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We predict the existence of coupled plasmon-phonon excitations in graphene by using the self-consistent
linear response formalism. The unique electron-phonon interaction in graphene leads to unconventional mixing
of plasmon and optical phonon polarizations. We find that longitudinal plasmons couple exclusively to transverse
optical phonons, whereas graphene’s transverse plasmons couple only to longitudinal optical phonons. This
coupling can serve as a magnifier for exploring the electron-phonon interaction in graphene, and it offers
electronical control over phonon frequencies.
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The interaction of electrons and crystal lattice vibrations
(phonons) has fundamental implications for properties of
materials and leads to diverse many-body phenomena, such
as superconductivity and charge-density waves. The electron-
phonon interaction takes an unusual form in graphene, a
recently discovered two-dimensional (2D) material1 (see, e.g.,
Ref. 2 for a review), and its implications are far from
being explored. These include the breakdown of the Born-
Oppenheimer approximation,3 the anomaly of the optical
phonon,4 and the nonadiabatic Khon anomaly.5 However, the
interaction of collective electron excitations (plasmons) and
optical phonons has not yet been presented for graphene. Plas-
mons in graphene are of fundamental scientific interest,6–12

but they also hold potential for technological applications
(e.g., in the context of plasmon lasers9 and metamaterials12).
Besides the ordinary longitudinal plasmons (transverse mag-
netic modes),6–9,12 graphene also supports unusual transverse
plasmons (transverse electric modes).8 The hybridization of
plasmon and phonon modes is a striking manifestation of the
breakdown of the Born-Oppenheimer approximation because
it occurs when phonons and electrons are on comparable en-
ergy scales. Plasmon-phonon coupling has been studied in bulk
semiconductors13,14 and systems with reduced dimensionality
(see, e.g., Refs. 15–18), and in the context of graphene,
plasmons were shown to couple to surface optical phonons
of the substrate (e.g., SiC, which is a polar material).11,19,20

Here we predict the coupling of plasmons with intrinsic
optical phonons in graphene by using the self-consistent
linear response formalism. We find that, in contrast to all
other known systems in nature, longitudinal plasmons (LP)
couple only to transverse optical (TO) phonons,21 while
transverse plasmons (TPs) couple only to longitudinal optical
(LO) phonons. The LP-TO coupling is stronger for larger
concentration of carriers, in contrast to the TP-LO coupling
(which is fairly weak). The former could be measured
via current experimental techniques. Thus, plasmon-phonon
resonance could serve as a magnifier for exploring the
electron-phonon interaction and for electronic control (by
externally applied voltage) over crystal lattice vibrations in
graphene.

The low-energy band structure of graphene consists of
two degenerate Dirac cones at K and K ′ points of the
Brillouin zone22,23 [see Figs. 1(a) and 1(b)], and the electron

Hamiltonian around K point can be written as

He = h̄vF σ · k, (1)

where vF = 106 m/s, k = (kx,ky) = −i∇ is the wave-vector
operator, σ = (σx,σy), and σx,y are the Pauli spin matrices.
We label the eigenstates of Hamiltonian He by |s,k〉 and
the appropriate eigenvalues by Es,k = sh̄vF |k|, where s = 1
for the conduction band and s = −1 for the valence band.
A technologically interesting property of graphene is that
the concentration of electrons n, and hence the Fermi level
EF = h̄vF

√
πn, can be changed via gate voltage.1

The long-wavelength in-plane optical phonon branch in
graphene consists of two modes (LO and TO), which are
effectively dispersionless and degenerate at energy h̄ω0 =
0.196 eV.24,25 Let u(R) = [uA(R) − uB(R)]/

√
2 denote the

relative displacements of the sublattice atoms A and B of a
unit cell specified by a coordinate R [see Fig. 1(c)]. Then, in
the long-wavelength limit R can be replaced with a continuous
coordinate r and we have

u(r) =
∑

μq

1√
NM

Qμqeμqe
iqr, (2)

where N is the number of unit cells, M is the carbon atom mass,
q = q(cos φq, sin φq) is the phonon wave vector, μ = L,T

stands for the polarization, and the polarization unit vectors
are eLq = i(cos φq, sin φq) and eT q = i(− sin φq, cos φq). The
displacement vector u(r) is parallel (perpendicular) to the
phonon propagation wave vector q for LO (TO, respectively)
phonons [see Fig. 1(c)]. The phonon Hamiltonian is given by

Hph = 1

2

∑

μq

(
P †

μqPμq + ω2
0Q

†
μqQμq

)
, (3)

where Qμq and Pμq denote phonon coordinate and momentum.
The electron-phonon interaction takes a peculiar form in
graphene25

He−ph = −
√

2
βh̄vF

b2
σ × u(r), (4)
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FIG. 1. (Color online) (a) Schematic illustration of the lattice
structure with two sublattices (A and B). (b) The two degenerate
Dirac cones are centered at K and K ′ points at the edge of
the Brillouin zone. (c) A displacement of lattice atoms u(r) is
parallel (perpendicular) to the propagation wave vector q of a LO
(TO) phonon. (d) The displacement u(r) creates an effective vector
potential Aeff perpendicular to u(r) (the sign of Aeff for the K ′ point
is opposite to that for the K point).

where σ × u = σxuy − σyux , b = 0.142 nm is the nearest
carbon atoms distance, and β = 2. We find it convenient to
write Eq. (4) as

He−ph = L2F
∑

μq

j†q × eμqQμq, (5)

where jq = −evF L−2σe−iqr is the single-particle current-
density operator, L2 is the area of the system, −e is charge

of the electron, and F =
√

2βh̄

eb2
√

NM
.

The electromagnetic field in the plane of graphene is com-
pletely described by the vector potential A = ∑

μq eμqAμqe
iqr

(scalar potential is gauged to zero, time dependence is
implicitly assumed, and μ = L,T denote polarizations). The
interaction with Dirac electrons is obtained by substitution
h̄k → h̄k + eA in Eq. (1), which leads to

He−em = evF σ · A = −L2
∑

μq

j†q · eμqAμq. (6)

By comparing Eqs. (4) and (6) it follows that electron-phonon
interaction can be regarded as a presence of an effective vector
potential,

Aeff = F
∑

q

(
eT qQLq − eLqQT q

)
eiqr, (7)

that is, He−ph = evF σ · Aeff . It is evident that Aeff · u(r) = 0
that is the effective vector potential Aeff is perpendicular to u(r)
as illustrated in Figs. 1(c) and 1(d) (see also Ref. 2), which
is responsible for the mixing of polarizations in plasmon-
phonon coupling. This result is strictly valid only in the
long-wavelength limit.

As a first pass, let us ignore the phonons and focus
on the Hamiltonian H = He + He−em. Without an external
perturbation, the electrons in graphene fill the Fermi sea

according to the Fermi distribution function fsk. A field
Aμq(ω) oscillating at frequency ω will induce an average
current density (up to a linear order in the vector potential)

〈Jμ(q,ω)〉 = −χμ(q,ω)Aμq(ω), (8)

where the current-current response function (including two-
spin and two-valley degeneracy) is given by26

χμ(q,ω) = 4L2
∑

s1s2k

fs1k − fs2k+q

h̄ω + h̄ωs1k − h̄ωs2k+q + iη

×|〈s1k|jq · e∗
μq|s2k + q〉|2. (9)

For the response function χμ(q,ω) we utilize the analytical
expression from Ref. 27. The subtlety involved with the
divergence in Eq. (9) is solved by subtracting from χL(q,ω)
[χT (q,ω)] the value χL(q,ω = 0) [χT (q → 0,ω = 0)] to take
into account that there is no current response to the longitudinal
[transverse] time [time and space] independent vector potential
(see Refs. 27 and 28 for details). We would like to note
that when working with the current-current response function,
rather than with the density-density response function, the na-
ture of the plasmon-phonon interaction (especially the mixing
of polarizations as shown below) is far more transparent.

Next, it is straightforward to show from the Maxwell
equations that an electric current oscillating in a 2D plane
will induce a vector potential

〈
ALq(ω)

〉 = 〈JL(q,ω)〉
√

q2 − ω2/c2

−2ω2ε0
, (10)

and
〈
AT q(ω)

〉 = 〈JT (q,ω)〉 μ0

2
√

q2 − ω2/c2
, (11)

where we have assumed that graphene is suspended in air
and that there are no other sources present in space. This
induced vector potential in turn acts on electrons in graphene
through the interaction Hamiltonian He−em, which can result
in plasmons, self-sustained collective oscillations of electrons.
From Eqs. (8) and (10) we get the dispersion relation for
longitudinal plasmons6,7,12

1 −
√

q2 − ω2/c2

2ω2ε0
χL(q,ω) = 0. (12)

From Eqs. (8) and (11) we get the dispersion relation for TPs:8

1 + μ0

2
√

q2 − ω2/c2
χT (q,ω) = 0. (13)

Longitudinal plasmons are also referred to as transverse
magnetic modes since they are accompanied by a longitudinal
electric (E) and a transverse magnetic field (B) in the plane
of graphene. Likewise, TPs or transverse electric modes
are accompanied by a transverse electric and a longitudinal
magnetic field.8 Dispersion relation of LP (TP) modes is shown
by the blue dashed line in Fig. 2. (Figure 3, respectively.)
Finally we note that we are primarily interested in nonradiative
modes (q > ω/c) in which case fields are localized near the
graphene plane (z = 0) and decay exponentially: E(z),B(z) ∝
e−|z|

√
q2−ω2/c2

.
In order to find the plasmon-phonon coupled excitations

we consider the complete Hamiltonian H = He + He−em +

161409-2
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FIG. 2. (Color online) Dispersion lines of hybrid LP-TO
plasmon-phonon modes (solid lines) and of the uncoupled modes
(dashed lines) for two values of doping: (a) n = 5 × 1012 cm−2 and
(b) n = 5 × 1013 cm−2. The hybridization is stronger for larger doping
values. Gray areas denote the region of single-particle damping.

He−ph + Hph. We assume that the hybrid plasmon phonon
mode oscillates at some frequency ω with wave vector q.
From the equation of motion for the phonon amplitudes Qμq
one finds26

(
ω2 − ω2

0

)〈
QT q

〉 = L2F 〈JL(q,ω)〉, (14)

and
(
ω2 − ω2

0

)〈
QLq

〉 = −L2F 〈JT (q,ω)〉. (15)

The electron phonon interaction (5) is included as the effective
vector potential (7) in Eq. (6), which from Eq. (8) immediately
yields

〈JL(q,ω)〉 = χL(q,ω)
( − 〈

ALq(ω)
〉 + F

〈
QT q

〉)
, (16)

and

〈JT (q,ω)〉 = χT (q,ω)
( − 〈

AT q(ω)
〉 − F

〈
QLq

〉)
. (17)

From Eqs. (14)–(17) it is clear that transverse (longitudinal)
phonons couple only to longitudinal (transverse) plasmons.
Apparently, this follows from the fact that LO (TO, respec-
tively) phonons are equivalent to oscillations of an effective
vector potential Aeff [see Eq. (7)], and therefore an effective
electric field, perpendicular (parallel, respectively) to q.

Finally, using Eqs. (10), (14), and (16) we get the dispersion
relation for the LP-TO coupled mode,

ω2 − ω2
0 = L2F 2χL(q,ω)

1 −
√

q2−ω2/c2

2ω2ε0
χL(q,ω)

, (18)
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FIG. 3. (Color online) Dispersion lines of hybrid TP-LO
plasmon-phonon modes (solid lines) and of the uncoupled modes
(dashed lines) for two values of doping: (a) n = 7.5 × 1011 cm−2 and
(b) n = 9.5 × 1011 cm−2. The plasmonlike dispersion is very close to
the light line q = ω/c; therefore, the ordinate shows 
q = q − ω/c.

and from Eqs. (11), (15), and (17) the dispersion relation for
the TP-LO coupled mode,

ω2 − ω2
0 = L2F 2χT (q,ω)

1 + μ0

2
√

q2−ω2/c2
χT (q,ω)

. (19)

The plasmon dispersions relations (12) and (13) appear as
poles in Eqs. (18) and (19) for the coupled modes, which
means that the coupling is greatest at the resonance point where
plasmon momentum and energy match that of the appropriate
phonon mode. We denote this point (where the uncoupled
plasmon and phonon dispersion cross) by (qc,ω0). One can
quantify the strength of the coupling effect by calculating the
frequency difference between the hybrid modes at the wave
vector qc in units of the uncoupled frequency value: 
ω/ω0.
Finally, by doping one can change plasmon dispersion which
in turn changes qc and the strength of the plasmon-phonon
coupling.

The dispersion lines for the hybrid LP-TO modes are shown
in Fig. 2 for two values of doping: (a) n = 5 × 1012 cm−2,
EF = 0.261 eV, kF = 3.96 × 108 m−1, and (b) n = 5 × 1013

cm−2, EF = 0.825 eV, kF = 1.25 × 109 m−1. The strength of
the coupling increases with increasing values of doping, and
one has for the case (a) 
ω/ω0 = 7.5% and (b) 
ω/ω0 =
15.5%. To describe graphene sitting on a substrate (say SiC,
which is a polar material), one only needs to include the
dielectric function of the substrate into our calculation. In that
case plasmons can also couple to surface phonon modes of the
polar substrate.11,19,20 However, since these surface phonons
have sufficiently smaller energies than optical phonons in
graphene out results are qualitatively unchanged in that case.
LP-TO hybrid modes could be measured by observing the
change in the phonon dispersion with neutron spectroscopy or
inelastic x-ray scattering. Alternatively, one could use a grating
coupler or electron energy loss spectroscopy to measure the
shift in the plasmon energy.

In spite of the fact that the formal derivation of hybrid TP-
LO coupled modes is equivalent to the derivation of the LP-TO
modes, their properties qualitatively differ. First, we note that
the dispersion of TPs is extremely close to the light line, and
we plot 
q = q − ω/c vs frequency ω following Ref. 8. For
this reason, TPs are expected to have strong polariton character
and they will be hard to distinguish from free photons (also,
even a small plasmon linewidth will obscure the distinction).
Moreover, they do not exist in graphene between two di-
electrics with sufficiently different relative permittivity, where
the light lines for the dielectrics are separated. Next, TPs exist
only in the frequency interval 2EF > h̄ω > 1.667EF ,8 which
means that the LO phonon energy must be in the same interval
for the hybridization to occur. Figure 3 shows the dispersion
curves of the hybrid TP-LO modes for two values of dop-
ing: (a) n = 7.5 × 1011 cm−2, EF = 0.101 eV, kF = 1.53 ×
108 m−1, and (b) n = 9.5 × 1011 cm−2, EF = 0.114 eV,
kF = 1.73 × 108 m−1. We observe that the trend here is
opposite to that of the LP-TO coupling, as the strength of the
coupling decreases with increasing doping; specifically, one
has for the case (a) 
ω/ω0 = 0.17% and (b) 
ω/ω0 = 0.02%.
The maximal coupling occurs when 2EF is just above h̄ω0,
and it is zero when h̄ω0 = 1.667EF . We emphasize that the

161409-3



RAPID COMMUNICATIONS
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strength of the coupling for TP-LO modes is in general much
weaker than in LP-TO modes.

Before closing, we note another interesting result which
is captured by our calculations. Equations (18) and (19) for
shifts in the energies of TO and LO modes at q = 0 reduce
to

ω2 − ω2
0 = L2F 2χL,T (0,ω)

1 + i
2ωε0c

χL,T (0,ω)
, (20)

which is identical to the result of Ref. 4, where the coupling
of optical phonons to single-particle excitations was studied,
apart from the imaginary term in the denominator, which is
zero in Ref. 4. This small but qualitative difference is a con-
sequence of phonon coupling to the radiative electromagnetic
modes, which increases the phonon linewidth. For example,
for the doping values of n = 5 × 1012 cm−2, 5 × 1013 cm−2,
and 5 × 1014 cm−2, Eq. (20) yields 0.005%, 0.07%, and 0.7%,
respectively, for the linewidths, while there is no linewidth
from single-particle damping at these doping values. This
effect is qualitatively unchanged for graphene sitting on a
substrate and could be measured by Raman spectroscopy.
Finally, we note an interesting solution of Eq. (19) (valid
for suspended graphene): When the hybrid TP-LO mode
dispersion crosses the light line it has the same energy as
the uncoupled phonon mode, that is, ω = ω0. In other words,
the LO phonon at a wave vector q = ω0/c decouples from all
(single particle and collective) electron excitations, while no
such effect exists for the TO phonons.

In conclusion, we have predicted hybridization of plasmons
and intrinsic optical phonons in graphene using self-consistent
linear response theory. We found that graphene’s unique
electron-phonon interaction leads to unconventional mixing of
plasmon and optical phonon polarizations: Longitudinal plas-
mons couple exclusively to TO phonons, whereas graphene’s
TPs couple to LO phonons; this contrasts plasmon-phonon
coupling in all previously studied systems. The strength of
the hybridization increases with doping in LP-TO coupled
modes, while the trend is opposite for TP-LO modes. The
LP-TO coupling is much stronger than TP-LO coupling, and
it could be measured by current experiments to explore the
electron-phonon interaction in graphene (the frequency shifts
at resonance are much larger than those recently measured by
Raman spectroscopy3). This coupling is an even more striking
example of a breakdown of Born-Oppenheimer approximation
in graphene than the recently measured stiffening of the Raman
G peak.3 Moreover, plasmon-phonon interaction can serve
to electronically control the frequencies of lattice vibrations
in graphene, which could have interesting technological
implications.
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