a
qualitative difference in behavior of the fermionic momen-
tum distribution in dependence on the parity of the total
number of particles N=NF+NB: if N is even, then n
�k� has
a smooth bell-shaped profile. In contrast, when N is odd, then

there are non-negligible modulations on top of the bell-
shaped profile of n
�k�; in our simulations, for the param-
eters presented here, we find that the number of peaks in
n
�k� for odd N is the same as the number of fermions in the
mixture NF plus two additional humps on the side bands of
the distribution. This parity dependent behavior is reflected
onto the behavior of the total momentum distributions
�n
�k�+n	�k�� which are displayed in Figs. 3 and 4 for the
same combinations of particles as presented in Figs. 1 and 2.
Interestingly, odd-odd combinations yield results very simi-
lar to the even-even ones, whereas even-odd combination
yields results similar to the odd-even combinations. Thus, the
parity of the total number of particles determines the behav-
ior of the fermionic component, at least for the mesoscopic
numbers of particles studied here.

The behavior of the fermionic momentum distribution re-
sults from the properties of the fermionic density matrix

NB,NF

�x ,y� which is illustrated in Fig. 5 for NF=6 and
NB=1, Fig. 6 for NF=6 and NB=2, Fig. 7 for NF=7 and
NB=1, and in Fig. 8 for NF=7 and NB=2. From these figures
we observe that the most significant difference between the
total even and odd numbers of particles occurs in the second
and the fourth quadrant of the x-y plane: if N is even, the
values of the fermionic RSPDM for x�0�y and y�0�x
are negligible, 
NB,NF

�x ,y��0. In contrast to that, if N is
odd, there are some oscillations of RSPDM in the second
and the fourth quadrant, in particular close to the line

NB,NF

�x ,−x�. These observations indicate that there is much
greater spatial coherence between the fields at the two sides

−10 −5 0 5 10
0

1

2

3

k

n µ+
n η

Nf=6,Nb=0
Nf=6,Nb=1
Nf=6,Nb=2
Nf=6,Nb=3
Nf=6,Nb=4

FIG. 3. �Color online� The total momentum distributions
n
�k�+n	�k� for NF=6 �all curves� and NB=0,1 ,2 ,3 ,4; curves are
ordered from bottom to top and shifted by a constant for better
visibility.

−10 −5 0 5 10
0

1

2

3

k

n µ+
n η

Nf=7,Nb=0
Nf=7,Nb=1
Nf=7,Nb=2
Nf=7,Nb=3

FIG. 4. �Color online� The total momentum distributions
n
�k�+n	�k� for NF=7 �all curves� and NB=0,1 ,2 ,3; curves are
ordered from bottom to top and shifted by a constant amount for
better visibility.

FIG. 5. �Color online� Contour plot of the fermionic RSPDM for
NF=6 and NB=1.

FIG. 6. �Color online� Contour plot of the fermionic RSPDM for
NF=6 and NB=2.
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of the well for odd N. A similar observation has been made
for the TG gas in a split trap �44�.

Let us now focus on the natural orbitals, that is, their
occupancies. The occupancies �
,i corresponding to the four
fermionic density matrices from Figs. 5–8 are illustrated in
Figs. 9 and 10. We immediately observe that when the total
number of particles is even, the occupancies come in pairs
and they correspond to the degenerate natural orbitals.
Namely, for the total even numbers of particles the symmetry
of the system with respect to the double well is naturally
preserved. However, for the total odd number of particles
this is not the case, which is reflected in the occupancies
which do not come in degenerate pairs but rather decrease
one by one.

The observation on the off-diagonal behavior of the
fermionic RSPDM can be underpinned analytically. To this
end, let us assume that the trap is split by an infinitely

strong delta function, i.e., the mixture is in the potential
V�x�=Vtrap+���x�, where �→�; the potential Vtrap can be a
harmonic oscillator trap, or it may have some other func-
tional form. For the strongly repulsive Bose-Fermi mixture
in a ground state of such a potential we can prove the fol-
lowing: if the total number of particles N is even, then

NB,NF

�x ,y�=0 in the second and the fourth quadrant of the
x-y plane, that is, for x�0�y and x�0�y.

Consecutive single-particle states in a split-trap
potential are degenerate, i.e., E2m−1=E2m for m=1,2 , . . .;
moreover, degenerate eigenstates are simply related:
�2m�x�=sgn�x��2m−1�x�. By using this relation, one of the
two Slater determinants �Eq. �3�� which enter the formula for
the RSPDM �Eq. �8�� �the determinant which depends on
variable x� can be written as

�S =�
�1�x� sgn�x��1�x� ¯ �N−1�x� sgn�x��N−1�x�
�1�x2� sgn�x2��1�x2� ¯ �N−1�x2� sgn�x2��N−1�x2�

] ] ] ]

�1�xN� sgn�xN��1�xN� ¯ �N−1�xN� sgn�xN��N−1�xN�
� . �15�

Here we have simplified the notation and labeled the coordinates as xj, where j runs up to the total number of particles N, that
is, we do not explicitly refer to the fermionic or bosonic coordinates, as it is redundant for the proof. Let us assume that
x�0�y, and that N1 coordinates are negative, N2 are positive, N1�N2, and N1+N2=N. First, let us demonstrate that the
determinant �15� is zero in this case. In order to see that, we assume that x ,x2 , . . . ,xN1

�0, and that the rest of the coordinates
are positive �due to the antisymmetry of the Slater determinant, any other choice of positive and negative coordinates would
yield the same result�. Let us add the first column to the second one in Eq. �15�, then the third to the fourth column and so on
to obtain

�S =�
�1�x� 0 ¯ �N−1�x� 0

�1�x2� 0 ¯ �N−1�x2� 0

] ] ] ]

�1�xN1
� 0 ¯ �N−1�xN1

� 0

�1�xN1+1� 2�1�xN1+1� ¯ �N−1�xN1+1� 2�N�xN1+1�

] ] ] ]

�1�xN� 2�1�xN� ¯ �N−1�xN� 2�N−1�xN�

� . �16�

Thus, the first N1 entries of every even column, 2 ,4 , . . . ,N, is zero. Suppose that we shift all these even columns all the way
to the right; the determinant is then proportional to

FIG. 7. �Color online� Contour plot of the fermionic RSPDM for
NF=7 and NB=1.

FIG. 8. �Color online� Contour plot of the fermionic RSPDM for
NF=7 and NB=2.
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�
�1�x� �3�x� ¯ �N−1�x� 0 ¯ 0

�1�x2� �3�x2� ¯ �N−1�x2� 0 ] 0

] ] ] ] ]

�1�xN1
� �3�xN1

� ¯ �N−1�xN1
� 0 ¯ 0

�1�xN1+1� �3�xN1+1� ¯ �N−1�xN1+1� 2�1�xN1+1� ¯ 2�N−1�xN1+1�

] ] ] ] ]

�1�xN� �3�xN� ¯ �N−1�xN� 2�1�xN� ¯ 2�N−1�xN�

� . �17�

In the upper right corner there is a block of zeros with the
size N1�N /2. Since N1�N /2, the determinant is identically
zero. In fact, it is straightforward to verify by using the pro-
cedure outlined above that the determinant is exactly zero
whenever N1�N2. On the other hand, if N1=N2, then the
other Slater determinant entering the formula for the
RSPDM in Eq. �8� �the one which depends on y variable�,
does not have equal number of positive and negative coordi-
nates and therefore it is zero, which completes our proof. It is
straightforward to see that the same result holds for the
bosonic part of the mixture, and therefore for the mixture as
a whole. This result can be interpreted as follows: if two slits
were opened on the opposite sides of the barrier, and if the
gas was allowed to drop from the slits, expand, and interfere,
the interference fringes would have not been observed for
even N and sufficiently high barrier. In fact, such an experi-
ment could �at least in principle� be used to determine the
parity of the mixture.

The differences in the reduced one-body density matrix
and consequently in the momentum distribution between
even and odd numbers of particles in the split harmonic trap
can be explained as follows. Due to the fact that masses of
the bosons and fermions are assumed to be identical, and
because the interactions are strongly repulsive �which means
that the wave function vanishes whenever any two of the
particles touch�, the effects of the interactions and statistics
are hard to distinguish in such a one-dimensional system
�26,27� �see also a study on fermionization in 1D Bose-Bose
mixtures �47��. For example, the probability density is iden-
tical for the Bose-Fermi mixture considered here, for N TG

bosons, or N noninteracting fermions; it is given by the
Slater determinant constructed from the N lowest single-
particle eigenstates. These single-particle states come in
nearly degenerate pairs of even and odd eigenstates �the bar-
rier is high, but still of finite height�; thus, in order to con-
struct the ground state, one can approximately utilize the
superposition of these eigenstates, 1 /	2��even��odd�, which
are nearly zero either in the left, or in the right well. Consider
a case where N is even. When a pair of particles is placed in
a split trap, one particle of the pair is placed to the left side,
and the other particle on the right side �in terms of the prob-
ability density�. This means that in the ground state for even
N, half of the particles are in the left, and the other half are in
the right well �which corresponds to the analytical results
presented in Eqs. �15�–�17��. On the other hand, if the num-
ber of particles N is odd, the last particle cannot be placed in
the left or the right well, because the Nth single-particle state
is unpaired; it extends through both sides of the well and
introduces correlations between the two sides of the well
which we observe in the RSPDM for both fermions and
bosons.

We note that this result corresponds to the observation
made in Ref. �44� on the difference in spatial coherence of
the Tonks-Girardeau gas in a split trap in dependence of the
parity of the number of TG bosons. Our proof covers this
case as well.

Finally, it is worthy to note that the shape of the external
potential can influence the presented results. For example,
for a box potential with a Gaussian as a split-barrier we did
not find the differences between the even and odd numbers
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FIG. 9. �Color online� The occupancies of the fermionic
RSPDM for the combinations NF=6 and NB=1 �squares�, and
NF=6 and NB=2 �circles�. The lines serve to guide the eyes.
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FIG. 10. �Color online� The occupancies of the fermionic
RSPDM for the combinations NF=7 and NB=1 �squares�, and
NF=7 and NB=2 �circles�. The lines serve to guide the eyes.
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of particles presented above; in all cases the momentum dis-
tribution was smooth, but the differences in the RSPDM be-
tween the even and odd N were still present. For a potential
of the form ��x� with a splitting Gaussian term the differ-
ences between the odd and even numbers are recovered.

V. CONCLUSION

In conclusion, we have studied a 1D Bose-Fermi mixture,
where the boson-boson and boson-fermion interactions are
very strong and repulsive, whereas �spin-polarized� fermions
are mutually noninteracting; the atoms in each species have
approximately the same mass. The ground state for this sys-
tem for finite but very strong interactions in an external po-
tential has been constructed in Ref. �26�. We have studied the
ground state properties of the mixture in a double-well trap,
with a sufficiently high barrier. More specifically, a formula

for the calculation of the reduced one-body density matrix of
the fermionic �and also bosonic� component has been de-
rived, which was subsequently employed to study the mo-
mentum distribution, natural orbitals and their occupancies.
We have found that the behavior of the momentum distribu-
tion depends on the parity of the total number of particles:
for even mixtures the momentum distribution is smooth,
whereas the momentum distribution of odd mixtures pos-
sesses distinct modulations. When the total number of par-
ticles is even, the correlations expressed by the reduced one-
body density matrix are negligible between the two wells.
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