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We introduce a self-consistent microscopic theoretical framework for modeling the process of electron capture
on nuclei in stellar environment, based on relativistic energy density functionals. The finite-temperature relativistic
mean-field model is used to calculate the single-nucleon basis and the occupation factors in a target nucleus,
and J π = 0±, 1±, and 2± charge-exchange transitions are described by the self-consistent finite-temperature
relativistic random-phase approximation. Cross sections and rates are calculated for electron capture on 54,56Fe
and 76,78Ge in stellar environment, and results compared with predictions of similar and complementary model
calculations.
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I. INTRODUCTION

Weak interaction processes play a crucial role in the
late evolution stages of massive stars by determining the
core entropy and electron-to-baryon ratio Ye, two important
quantities associated with the dynamics of core-collapse
supernovae [1]. At the end of its life, a massive star exhausts
the nuclear fuel and, therefore, the core can only be stabilized
by the electron degeneracy pressure as long as its mass
does not exceed the corresponding Chandrasekhar mass MCh,
proportional to Y 2

e . When this mass limit is exceeded, the core
cannot attain a stable configuration and it collapses. During
the precollapse phase, electron capture reduces the number
of electrons available for pressure support, whereas β decay
acts in the opposite direction. At the same time, the neutrinos
produced by electron capture freely escape from the star for
values of the matter density �1011 g cm−3, removing energy
and entropy from the core [2–4]. For initial values of Ye ∼ 0.5,
β− decay processes can be effectively hindered by electron
degeneracy, but get to be competitive when nuclei become
more neutron rich.

For central stellar densities less than a few 1010 g/cm3

and temperatures between 300 and 800 keV, electron capture
mainly occurs on nuclei in the mass region A ∼ 60. Under such
conditions electron-capture rates are sensitive to the detailed
Gamow-Teller (GT) strength distribution, because the electron
chemical potential is of the same order of magnitude as the
nuclear Q value (defined as the difference between neutron
and proton chemical potentials). For even higher densities and
temperature, nuclei with mass numbers A > 65 become quite
abundant. The electron chemical potential is noticeably larger
than the Q value, thus electron-capture rates are principally
determined by the total GT strength and its centroid energy. At
core densities ρ > 1011 g/cm3, the electron chemical potential
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reaches values larger than ∼20 MeV, and forbidden transitions
can no longer be neglected [3,4].

Because of its relevance in modeling supernovae evolution,
the process of electron capture has been studied employing
various approaches, often based on available data. The first
standard tabulation of nuclear weak-interaction rates for
astrophysical applications was that of Fuller, Fowler, and
Newman (FFN) [5–8]. It was based on the independent particle
model, but used experimental information whenever available.
The tables included rates for electron capture, positron capture,
β decay, and positron emission for relevant nuclei in the
mass range 21 � A � 60. Shell model Monte Carlo method
(SMMC) was used to determine for the first time in a
fully microscopic way the GT contributions to presupernova
electron-capture rates for fp-shell nuclei, taking into account
thermal effects. The electroweak interaction matrix elements
were calculated in the zero-momentum transfer limit, with
the GT operators as the main ingredient. The GT strength
distributions were obtained from the response function in the
canonical ensemble, solved in the 0h̄ω fp-shell space [9].
The diagonalization of the corresponding Hamiltonian matrix
in the complete pf-shell-model space reproduces the exper-
imental GT+ distributions [10–12]. An updated tabulation
of weak interaction rates for more than 100 nuclei in the
mass range 45 � A � 65, with the same temperature and
density grid as the one reported by FFN, was carried out
based on the large-scale shell-model diagonalization (LSSM)
approach [13].

An alternative approach to the calculation of weak-
interaction rates is based on the random-phase approximation
(RPA). This framework is generally more suitable for the
inclusion of forbidden transitions, and for global calculations
involving a large number of nuclei included in nuclear
networks. To overcome the limitations of the shell model,
in a study of nuclei beyond the fp shell a hybrid model was
introduced. In this approach the SMMC is used to obtain the
finite-temperature occupation numbers in the parent nucleus,
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and the allowed and forbidden transitions for the electron-
capture process are calculated in the RPA using mean-field
wave functions with the SMMC occupation numbers [14].
More recently the hybrid model plus the RPA, with a global
parametrization of single-particle occupation numbers, has
been employed in estimates of electron-capture rates of a large
number of nuclei involved in stellar core collapse [15].

Electron-capture rates were also calculated for sd-shell and
fpg-shell nuclei using the proton-neutron quasiparticle RPA
(QRPA) approach, based on the Nilsson model and separable
GT forces [16,17]. However, the use of experimental masses
for calculation of Q values limits the application of this model
to nuclei with known masses. More recently a thermal QRPA
approach (TQRPA) has been introduced, based on the Woods-
Saxon potential and separable multipole and spin-multipole
particle-hole interactions, with temperature taken into account
using the thermofield dynamics (TFD) formalism [18]. A
fully self-consistent microscopic framework for evaluation
of nuclear weak-interaction rates at finite temperature has
recently been introduced, based on Skyrme density function-
als. The single-nucleon basis and the corresponding thermal
occupation factors of the initial nuclear state are determined
in the finite-temperature Skyrme Hartree-Fock model, and
charge-exchange transitions to excited states are computed
using the finite-temperature RPA [19].

An important class of nuclear structure models belongs
to the framework of relativistic energy density functionals
(EDFs). In particular, a number of very successful relativistic
mean-field (RMF) models have been very successfully em-
ployed in analyses of a variety of nuclear structure phenomena,
not only in nuclei along the valley of β stability, but also
in exotic nuclei with extreme isospin values and close to
the particle drip lines [20–22]. Based on this framework,
the relativistic (Q)RPA (R(Q)RPA) has been developed and
applied in studies of collective excitations in nuclei, including
giant resonances, spin-isospin resonances, and exotic modes
of excitation in unstable nuclei [23–29]. By employing a
small set of universal parameters adjusted to data, both
ground-state properties and collective excitations over the
whole chart of nuclides, from relatively light systems to
superheavy nuclei, can be accurately described. For stud-
ies of astrophysical processes, temperature effects have
recently been included in the self-consistent RRPA. The
low-energy monopole and dipole response of nuclei at finite
temperatures were investigated [30]. An extension of the finite-
temperature RRPA (FTRRPA), to include charge-exchange
transitions, will certainly provide a very useful theoretical tool
for studies of the electron-capture process in presupernova
collapse.

In this work we introduce the theoretical framework,
based on the charge-exchange FTRRPA, for the calculation
of electron-capture cross sections and stellar electron-capture
rates on selected medium-mass nuclei. The single nucleon
basis and the thermal occupation factors of the initial nuclear
state are determined in a finite-temperature RMF model,
and charge-exchange transitions to the excited states are
computed using the FTRRPA. The same relativistic energy
density functional is consistently used both in the RMF and
RPA equations. The advantage of this approach is that the

calculation is completely determined by a given energy density
functional and, therefore, can be extended over arbitrary mass
regions of the nuclide chart, without additional assumptions
or adjustment of parameters, as, for instance, single-particle
energies, to transitions within specific shells. In a simple RPA,
of course, correlations are described only on the one-particle–
one-hole level, and therefore one cannot expect the model
to reproduce the details of the fragmentation of GT strength
distributions.

The paper is organized as follows. In Sec. II the framework
of the charge-exchange FTRRPA and the formalism for the
electron-capture cross sections and rates are introduced. The
GT strength distributions at finite temperature are discussed
in Sec. III. The calculated electron-capture cross sections
and rates in a stellar environment are presented in Secs. IV
and V, respectively. Section VI summarizes the present work
and ends with an outlook for future studies.

II. FORMALISM

Since electron capture on nuclei involves charge-exchange
transitions, for the purpose of the present study we extend
the self-consistent FTRRPA [30] and implement the model
in the charge-exchange channel. The characteristic properties
of the nuclear initial state, that is, the single-nucleon basis
and the corresponding thermal occupation probabilities, are
obtained using a RMF model at finite temperature. This
framework was introduced in Ref. [31], based on the nonlinear
effective Lagrangian with the NL3 parametrization [32]. In this
work the RMF at finite temperature is implemented using an
effective Lagrangian with medium-dependent meson-nucleon
couplings [33,34]. The corresponding FTRRPA equations are
derived using the single-nucleon basis of the RMF model
at finite temperature [30]. In a self-consistent approach the
residual interaction terms in the FTRRPA matrix are obtained
from the same Lagrangian. The proton-neutron FTRRPA
equation reads(

AJ
pnp′n′ BJ

pnp′n′

−BJ
pnp′n′ −AJ

pnp′n′

) (
XJ

p′n′

Y J
p′n′

)
= ων

(
XJ

pn

Y J
pn

)
, (1)

where A and B are the matrix elements of the particle-hole
residual interaction,

AJ
pnp′n′ = (εP − εH )δpp′δnn′

+V J
pn′np′ (ũpṽnũp′ ṽn′ + ṽpũnṽp′ ũn′ )(|fn′ − fp′ |),

(2)

BJ
pnp′n′ = V J

pn′np′ (ũpṽnṽp′ ũn′ + ṽpũnũp′ ṽn′ )(|fp′ − fn′ |). (3)

The diagonal matrix elements contain differences of single-
particle energies between particles and holes εP − εH , and
these could be either εp − εn̄ or εn − εp̄, where p, n denote
proton and neutron states, respectively. For a given proton-
neutron pair configuration, the state with larger occupation
probability is defined as a hole state, whereas the other one
is a particle state. In the RRPA, the configuration space
includes not only proton-neutron pairs in the Fermi sea,
but also pairs formed from the fully or partially occupied
states in the Fermi sea and the empty negative-energy states
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from the Dirac sea. The residual interaction term V J
pn′np′

is coupled to the angular momentum J of the final state.
The spin-isospin-dependent interaction terms are generated
by the exchange of π and ρ mesons. Although the direct
one-pion contribution to the nuclear ground state vanishes at
the mean-field level because of parity conservation, the pion
nevertheless must be included in the calculation of spin-isospin
excitations that contribute to the electron-capture cross section.
For the ρ-meson density-dependent coupling strength we
choose the same functional form used in the RMF effective
interaction [34]. More details about the corresponding particle-
hole residual interaction are given in Ref. [35]. The factors
fp(n) in the matrix elements A [Eq. (2)] and B [Eq. (3)] denote
the thermal occupation probabilities for protons and neutrons,
respectively. These factors are given by the corresponding
Fermi-Dirac distribution,

fp(n) = 1

1 + exp
( εp(n)−µp(n)

kT

) , (4)

where µp(n) is the chemical potential determined by the
conservation of the number of nucleons

∑
p(n) fp(n) = Z(N ).

The factors ũ, ṽ are introduced in order to distinguish the GT−
and GT+ channel, that is,

ũp = 0, ṽp = 1, ũn = 1, ṽn = 0, when fp > fn (p̄n),

(5)

ũp = 1, ṽp = 0, ũn = 0, ṽn = 1, when fp < fn (pn̄).

(6)

With this definition the FTRRPA matrix is decoupled into two
subspaces for the GT− and GT+ channels.

The FTRRPA equations are solved by diagonalization, and
the results are the excitation energies Eν and the corresponding
forward- and backward-going amplitudes XJν and Y Jν ,
respectively. The normalization reads∑

pn

[(
XJν

pn

)2 − (
Y Jν

pn

)2]
(|fp − fn|) = 1. (7)

The transition strengths for GT± operators are calculated using
the relations

B
T−
Jν =

∣∣∣∣∣
∑
pn

(
XJν

pnũpṽn + Y Jν
pn ṽpũn

)〈p||T −||n〉(|fn − fp|)
∣∣∣∣∣
2

,

B
T+
Jν =

∣∣∣∣∣
∑
pn

(
XJν

pnṽpũn + Y Jν
pn ũpṽn

)〈p||T +||n〉(|fn − fp|)
∣∣∣∣∣
2

,

(8)

where the spin-isospin operators read T ± = ∑A
i=1 σ τ±.

For the process of electron capture on a nucleus,

e− +A
Z XN →A

Z−1 X∗
N+1 + νe, (9)

the cross section is derived from Fermi’s golden rule,

dσ

d

= 1

(2π )2
V 2E2

ν

1

2

∑
lepton spins

1

2Ji + 1

∑
MiMf

|〈f |ĤW |i〉|2,

(10)

where V is the quantization volume, and Eν is the energy of the
outgoing electron neutrino. The weak-interaction Hamiltonian
ĤW of semileptonic processes is written in the current-current
form [36],

ĤW = − G√
2

∫
dx Jµ(x)jµ(x), (11)

where jµ(x) and Jµ(x) are the weak leptonic and hadronic
current density operators, respectively. The matrix elements
of leptonic part are evaluated using the standard electroweak
model, and contain both vector and axial-vector components
[3]. The hadronic current is obtained by using arguments
of Lorentz covariance and isospin invariance of the strong
interaction. The expression for the electron-capture cross
sections (see Refs. [36] and [37] for more details) reads

dσec

d

= G2

F cos2 θc

2π

F (Z,Ee)

(2Ji + 1)

{∑
J�1

W(Ee,Eν)

× {
[1 − (ν̂ · q̂)(β · q̂)]

[|〈Jf ||T̂ mag
J ||Ji〉|2

+ |〈Jf ||T̂ el
J ||Ji〉|2

] − 2q̂ · (ν̂ − β)

× Re〈Jf ||T̂ mag
J ||Ji〉〈Jf ||T̂ el

J ||Ji〉∗
}

+
∑
J�0

W(Ee,Eν){[1 − ν̂ · β + 2(ν̂ · q̂)(β · q̂)]

× |〈Jf ||L̂J ||Ji〉|2 + (1 + ν̂ · β)|〈Jf ||M̂J ||Ji〉|2

− 2q̂ · (ν̂ + β)Re〈Jf ||L̂J ||Ji〉〈Jf ||M̂J ||Ji〉∗}
}

,

(12)

where the momentum transfer q = ν − k is defined as the
difference between neutrino and electron momenta, q̂ and ν̂ are
the corresponding unit vectors, and β = k/Ee. The energies of
the incoming electron and outgoing neutrino are denoted by Ee

and Eν , respectively. The Fermi function F (Z,Ee) corrects the
cross section for the distortion of the electron wave function
by the Coulomb field of the nucleus [38]. The explicit energy
dependence of the cross section is given by the term

W(Ee,Eν) = E2
ν

[1 + Ee/MT (1 − ν̂ · β)]
, (13)

where the phase-space factor [1 + Ee/MT (1 − ν̂ · β)]−1 ac-
counts for the nuclear recoil, and MT is the mass of the
target nucleus. The nuclear transition matrix elements between
the initial state |Ji〉 and final state |Jf 〉, correspond to the
charge M̂J , longitudinal L̂J , transverse electric T̂ el

J , and
transverse magnetic T̂ mag

J multipole operators [36,37]. The
initial and final nuclear states in the hadronic matrix elements
are characterized by angular momentum and parity Jπ . In the
present calculation a number of multipoles contributing to the
cross section Eq. (12) will be taken into account.

In the electron-capture process, the excitation energy of the
daughter nucleus A

Z−1XN+1 is obtained by the sum of the RPA
energy ERPA given with respect to the ground state of the parent
nucleus and the binding energy difference between daughter
and parent nucleus [39]. Thus the energy of the outgoing

045807-3



Y. F. NIU, N. PAAR, D. VRETENAR, AND J. MENG PHYSICAL REVIEW C 83, 045807 (2011)

neutrino is determined by the conservation relation,

Eν = Ee − ERPA − �np, (14)

where Ee is the energy of incoming electron, and �np =
1.294 MeV is the mass difference between the neutron and
the proton. The axial-vector coupling constant gA = −1.0
is quenched for all the multipole excitations with respect to
its free-nucleon value gA = −1.26. The reason to consider
quenching the strength in all multipole channels, rather than
just for the GT is, of course, that the axial form factor
appears in all four transition operators in Eq. (12) that induce
transitions between the initial and final states, irrespective of
their multipolarity. The study based on the continuum RPA
[40,41] showed that there is no indication of the necessity to
apply any quenching to the operators responsible for the muon
capture on nuclei. However, recent calculations of the muon
capture rates based on the RQRPA [42], employed on a large
set of nuclei, showed that reducing gA by 10% for all multipole
transitions reproduces the experimental muon capture rates to
better than 10% accuracy.

The electron-capture rate is expressed in terms of the cross
section Eq. (12) and the distribution of electrons f (Ee,µe, T )
at a given temperature,

λec = 1

π2h̄3

∫ ∞

E0
e

peEeσec(Ee)f (Ee,µe, T ) dEe. (15)

E0
e = max(|Qif |,mec

2) is the minimum electron energy that
allows for the capture process, that is, the threshold energy for
electrons, where Qif = −ERPA − �np. pe = (E2

e − m2
ec

4)1/2

is the electron momentum. Under stellar conditions that
correspond to the core collapse of a supernova, the electron
distribution is described by the Fermi-Dirac expression [15]

f (Ee,µe, T ) = 1

exp
(

Ee−µe

kT

) + 1
. (16)

T is the temperature, and the chemical potential µe is
determined from the baryon density ρ by inverting the relation

ρYe = 1

π2NA

(
mec

h̄

)3 ∫ ∞

0
(fe − fe+ )p2 dp, (17)

where Ye is the ratio of the number of electrons to the number
of baryons, NA is Avogadro’s number, and fe+ denotes the
positron distribution function similar to Eq. (16), but with
µe+ = −µe. We assume that the phase space is not blocked by
neutrinos.

III. GAMOW-TELLER TRANSITION STRENGTH AT
FINITE TEMPERATURE

In this section we present an analysis of GT transition
strength distributions at finite temperature for iron isotopes and
neutron-rich germanium isotopes. The GT+ transition is the
dominant process not only in electron capture on nuclei near
the stability line, but also on neutron-rich nuclei because of the
thermal unblocking effect at finite temperature. Here we em-
ploy the FTRRPA to calculate the GT+ strength distribution.
At zero temperature, however, pairing correlations have to be
taken into account for open shell nuclei, and thus the relativistic

Hartree Bogoliubov model and the QRPA with the finite-range
Gogny pairing force are used in the corresponding calculations
(more details are given in Ref. [27]). In atomic nuclei the
phase transition from a superfluid to normal state occurs
at temperatures T ≈ 0.5–1 MeV [43–46] and, therefore, for
the temperature range considered in the present analysis, the
FTRRPA should provide a reasonable description of the GT
transitions and electron-capture rates.

In Fig. 1 we display the GT+ strength distributions for
54,56Fe at T = 0, 1, and 2 MeV, as functions of excitation
energy with respect to the ground state of the parent nucleus.
At zero temperature both the RQRPA and RRPA results
are shown, whereas the finite-temperature transition spectra
are calculated using only the FTRRPA, that is, pairing
is not included in calculations at finite temperatures. The
self-consistent results correspond to the DD-ME2 relativistic
density functional [51]. For comparison, the GT+ strength
at zero temperature calculated with the RPA based on the
Skyrme functionals SLy5 parametrization is also shown. The
transition energy is higher and the strength somewhat larger
as compared to the results of the relativistic model. Of course,
the simple (Q)RPA approach cannot reproduce the empirical

(a)

(b)

FIG. 1. (Color online) The GT+ strength distributions for 54,56Fe
as functions of the excitation energy with respect to the ground state
of the parent nucleus, calculated with the proton-neutron RQRPA at
zero temperature, and the FTRRPA at T = 0, 1, and 2 MeV, for the
DD-ME2 relativistic density functional. For comparison, the GT+

strength calculated with the nonrelativistic RPA based on the SLy5
Skyrme functional (green dashed lines), and the centroid energies
(blue arrows) and distributions of the LSSM calculation [11] at T =
0 MeV are shown. The experimental centroid energies from
Refs. [47–50] are indicated by black arrows, and the experimental
distributions from Ref. [48] for 54Fe and Ref. [49] for 56Fe are shown
by solid circles.
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fragmentation of the strength, that is, the spreading width.
This could only be accomplished by including additional
correlations going beyond the RPA as, for instance, in the
second RPA involving 2p − 2h configurations [52], or in
the particle-vibration coupling model [39,53]. The present
analysis is primarily focused on the centroid energy of GT+
transitions, and model calculations are only carried out on the
(Q)RPA level. Figure 1 also includes the centroid energies
and strength distributions of a LSSM diagonalization [11].
The experimental centroid energies [47–50], defined as the
energy-weighted integrated strength over the total strength,
m1/m0, are indicated by arrows in the figure. The experimental
strength distributions from Ref. [48] for 54Fe and Ref. [49] for
56Fe are also shown. The centroid energies and distributions
obtained in the LSSM calculation and the experimental
values are displayed with respect to the ground states of the
parent nuclei, for convenience of comparison with the RPA
results.

One might notice that the RQRPA calculation is in fair
agreement with the experimental centroid energies. Compared
to the LSSM, the RQRPA excitation energies are ≈1 MeV
lower for both nuclei. By comparing the RRPA and RQRPA,
we notice that pairing correlations shift the GT+ transition
to higher energy by ∼1–1.5 MeV, because additional energy
is needed to break a proton pair. When the temperature is
increased to 1 MeV, the transition energy is lowered by
∼1.1 MeV for 54Fe, and 1.6 MeV for 56Fe. This decrease
in energy is mainly caused by the pairing collapse. With a
further increase in temperature to 2 MeV, the GT+ transition
energy decreases by ∼0.5 MeV in both nuclei. This continuous
decrease has its origin in the softening of the repulsive residual
interaction because of the occupation factors that appear
in the FTRRPA matrix elements. To demonstrate this in a
quantitative way, we consider the example of 56Fe, and analyze
the unperturbed energies Eunper, that is, the transition energy
without residual interaction, and the energy shift caused by the
residual interaction. For 56Fe the principal contribution to the
GT+ comes from the transition from the proton orbital π1f7/2

to the neutron orbital ν1f5/2. In the QRPA the unperturbed
energy approximately equals the sum of two quasiparticle
energies, and the chemical potential difference of neutrons
and protons, resulting in Eunper 
 3.6 MeV. The energy shift
induced by the repulsive residual interaction is 0.9 MeV. If
pairing correlations are not included, that is, in RPA, the
unperturbed energy corresponds to the difference between the
single-particle energies of the two orbitals, and this is 1.8 MeV
at zero temperature, and 1.7 MeV at T = 2 MeV. Therefore
the residual interaction shifts the energy by 1.1 MeV at zero
temperature, and by 0.7 MeV at T = 2 MeV. Obviously the
partial occupation factors (the smearing of the Fermi surface),
induced either by pairing correlations or by temperature
effects, will lead to the weakening of the residual interaction.
The temperature effect appears to be more pronounced because
the Fermi surface is more diffuse at T = 2 MeV. In addition
to the excitation energy, the transition strength could also
be reduced by the smearing of the Fermi surface through
the occupation factors in Eq. (8). Therefore, the transition
strength becomes weaker with increasing temperature or with

(a)

(b)

FIG. 2. (Color online) The GT+ strength distributions of 76,78Ge,
calculated with the proton-neutron RQRPA at T = 0 MeV, and with
the FTRRPA at T = 0, 1, and 2 MeV, using the DD-ME2 relativistic
density functional.

the inclusion of pairing correlations. We have verified that the
Ikeda sum rule [54] is satisfied at finite temperature.

In Fig. 2 we plot the GT+ strength distributions of the
neutron-rich nuclei 76,78Ge at T = 0, 1, and 2 MeV. At zero
temperature results obtained with both the RQRPA and the
FTRRPA are shown. It is found that almost no transition
strength appears at zero temperature without the inclusion
of pairing correlations, because the GT+ transition channels
are Pauli blocked for these neutron-rich nuclei. As shown in
the figure, the transition channels can be unblocked by two
mechanisms, that is, by pairing correlations or thermal exci-
tations. Two unblocked single-particle transitions principally
contribute to the total GT+ strength: the π1g9/2 → ν1g7/2

particle-particle transitions, and the π1f7/2 → ν1f5/2 hole-
hole transitions, where particle (hole) denotes a state above
(below) the chemical potential.

Let us consider 76Ge as an example, and analyze its
evolution behavior with temperature. With the inclusion of
pairing correlations at T = 0 MeV, two major peaks are
calculated at E = 15.8 and 16.9 MeV. The first state mainly
corresponds to the transition π1f7/2 → ν1f5/2, whereas the
higher state results from a superposition of the transitions
π1g9/2 → ν1g7/2 and π1f5/2 → ν2f7/2. At T = 1 MeV the
GT+ excitations shift to E = 2.8 and 4.3 MeV, and correspond
to the transitions π1f7/2 → ν1f5/2 and π1g9/2 → ν1g7/2,
respectively, with very weak transition strength. When the
temperature is further increased to T = 2 MeV, the excitation
energies are only slightly lowered (by 0.1 MeV), but the
transition strengths are considerably enhanced.
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(a) (b)

FIG. 3. (Color online) Electron-capture cross sections for the 56Fe and 76Ge target nuclei at T = 1 MeV, calculated with the FTRRPA using
the DD-ME2 effective interaction. In addition to the total cross section, which includes multipole transitions J π = 0±, 1±, and 2±, contributions
from the individual channels are shown in the plot as functions of the incident electron energy Ee.

The shift in energy from T = 0 MeV with pairing correla-
tions, to T = 1 MeV is ∼13 MeV. This cannot be explained
solely by the removal of the extra energy needed to break a
proton pair. To explain this result, we analyze the unperturbed
transition energies. It is found that the unperturbed energies
are much higher when pairing correlations are included,
as compared with the effect of finite temperature, resulting
in considerable difference between the corresponding GT+
energies. However, it is not only the pairing gaps that raise the
unperturbed energy because, for instance, the pairing gaps for
π1g9/2 and ν1g7/2 are both ∼1.8 MeV. As these unblocked
channels are particle-particle or hole-hole transitions, the

sum of the quasiparticle energies Eqp =
√

(εp − λp)2 + �2
p +√

(εn − λn)2 + �2
n is much larger than the difference of

the single-particle energies εn − εp, that corresponds to the
unperturbed energies at finite temperature. This decrease of
GT+ excitation energies is in accordance with the results of
Ref. [18].

The large difference between the RQRPA GT+ strength
at T = 0 MeV and the FTRRPA strength at T = 1 MeV is
mainly caused by the diffuseness of the Fermi surface induced
by pairing correlations at zero temperature. With a further
increase of temperature to T = 2 MeV, the Fermi surface
becomes more diffuse, and this leads to enhancement of the
GT+ strength. A similar trend with temperature increase is
found when the nucleus becomes even more neutron rich (cf.
the case of 78Ge in Fig. 2), but the transition channels are more
difficult to unblock by thermal excitations, and this result in
a weaker transition strength. In the present calculation for
78Ge only the particle-particle channel π1g9/2 → ν1g7/2 is
unblocked at finite temperature.

To test the sensitivity of the results to the choice of
the effective interaction, we have also carried out the same
calculations for 54,56Fe and 76,78Ge using the relativistic
density-dependent effective interaction PKDD [55]. The same
general behavior is found with both interactions, but with
PKDD the excitation energies are systematically larger by
∼0.5 MeV for Fe, and by 0.3 MeV for the Ge isotopes, whereas

the transition strengths are slightly enhanced compared to the
DD-ME2 results.

IV. ELECTRON-CAPTURE CROSS SECTIONS

In this section we calculate electron-capture cross sections
for selected medium-mass target nuclei using RQRPA at zero
temperature, and the FTRRPA at temperatures T = 0, 1, and
2 MeV. In Fig. 3 the cross sections for electron capture on
56Fe and 76Ge at T = 1 MeV are plotted as functions of the
incident electron energy Ee. The cross sections are calculated
using the expression of Eq. (12), and the FTRRPA with the
DD-ME2 relativistic density functional [51] is used to evaluate
the transition matrix elements. In addition to the total cross
sections, which include multipole transitions Jπ = 0±, 1±,
and 2±, contributions from the individual channels are shown
in the plot, as functions of the incident electron energy Ee.
For 56Fe the total cross section is completely dominated by
the 1+ channel (GT+) all the way up to Ee = 30 MeV, with
contributions from other channels being orders of magnitude
smaller. In the case of the neutron-rich nucleus 76Ge, on the
other hand, forbidden transitions play a more prominent role,
already starting from Ee > 12 MeV. Their contribution to the
total cross section further increases with the electron energy
Ee. Obviously in systematic calculations of electron-capture
rates on heavier, more neutron-rich nuclei, contributions from
forbidden transitions should also be included in addition to the
GT+ channel.

Next we illustrate how the capture cross sections evolve
with temperature. Figure 4 displays the electron-capture cross
sections for the target nuclei 54,56Fe at T = 0, 1, and 2 MeV,
as functions of the incident electron energy Ee. Since for
54,56Fe forbidden transitions in the range of electron energy
up to 30 MeV give negligible contributions to the total cross
section (cf. Fig. 3), here only the 1+ transitions are included
in the calculation. Results obtained with the proton-neutron
RQRPA at T = 0 MeV, and with the FTRRPA at T = 0, 1,

and 2 MeV, using the DD-ME2 effective interaction, are shown
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(a)

(b)

FIG. 4. (Color online) Electron-capture cross sections for the
target nuclei 54,56Fe at T = 0, 1, and 2 MeV, as functions of the
incident electron energy Ee. The results obtained with the proton-
neutron RQRPA at T = 0 MeV, and with the FTRRPA at T = 0, 1,

and 2 MeV, using the DD-ME2 effective interaction, are shown in
comparison with cross sections calculated from the SMMC GT+

strength distributions [9].

in comparison with cross sections calculated from the SMMC
GT+ strength distributions [9]. Note, however, that in the
SMMC calculation only the 0h̄ω GT transition strength is
considered, rather than the total strength in the 1+ channel. We
notice that the principal effect of increasing the temperature in
this interval is the lowering of the electron-capture threshold
energy. From T = 0 MeV (RQRPA) to T = 1 MeV (FTRRPA)
this decrease is more pronounced than the one from T = 1 to
2 MeV, in accordance with the behavior of GT+ distributions
discussed above. At low electron energy below 10 MeV
one notices a pronounced difference between the RQRPA
and FTRRPA results, reflecting the treatment of pairing
correlations at zero temperature. Of course, the calculated
cross sections become almost independent of temperature at
high electron energies. The results of the present calculation
are in qualitative agreement with those of the SMMC model
[9], calculated at temperature T = 0.5 MeV. Cross sections
calculated at very low electron energies are sensitive to the
discrete level structure of the GT transitions and, therefore,
one expects that the SMMC approach will produce
more accurate results. These cross sections, however,
are orders of magnitude smaller than those for Ee � 10 MeV
and, when folded with the electron flux to calculate capture
rates, the differences between values predicted by various
models in the low-energy interval will not have a pronounced
effect on the electron-capture rates.

In Fig. 5 we also illustrate the temperature dependence of
the electron-capture cross sections for the neutron-rich nuclei
76,78Ge. The calculation includes the multipole transitions
Jπ = 0±, 1±, and 2±. For 76Ge the results are also compared
with the cross section obtained in the hybrid model (SMMC-
RPA) at T = 0.5 MeV [14]. One might notice that the cross

(a)

(b)

FIG. 5. (Color online) Electron-capture cross sections for the
target nuclei 76,78Ge at T = 0, 1, and 2 MeV, as functions of the
incident electron energy Ee. The results are obtained by employing
the DD-ME2 effective interaction in the proton-neutron RQRPA at
T = 0 MeV, and in the FTRRPA at T = 0, 1, and 2 MeV. For 76Ge
the results are also compared with the cross section obtained in the
hybrid model (SMMC-RPA) at T = 0.5 MeV [14].

sections are reduced by approximately an order of magnitude
when compared to the Fe isotopes, but overall a similar evolu-
tion with temperature is found. By increasing the temperature
the threshold energy for electron capture is reduced. The
cross sections exhibit a rather strong temperature dependence
at electron energies Ee � 12 MeV. At Ee = 12 MeV, by
increasing the temperature by 1 MeV, the cross sections
are enhanced by approximately half an order of magnitude.
Since at Ee � 12 MeV the electron capture predominantly
corresponds to GT+ transitions (see Fig. 3), the enhancement
of the cross sections is caused by the thermal unblocking of the
GT+ channel, similar as predicted by the hybrid SMMC-RPA
model [14]. For higher electron energies, forbidden transitions
become more important. The results of the present analysis
are in qualitative agreement with those of the TQRPA model
calculation [18], and the finite-temperature RPA approach
based on Skyrme functionals [19]. It is also found that the
hybrid model [14] predicts slightly larger cross sections at
lower energies, as anticipated due to the strong configuration
mixing in SMMC calculations. In general, by increasing the
number of neutrons in target nucleus, the electron capture
occurs with a higher threshold and smaller cross sections.

V. STELLAR ELECTRON-CAPTURE RATES

In modeling electron-capture rates in stellar environment
one assumes that the atoms are completely ionized, and the
electron gas is described by the Fermi-Dirac distribution (16).
By folding the FTRRPA cross sections at finite temperature
with the distribution of electrons in Eq. (15), we calculate
the rates for electron capture on Fe and Ge isotopes, under
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(a)

(e)

(b)

(f)

(c)

(g)

(d)

(h)

FIG. 6. (Color online) Rates for electron capture on 54,56Fe as
functions of the temperature T9 (T9 = 109 K), at selected densities
ρYe (g cm−3). The results calculated using the FTRRPA with the
DD-ME2 effective interaction, are shown in comparison with the rates
obtained with LSSM calculations [13] and the TQRPA model [18].

different conditions associated with the initial phase of the
core-collapse supernova.

Figure 6 shows the calculated rates for electron capture
on 54,56Fe as functions of the temperature T9 (T9 = 109 K)
at selected densities ρYe (g cm−3). For comparison with the
FTRRPA results, the rates obtained with LSSM calculations
[13] and the TQRPA model [18] are also included in the figure.
Here only the 1+ transitions are included in the calculation of
cross section. Although the three models compared here are
based on rather different assumptions, the resulting capture
rates nevertheless show similar trends. In general, the electron-
capture rates increase with temperature and electron density.
For high electron densities the rates increase slower, and at
density ρYe = 1010 g/cm3 the temperature dependence almost
vanishes. At high densities characterized by large values of the
electron chemical potential, high-energy electrons excite most
or even all the GT+ transitions independent of temperature.
Under such conditions the increase in temperature will not
have a pronounced effect on the capture rates. By increasing
the number of neutrons from 54Fe to 56Fe, one notices that
the capture rates are slightly reduced in 56Fe, reflecting the
behavior of the cross sections.

The FTRRPA results generally reproduce the tempera-
ture dependence of the rates predicted by the LSSM, but
on the average the values calculated with the FTRRPA
are somewhat larger, especially for 56Fe. For 54Fe and
at lower densities ρYe = 107 or 108 g/cm3, the FTRRPA
results essentially coincide with the shell-model calculation.
At higher density, e.g., ρYe = 109 g/cm3, and with the
electron chemical potential ≈5 MeV close to the threshold
energy, the FTRRPA yields higher rates at lower temper-
ature. One can understand this difference from the frag-
mentation of the shell-model GT+ strength over the energy
range 0–10 MeV [11]. While electrons at lower temperature
excite all the GT+ strength in FTRRPA (see Fig. 1), only

a fraction of the shell-model strength is excited. Because
part of the shell-model GT+ strength is located at higher
energies than in the FTRRPA calculation, the resulting LSSM
rates are smaller. At even higher densities, e.g., at ρYe =
1010 g/cm3 with the chemical potential ≈11 MeV, already
at lower temperatures the high-energy electrons excite all the
transition shell-model strength, and the resulting rates are
essentially the same as those calculated with the FTRRPA.
For electron capture on 56Fe, at lower densities ρYe = 107 and
108 g/cm3 the FTRRPA results are in better agreement with the
TQRPA calculation, whereas the LSSM predicts lower rates.
At higher densities the trend predicted by the FTRRPA is closer
to the LSSM, but the calculated values are still above the shell-
model results. In general, the differences between the FTRRPA
and the shell-model rates are larger in 56Fe than 54Fe. The prin-
cipal reason lies in the difference between the GT+ centroid
energies calculated in the two models (cf. see Fig. 1). As in the
case of 54Fe, the largest difference between the FTRRPA and
LSSM is at ρYe = 109 g/cm3, because the electron chemical
potential at this density is close to the threshold energy, hence
the capture rates are sensitive to the detailed GT+ distribution.

Figure 7 compares the rates for electron capture on 76,78Ge,
calculated using the FTRRPA with the DD-ME2 effective
interaction, to the values obtained with the hybrid model
(SMMC-RPA) and the TQRPA model [18]. In order to allow a
direct comparison with the hybrid model, the same quenching
of the axial-vector coupling constant with respect to its
free-nucleon value is employed, i.e., g∗

A = 0.7gA. Because for
76,78Ge the contribution of forbidden transition is not negligi-
ble, the calculations of rates Eq. (12) includes the multipole
transitions Jπ = 0±, 1±, and 2±. Similar to the case of Fe
nuclei, the calculated capture rates increase with temperature
and density, and are reduced by adding neutrons from 76Ge to
78Ge. For 76,78Ge the rates predicted by the FTRRPA display a
temperature and density dependence very similar to that of the

(a)

(e)

(b)

(f)

(c)

(g)

(d)

(h)

FIG. 7. (Color online) Rates for electron capture on 76,78Ge as
functions of the temperature, at selected densities ρYe (g cm−3). The
results calculated using the FTRRPA with the DD-ME2 effective
interaction, are shown in comparison with the rates obtained with the
hybrid model (SMMC-RPA) and the TQRPA model [18].
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TQRPA model, whereas the hybrid model predicts a very weak
temperature dependence at all densities considered in Fig. 7.
In general, both the FTRRPA and the TQRPA predict smaller
values of capture rates compared to the hybrid model. The
reason is that the probability of unblocking transition channels
is larger in the hybrid model because it includes many-body
correlations beyond the RPA level. At the density ρYe =
1010 g/cm3 the FTRRPA capture rates exhibit a relatively
strong temperature dependence. The electron chemical
potential is ≈11 MeV, and the cross sections are dominated
by GT+ transitions. By increasing temperature the GT+
transitions are unblocked, resulting in a large enhancement
of the cross sections as shown in Fig. 5. A similar trend
is also predicted by the TQRPA calculation [18], whereas
the temperature dependence of the capture rates is much
weaker in the hybrid model. With a further increase in
density to ρYe = 1011 g/cm3, the chemical potential reaches
≈23 MeV. At these energies forbidden transitions dominate
the calculated cross sections, the FTRRPA yields cross
sections similar to the TQRPA, and the same for the capture
rates. At even higher densities the temperature dependence
of the FTRRPA and TQRPA results becomes weaker, because
the cross sections are less sensitive to temperature. At the
density ρYe = 5 × 1011 g/cm3 the capture rates predicted by
the FTRRPA are larger than the TQRPA results, and reach
values similar to those of the hybrid model.

VI. CONCLUSION

In this work we have introduced a self-consistent theoretical
framework for modeling the process of electron capture in the
initial phase of supernova core collapse, based on relativistic
energy density functionals. The finite-temperature RMF
model is employed to determine the single particle energies,
wave functions, and thermal occupation probabilities for the
initial nuclear states. The relevant charge-exchange transitions
Jπ = 0±, 1±, and 2± are described by the FTRRPA. The
FTRMF+FTRRPA framework is self-consistent in the
sense that the same relativistic energy density functional is
employed both in the finite-temperature RMF model and in
the RRPA matrix equations.

In the calculation of the electron-capture cross sections,
the GT+ transitions provide the major contribution in the
case of 54,56Fe, whereas for more neutron-rich nuclei such
as 76,78Ge forbidden transitions play a more prominent role
already starting at incident electron energy above ≈10 MeV.
The principal effect of increasing temperature is the lowering
of the electron-capture threshold energy. For 76,78Ge the cross
sections in the low-energy region are sensitive to temperature

because of the dominant role of GT+ transition channel,
but these correlation becomes weaker at higher energies
dominated by major contributions from forbidden transitions.

Electron-capture rates for different stellar environments,
densities, and temperatures, characteristic for core collapse
supernovae, have been calculated and compared with pre-
vious results of shell-model, hybrid shell-model plus RPA,
and TQRPA calculations. For 54,56Fe, the FTRRPA results
generally reproduce the temperature dependence of the rates
predicted by shell-model calculations, but on the average the
values calculated with the FTRRPA are somewhat larger, espe-
cially for 56Fe. For 76,78Ge the FTRRPA capture rates display a
trend very similar to that of the TQRPA calculation, especially
for the temperature dependence, whereas this dependence of
the capture rates is much weaker in the hybrid model.

The results obtained in the present study demonstrate
that the framework of finite-temperature RMF and FTRRPA
provides a universal theoretical tool for the analysis of stellar
weak-interaction processes in a fully consistent microscopic
approach. This is especially important for regions of neutron-
rich nuclei where the shell-model diagonalization approach is
not feasible. A microscopic approach has a big advantage in
comparison to empirical models that explicitly necessitate data
as input for calculations, as in many mass regions data will not
be available. Of course, the present framework is limited to the
level of RPA and does not include important many-body cor-
relations that are taken into account in a shell-model approach.
However, as discussed previously, at higher densities and tem-
peratures in the stellar environment, the detailed fragmentation
of transition spectra does not play such a significant role, and
the FTRRPA represents a very good approximate framework
that can be used in systematic calculations of electron-capture
rates. Further improvements of the current version of the model
are under development. For open-shell nuclei at very low tem-
peratures, pairing correlations need to be taken into account. To
obtain the empirical fragmentation of the transition spectra, the
inclusion of higher-order correlations beyond the RPA level,
that is, the coupling to 2p − 2h states will be necessary.
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[34] T. Nikšić, D. Vretenar, P. Finelli, and P. Ring, Phys. Rev. C 66,

024306 (2002).
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[51] G. A. Lalazissis, T. Nikšić, D. Vretenar, and P. Ring, Phys. Rev.

C 71, 024312 (2005).
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