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Microscopic signatures of nuclear ground-state shape phase transitions in Nd isotopes are studied using
excitation spectra and collective wave functions obtained by diagonalization of a five-dimensional Hamiltonian
for quadrupole vibrational and rotational degrees of freedom, with parameters determined by constrained self-
consistent relativistic mean-field calculations for triaxial shapes. As a function of the physical control parameter,
the number of nucleons, energy gaps between the ground state and the excited vibrational states with zero angular
momentum, isomer shifts, and monopole transition strengths exhibit sharp discontinuities at neutron number
N = 90, which is characteristic of a first-order quantum phase transition.
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Phase transitions in equilibrium shapes of atomic nuclei
correspond to first- and second-order quantum phase transi-
tions (QPTs) between competing ground-state phases induced
by variation of a nonthermal control parameter (number
of nucleons) at zero temperature. Theoretical studies have
typically been based on phenomenological geometric models
of nuclear shapes and potentials, or algebraic models of nuclear
structure [1–3], but more recently several attempts have
been made toward a fully microscopic description of shape
QPT starting from nucleonic degrees of freedom [4–11]. In
particular, in Refs. [7] and [8], we have reported a microscopic
study of nuclear QPT in the region Z = 60, 62, and 64
with N ≈ 90, based on constrained self-consistent relativistic
mean-field (RMF) calculations of potential energy surfaces.
Although in Ref. [7] the generator coordinate method was
used to perform configuration mixing of angular momentum
and particle-number projected relativistic wave functions
restricted to axial symmetry, in Ref. [8], collective excitation
spectra and transition probabilities have been calculated
starting from a five-dimensional Hamiltonian for quadrupole
vibrational and rotational degrees of freedom, with parameters
determined by constrained mean-field calculations for triaxial
shapes (i.e., including both β and γ deformations). The results
reproduce available data and show that there is an abrupt
change of structure at N = 90 that can be approximately
characterized by the X(5) analytic solution at the critical point
of the first-order quantum phase transition between spherical
and axially deformed shapes.

A phase transition is characterized by a significant variation
of one or more order parameters as functions of the control
parameter. Even though in systems composed of a finite num-
ber of particles (i.e., in mesoscopic systems) phase transitions
are actually smoothed out, in many cases, clear signatures
of abrupt changes of structure properties are observed. In
their study of QPT transitions in mesoscopic systems [12],
Iachello and Zamfir have shown that the main features of phase
transitions, defined for an infinite number of particles, N →
∞, persists even for moderate N ≈ 10. Their analysis has been
followed by several studies of shape phase-transitional patterns
in nuclei as functions of the number of particles [e.g., number

of bosons in the framework of interacting-boson-type models
(IBMs)]. As emphasized in Ref. [12], there are two approaches
to study QPT: (i) the method of Landau, based on potentials,
and (ii) the direct computation of order parameters. In the
case of atomic nuclei, however, a quantitative analysis of QPT
must go beyond a simple study of potential energy surfaces.
This is because potentials or, more specifically, deformation
parameters that characterize potential energy surfaces are not
observables and can only be related to observables by making
very specific model assumptions. The direct computation of
observables related to order parameters has so far been based
mostly on particular nuclear structure models (e.g., IBM),
in the framework of which such observables are defined as
expectation values of suitably chosen operators.

In this work, we combine both approaches in a consistent
microscopic framework and present an illustrative example
of calculation of observables that can be related to quantum
order parameters as functions of the nucleon number. An order
parameter is a measure of the degree of order in a system. As a
normalized quantity that is zero in one (symmetric) phase, and
nonzero in the other, it characterizes the onset of order at the
phase transition. When symmetry is broken, several variables
can be introduced, related to order parameters, to describe the
state of the system. As in our previous studies [7,8], the shape
transition in Nd isotopes with N ≈ 90 will be considered.
The analysis starts by performing constrained self-consistent
RMF calculations for triaxial shapes (i.e., including both β

and γ deformations). The resulting self-consistent solutions
(i.e., single-particle wave functions, occupation probabilities,
and quasiparticle energies that correspond to each point
on the binding energy surface) are used to calculate the
parameters that determine the collective Hamiltonian: three
mass parameters, three moments of inertia, and the zero-point
energy corrections, as functions of the deformations β and
γ [13]. The diagonalization of the Hamiltonian yields the
excitation energies and collective wave functions that are used
to calculate observables.

In Fig. 1, we plot the self-consistent triaxial quadrupole
binding energy map of 150Nd in the β-γ plane (0 � γ �
60◦). The calculations are performed by imposing constraints
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FIG. 1. (Color online) (a) Self-consistent RMF + BCS triaxial quadrupole binding energy map of 150Nd in the β-γ plane (0 � γ � 60◦).
The contours join points on the surface with the same energy (in MeV). (b) Projection of the binding energy map on the γ = 0◦ axis. (c) The
dependence of the binding energy on the deformation parameter γ , for two values of the axial deformation β = 0.2 and 0.25.

on expectation values of the quadrupole moments 〈Q̂20〉
and 〈Q̂22〉, the relativistic functional PC-F1 (point-coupling
Lagrangian) [14] is used in the particle-hole channel, and a
density-independent δ force is the effective interaction in the
particle-particle channel, with pairing correlations treated in
the BCS approximation. As shown in Ref. [8], the binding
energy maps of Nd isotopes show a gradual transition from
lighter spherical nuclei toward the strongly prolate deformed
152Nd. Of particular interest are nuclei around 150Nd, for which
experimental evidence for shape phase-transitional behavior
has been reported [15]. 150Nd is considered to be a good
example of empirical realization of the X(5) model for the
critical point of first-order phase transition between spherical
and axially deformed shapes [16].

The microscopic binding energy surface of 150Nd displays
a flat prolate minimum that extends in the interval 0.2 �
β � 0.4 of the axial deformation parameter [Fig. 1(b)] and
a parabolic dependence on γ for γ � 30◦ in the region of
the flat prolate minimum [Fig. 1(c)]. The flat bottom of the
potential has been considered a signature of possible phase
transition. There are, however, problems when one considers
deformations as possible order parameters of phase transitions
[10]. First, deformation parameters are not observables and can
only be linked to observables (e.g., transition rates or excitation
energies) within the framework of a specific model. Second,
in calculations that include both β and γ degrees of freedom,
a phase transition cannot be characterized by the behavior
of just one deformation parameter (e.g., β). Results obtained
with the five-dimensional collective Hamiltonian show that
many properties of the excitation spectra are affected by
β-γ coupling. Bandhead excitation energies, energy spacings
within the bands, and transition strengths depend on the γ

stiffness of the potential [17].
Here we analyze obervables that are directly computed

using collective wave functions obtained from a microscopic
five-dimensional collective Hamiltonian. The important ques-
tion is how much are the discontinuities at a phase-transitional
point smoothed out in finite nuclei, and second, how precisely
can a point of phase transition be associated with a particular
isotope, considering that the control parameter (i.e., nucleon
number) is not continuous but takes only discrete integer
values? Figure 2 displays the differences between squares of
ground-state charge radii 〈r2

c 〉0+
1
(A + 2) − 〈r2

c 〉0+
1
(A) and the

isomer shift 〈r2
c 〉2+

1
− 〈r2

c 〉0+
1

between the first 2+ state and the
ground state, as functions of the neutron number. The former
displays a peak at N = 88 and 90, whereas a pronounced
discontinuity is predicted for the latter between N = 88 and
N = 92.

Signatures of ground-state phase transitions in quantum
systems characterize the evolution of both excitation spectra
and order parameters. In Refs. [18–20], the scaling properties
of the energy gap between the ground state and the first excited
vibrational states with zero angular momentum were studied
for a system of NB interacting bosons. At the critical point
of the phase transition, the gap is strongly reduced in finite
systems and goes to zero as N → ∞. In Fig. 3(a), we plot the
isotopic dependence of the first and second excited 0+ states
in Nd nuclei and, in Fig. 3(b), the isomer shift 〈r2

c 〉0+
2

− 〈r2
c 〉0+

1
.

The excitation energies of both 0+
2 and 0+

3 exhibit a pronounced
dip at N = 90, which can be attributed to the softness of
the potential with respect to β deformation in 150Nd. For
lighter nuclei (i.e., toward spherical shapes), 0+

2 and 0+
3 display

the structure of two- and three-phonon states, respectively.
The axially deformed 152,154,156Nd are characterized by strong
prolate minima and stiffer potentials, and the positions of β

and ββ bands are shifted to higher energies. This behavior

FIG. 2. (Color online) Calculated differences between squares of
ground-state charge radii: 〈r2

c 〉0+
1

(A + 2) − 〈r2
c 〉0+

1
(A) (a) and isomer

shifts 〈r2
c 〉2+

1
− 〈r2

c 〉0+
1

(b) as functions of neutron number in Nd
isotopes.
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FIG. 3. (Color online) Evolution of the first and second excited
0+ states (a) and the isomer shifts 〈r2

c 〉0+
2

− 〈r2
c 〉0+

1
(b) with the neutron

number in Nd isotopes. Microscopic values calculated with the PC-F1
energy-density functional are compared with data [22].

of the 0+
2 state in Nd-Sm-Gd isotopes was also predicted

in the phenomenological analysis of the transition between
the vibrational, SU(5), and the rotational, SU(3), limits of
the IBM [21]. We note that, with the exception of the very
low 0+

2 state in 146Nd, the calculated excitation energies
E0+

2
are also in quantitative agreement with experimental

values [22].
The microscopic calculation predicts a very interesting evo-

lution of the isomer shift 〈r2
c 〉0+

2
− 〈r2

c 〉0+
1
. After a steep rise in

neutron number for N � 90, the isomer shift actually changes
sign between N = 90 and N = 92 (i.e., in 152,154,156Nd, the
charge radius of the 0+

2 state is smaller than that of the ground
state). As a function of the control parameter (number of
neutrons), the isomer shift displays a behavior characteristic
for a first-order phase transition [12]. Evidence for deformation
crossing near the first-order shape phase transition in 152−156Gd
has recently been reported in a study that used experimental
B(E2) values to extract the model-independent quadrupole
shape invariants, which provide a measure of the β deformation
[23]. Note that, although the results correspond to a realistic
calculation of ground-states and collective excitation spectra
of Nd nuclei, both isomer shifts (i.e., 〈r2

c 〉2+
1

− 〈r2
c 〉0+

1
and

〈r2
c 〉0+

2
− 〈r2

c 〉0+
1
) exhibit very sharp discontinuities at N = 90.

The first-order phase transition appears not to be smoothed
out by the finiteness of the nuclear system. In general, the
characteristic behavior of order parameters at the point of
QPT is more pronounced than in the case of Ising-type
Hamiltonians representing systems of interacting bosons,
especially for a realistic number of bosons (i.e., NB ≈ 5–10 for
medium -heavy nuclei). In the latter case, the discontinuities
are smoothed out so that, qualitatively, a first-order phase
transition might actually appear like a second-order one [12].

Shape transitions and change in radii are also reflected in
the transition matrix elements of the electric monopole T̂ (E0)
operator [24]. In the study of sharply rising E0 strength in
transitional nuclei [25], based on a general IBM Hamiltonian
of Ising-type, it has been shown that 0+

2 → 0+
1 transitions

provide a clear signature of phase-transitional behavior in
finite nuclei. In shape transition regions, ρ2(E0; 0+

2 → 0+
1 )

displays a steep rise and then remains large for well-deformed

nuclei. Relative and absolute E0 transition strengths on the
transitional path between the X(5) solution and the rigid
rotor limit have recently been evaluated using the confined
β-soft (axially symmetric) rotor model [26], and it has been
shown that absolute E0-transition strengths are reduced with
increasing potential stiffness toward zero in the rigid-rotor
limit.

The E0 operator can be expressed in terms of single-
nucleon degrees of freedom as T̂ (E0) = ∑

k ekr
2
k , where ek

is the charge of the kth nucleon and rk is its position relative to
the center of mass of the nucleus. For the transition 0+

2 → 0+
1 ,

the absolute E0 strength is defined as

ρ2(E0; 0+
2 → 0+

1 ) =
∣
∣
∣
∣
∣

〈0+
2 |T̂ (E0)|0+

1 〉
eR2

∣
∣
∣
∣
∣

2

, (1)

where R is the nuclear radius, R � 1.2A1/3 fm. Figure 4
shows the calculated values ρ2(E0; 0+

2 → 0+
1 ) as a function

of neutron number N . Bare charges have been used in the
calculation (i.e., ep = e and en = 0). The monopole transition
strengths exhibit a markedly sharp increase toward the point of
phase transition at N = 90, and the ρ2(E0; 0+

2 → 0+
1 ) values

remain rather large in the well-deformed nuclei 152,154,156Nd,
which is a result similar to that obtained in the schematic IBM
calculation of Ref. [25]. This behavior of ρ2(E0; 0+

2 → 0+
1 ) is

characteristic for an order parameter at the point of first-order
QPT. In terms of absolute values, one notes that even without
introducing effective charges, the calculated ρ2(E0; 0+

2 → 0+
1 )

are in qualitative agreement with the available experimental
values for Sm and Gd nuclei [24].

In conclusion, a microscopic calculation of observables re-
lated to order parameters for a first-order nuclear QPT between
spherical and axially deformed shapes has been performed.
Starting from self-consistent triaxial mean-field binding en-
ergy maps in the β-γ plane for a sequence of even-even Nd
isotopes with neutron number N = 84–96, a set of observables
has been computed using collective wave functions obtained
by diagonalization of the corresponding five-dimensional

FIG. 4. (Color online) The calculated monopole transition
strength ρ2(E0; 0+

2 → 0+
1 ) as a function of neutron number N in

Nd isotopes.
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Hamiltonian for quadrupole vibrational and rotational degrees
of freedom. The energy gap between the ground state and
the excited vibrational states with zero angular momentum,
the isomer shifts 〈r2

c 〉2+
1

− 〈r2
c 〉0+

1
and 〈r2

c 〉0+
2

− 〈r2
c 〉0+

1
, and the

monopole transition strengths ρ2(E0; 0+
2 → 0+

1 ) exhibit pro-
nounced discontinuities at N = 90, which are characteristic of
first-order QPTs. Even though the calculation has been carried
out for a finite number of nucleons, the phase transition does
not appear to be significantly smoothed out by the finiteness
of the nuclear system. Together with the results reported in
Refs. [7] and [8], our analysis has shown that the microscopic
framework based on universal energy-density functionals

provides a fully consistent description of nuclear-shape QPT
in the rare-earth region around N = 90.
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