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Axial anomaly and the interplay of quark loops with pseudoscalar and vector
mesons in the �� ! �þ�0�� process
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Motivated by the ongoing measurements of the Primakoff process ���� ! ���0 by the COMPASS

Collaboration at CERN, the transition form factor for the canonical anomalous process �� ! �þ�0�� is

calculated in a constituent quark-loop model. The simplest contribution to this process is the quark ‘‘box’’

amplitude. In the present paper we also explicitly include the vector meson degrees of freedom, i.e., the �

and the !, thus giving rise to additional, resonant contributions. We find that in order to satisfy the axial

anomaly result, a further subtraction in the resonant part is needed. The results are then compared with the

vector meson dominance model as well as the Dyson-Schwinger calculations, the chiral perturbation

theory result, and the available data.

DOI: 10.1103/PhysRevD.85.034042 PACS numbers: 12.38.Lg, 12.39.Ki, 12.40.Vv, 13.40.Gp

I. INTRODUCTION

The electromagnetic processes influenced by the
Abelian axial anomaly [1,2] are of considerable theoretical
interest. Among them are the transitions of the type
��ðqÞ ! Pþðp1ÞP0ðp2ÞP�ðp3Þ, where �� denotes a, gen-
erally, virtual (q2 � 0) photon �, P� stands for a charged
and P0 for a neutral meson from the pseudoscalar nonet, up
to the strangeness conservation (so that P� ¼ ��, K� and
P0 ¼ �0, �, �0). These processes are supposedly influ-
enced by the, colloquially called, ‘‘box’’ axial anomaly,
since on the microscopic level, the three pseudoscalar (P)
mesons would couple to the photon through a four-vertex
quark loop, like in Fig. 1.

In the chiral limit (where m� ¼ 0) and the soft-point
limit (of vanishing 4-momenta of external particles,
pj ¼ 0 ¼ q), which is a reasonably realistic approxima-

tion at low energies at least for the lightest pseudoscalars—
the pions, the anomaly analysis predicts [3–6] that the
theoretical amplitude is exactly

A3�
� � lim

m�!0
F3�
� ðp1 ¼ 0;p2 ¼ 0;p3 ¼ 0Þ ¼ eNc

12�2f3�
; (1)

where e is the proton charge, Nc the number of quark
colors, and the pion decay constant f�¼ð92:42�
0:33ÞMeV, whereby A3�

� ¼ ð9:72� 0:09Þ GeV�3.

On the other hand, the experimental knowledge of the
processes that should be influenced by the ‘‘box anomaly’’
is not at all satisfactory, being quite scant. For the �� !
�þ�0�� processes, which should be best approximated
by the anomaly prediction (1) since it involves only the
lightest pseudoscalars, there is only one published experi-
mental value for the amplitude at finite momenta pj, i.e.,

the form factor F3�
� ðp1; p2; p3Þ. It was extracted from the

cross section measured [7] at Serpukhov in the transition

���� ! �0�� through the Primakoff effect, so that its
value F3�

� ðexptÞ ¼ 12:9� 0:9� 0:5 GeV�3 really corre-

sponds to the average value of the form factor over the
momentum range covered by the experiment. The ��
scattering on electrons at CERN SPS yielded the total cross
section [8] consistent with the Serpukhov value. (It is
maybe cautious to recall that the both results [7,8] are in
the strong disagreement with a rarely quoted analysis [9] of
an old measurement [10] of this elusive process.) In the
meantime, one still awaits the analysis of the measure-
ments of this form factor performed at CEBAF [11].
Now, however, there are new hopes of more and better

experimental knowledge of such processes, as new high-
statistic data on the form factor for the ���� ! ���0

transition are expected soon from the COMPASS
Primakoff experiments at CERN [12,13]. (Not only pion,
but also kaon beams can be used in these experiments, so
that also the reaction K��� ! K��0 can be studied by the
COMPASS Collaboration.)
Thus, experiments may finally confirm the relation (2)

between the ‘‘box anomaly’’ processes and much better
understood and measured ‘‘triangle anomaly’’ processes,
notably the �0ðpÞ ! �ðk1Þ�ðk2Þ decay into two real pho-
tons, k21 ¼ 0 ¼ k22. Namely, the pertinent chiral-limit and

soft-point amplitudes A2�
� � limm�!0T�ðk1; k2Þ and A3�

�

are related [3–6] as

A2�
� ¼ ef2�A

3�
� ; (2)

where, in the notation1 of Ref. [14], T�ðk1; k2Þ is the
(unnormalized) �0 ! ���� form factor.

*Senior associate of Abdus Salam ICTP, corresponding author,
klabucar@phy.hr

1Except that here, because of F3�
� ðp1; p2; p3Þ and related

function depending on three independent momenta, it is for
brevity not written explicitly, but understood implicitly, that
the scalar functions depend only on the scalar combinations of
momenta; e.g., T�ðk1; k2Þ � T�ðk21; k22Þ for on-shell pions.
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The axial anomaly, which dictates these results, occurs
on the level of the quark substructure of hadrons for the
quark loops to which pseudoscalar mesons are coupled
through an odd number of axial (A) vertices, while photons
are coupled through vector (V) vertices. On the level of
effective meson theories where quarks are completely
integrated out, the effects of the axial anomaly are encoded
in the Wess-Zumino-Witten Lagrangian term [15,16].
Nevertheless, thanks to the Veltman-Sutherland theorem,2

the anomalous amplitude A2�
� is also obtained successfully

through the nonanomalous PVV triangle diagram, where
the pion is coupled to the fermion loop through the pseu-
doscalar (P) vertex. In the simplest variant, this is achieved
through the, basically, ‘‘Steinberger-type’’ [19] calculation
supplemented by the quark-level Goldberger-Treiman
(GT) relation g� �qq=Mq ¼ 1=f� connecting the (constitu-

ent) quark mass parameterMq and the �-quark P-coupling

strength g� �qq with f�.

Such simple ‘‘free’’ constituent quark loop (CQL) cal-
culations are surprisingly successful. While in the present
context the most important is their exact reproduction of
the ‘‘triangle’’ and box anomalous amplitudes in (1) and
(2), let us also recall that just the PVV quark triangle
amplitude leads to over 15 decay amplitudes in agreement

with data to within 3% and not involving free parameters
[18,20,21]. Since free quarks here mean that there are no
interactions between the effective constituent quarks in the
loop, while they do couple to external fields, presently the
photons A� and the pions �a, the simplest CPT, Lorentz

and SU(2) invariant effective Lagrangian encoding this is3

L eff ¼ � �qð6@� ieQ 6AþMq þ 2ig� �qq�5�þ . . .Þq; (3)

where � ¼ �ata, ta ¼ �a=2 and �a Pauli matrices,
whereasQ ¼ diagð23 ;� 1

3Þ is the charge matrix of the quark

isodoublet q ¼ ðu; dÞT . The extension to SU(3) is obvious.
The resulting CQL model calculation would be the same
as, e.g., the lowest (one-loop) order calculation [2] in the
quark-level linear � model [22,23]. Hence the ellipsis in
the Lagrangian (3)—to remind us that Eq. (3) also repre-
sents the lowest order terms pertinent for calculating
photon-pion processes, from the �-model Lagrangian
and from all chiral quark model Lagrangians (e.g., see
[24]) containing the mass term with the quark-meson
coupling of the form

�Mq �qðUPL þUyPRÞq; (4)

where PL;R � ð1� �5Þ=2. Namely, expanding

UðyÞ � exp½ð�Þi�=2f�� (5)

to the lowest order in pion fields and invoking the GT
relation, returns (3).
In contrast to this simple CQL model, a more sophisti-

cated approach to quark-hadron physics is provided by the
Dyson-Schwinger (DS) approach [25–27], which has clear
connections with the underlying theory—QCD. Namely,
this approach clearly shows how the light pseudoscalar
mesons simultaneously appear both as quark-antiquark
(q �q) bound states and as Goldstone bosons of the dynami-
cal chiral symmetry breaking (D�SB) of nonperturbative
QCD, a unique feature among the bound-state approaches
to mesons. Through D�SB in DS equation for quark
propagators, dressed, momentum-dependent quark masses
Mqðp2Þ are generated. They are in agreement with pertur-

bative QCD for high momenta. However, thanks to D�SB,
at lowmomenta they are of similar order of magnitude (and
even tending to be somewhat higher) as typical constituent
model mass parametersMq. That is,Mq � 1

3 of the nucleon

mass � 1
2 of the �-meson mass m�, or higher if the mass

defect due to the binding of quarks is taken into account.
This is true even in the chiral limit, i.e., for vanishing
masses of fundamental quarks, which underscores the non-
perturbative character of D�SB. The DS approach thus
provides a partial justification of this simple CQL model,
and adds to the understanding of its aforementioned

FIG. 1. One of the box diagrams for the process �� !
�þ�0��. There are six different contributing graphs, obtained
from Fig. 1 by the permutations of the vertices of the three
different pions. The position of the u and d quark flavors on the
internal lines, as well as Qu or Qd quark charges in the quark-
photon vertex, varies from graph to graph, depending on the
position of the quark-pion vertices. The physical pion fields are
�� ¼ ð�1 � i�2Þ=

ffiffiffi
2

p
and �0 � �3. Thus, in Eq. (3) one has

� ¼ ffiffiffi
2

p ð�þtþ þ ��t�Þ þ �0t3 where t� ¼ t1 � it2 (see text).

2Namely, this theorem dictates that in the chiral limit, the
pseudoscalar-vector-vector (PVV) �0 ! �� amplitude is given
exactly by the coefficient of the anomaly term (see, e.g.,
[17,18]). 3The metric is given by �11 ¼ 1, �22 ¼ 1, �33 ¼ 1, �00 ¼ �1
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phenomenological success [14]. Namely, although the
CQL model obviously suffers even from a lack of some
qualitatively essential features, notably confinement, the
assumption is that below spurious �qq thresholds, a more
important role is played by D�SB (which generates large
constituent quark masses, i.e., Mq � 300–500 MeV for u

and d, the higher estimate being suggested by the DS
approach; e.g., see Refs. [25–27] and references therein).

The DS approach uses the solutions of Bethe-Salpeter
equations for the pseudoscalar meson bound-state vertices
instead of the point pseudoscalar couplings g� �qq�5�a of

the CQL model (3). Then, both the anomalous amplitude

A2�
� and the connection (2) with the box anomaly ampli-

tude A3�
� are again (in the chiral and soft limit) reproduced

exactly and analytically [28,29] and independently of de-
tails of dynamics, which is again unique among the bound-
state approaches.

The extension of these amplitudes from the chiral and
soft-point limits to general form factor kinematics have
often been studied; e.g., Ref. [30] used CQL (3) to study in
this way the presently pertinent box amplitude. Present
paper aims at continuing the study of Ref. [30] by examin-
ing the possibility of including also the vector mesons,
primarily in the description of the box-anomalous transi-
tions in a mixed quark-meson theory. As will become
apparent below, this is a nontrivial and interesting theoreti-
cal issue in its own right, but there is also obvious phe-
nomenological relevance in this context. For example, in
the decays �, �0 ! 2��, the vector mesons turn out to be
essential for reproducing experimental results in very dif-
ferent approaches such as [20,31]. Also, since in the pro-
cess �� ! �þ�0�� (further, �� ! 3� for short) one can
depart strongly from low momenta, one may expect that
the vector mesons will be important also here (e.g., see
Ref. [32]). On the other hand, if a treatment of a process is
phenomenologically successful thanks to the inclusion of
vector mesons (as in the cases �, �0 ! 2��), an important
question is whether anomalous processes are still described
correctly in the low-energy (i.e., chiral and soft-point)
limit. This problem has a somewhat lengthy history, of
which only the presently necessary part will be reviewed in
the beginning of the next section, which combines CQL
with vector mesons and finds the resulting �0 ! 2� and
�� ! 3� amplitudes, revealing superfluous contributions
of the resonant graphs to �� ! 3� in this limit. In Sec. III,
we present a resolution of this problem. In Sec. IV, we
complete the calculation and discuss the results. We sum-
marize in Sec. V.

II. INCLUDING VECTOR MESONS

A. Short history of vector mesons in �� ! 3�

The vector meson dominance (VMD) is certainly a
reasonable approach to try because of its numerous em-
pirical successes regarding electromagnetic interactions of

hadrons (e.g., see [33] for a review and references),
although its basis in QCD has not been fully clarified yet.
In a purely mesonic theory, Rudaz [34] assumed VMD
where interaction with photons takes place only through �0

and ! mesons. For example, �0 ! 2� would occur
through �0 ! �0! and �0 ! �, ! ! � [35]. Assuming
the appropriate relationships between the pertinent cou-
pling constants, he successfully reproduced the anomalous
amplitude for �0 ! 2�. Nevertheless, with the standard
Kawarabayashi-Suzuki-Fayyazuddin-Riazuddin (KSFR)
relation [36,37] between f�, �-meson mass m� and ���

coupling g���,

g2���

m2
�

¼ 1

2f2�
; (6)

this VMD approach (‘‘pure’’ VMD in the following) would
then give the amplitude A3�

� too large by the factor of 3
2 ,

violating the axial anomaly relation (2). To avoid this, he
advocated [34] (in agreement with Zinn-Justin and collab-
orators [38]) the KSFR relation revised by the factor 23 [34].

However, the experimental values of g���, m
2
� and f�

strongly support (within few%) the original one (6), which
Rudaz finally adopted, also introducing [39] the contact
term for the direct ! ! 3� transition. Namely, for a
favorable choice of its coupling strength, this term could
contribute � 1

2 of the correct amplitude A3�
� , finally ena-

bling the VMD approach to reproduce [39] the axial anom-
aly predictions (1) and (2). We denote this by ‘‘modified’’
VMD. Subsequently, Cohen showed [40] that the pertinent
Ward-Takahashi identities (WI), first derived by Aviv and
Zee [6], support the existence of such an extra contact
term.

B. CQL-VMD models

We want to examine whether anomalous processes like
�0 ! 2� and �� ! 3� can be properly described by a
mixed model of constituent quarks and mesons, which,
unlike the Lagrangian (3), would include not only pseudo-
scalar, but also vector mesons. Thus, the quark-meson-
interaction part of the Lagrangian (3) gets enlarged to

L int ¼ �2ig� �qq �q�5�qþ ig� �qq �q�
���q; (7)

where4 �� ¼ �
�
a ta þ!�t0, t0 ¼ �0=2, �0 ¼ diagð1; 1Þ.

This quark-meson interaction is, for instance, used in the
quark-loop approach of Refs. [18,20,21]—a prominent
example, since, as pointed out earlier, it describes many
processes without involving free parameters.
With this theory at hand, one could compute the G���

form factor in the quark-loop model, where the � ! ��
amplitude is represented by a quark triangle (Fig. 2), and
its crossed mate, with VPP couplings. In terms of an

4We assumed the ideal !-	 mixing, as well as an U(2)
symmetry for the interactions of quarks and vector mesons.
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effective Lagrangian, the ��� interaction would then be
given by

L ��� ¼ 2iG���Trð½�; ð@��Þ���Þ; (8)

which implies that besides the box VPPP graphs in Fig. 1,
the process �� ! 3� also receives contributions from the
�-resonant triangle graphs such as the one in Fig. 3.

For G��� we use the chiral and soft-point limit result

by Hakioglu and Scadron [23]: limm�!0
G���ðQ ¼ 0Þ �

g��� ¼ g� �qq ¼ const:, consistent with the hypothesis of

the VMD universality, which assumes the equality of all �
couplings, namely, the couplings to fermions (presently—
quarks q), to pions �, and to photons �, i.e.,

g� �qq ¼ g��� ¼ g�� ¼ const: ¼ g�: (9)

Electromagnetism is already present in the starting
Lagrangian (3) through the direct quark-photon coupling
ie �qQ 6Aq, but to incorporate VMD in our theory, the cou-
pling of the photon to neutral vector mesons must be
added. One way to describe the interactions between pho-
tons and hadronic matter in the spirit of VMD is

L VMD1¼ ie �qQ��A�q�e

2
F�


�
1

g��
�0
�
þ 1

g!�

!�


�
:

(10)

This version of VMD is often called VMD1. Here F�
 ¼
@�A
 � @
A�, !�
 ¼ @�!
 � @
!�, and also �0

�
 ¼
@��

0

 � @
�

0
� [33]. Ideal !-	 mixing gives g!� ¼ 3g��.

VMD1 can be transformed into the most popular represen-
tation of VMD where there is no direct quark-photon
coupling. In the limit of universality (9), this standard
(‘‘Sakurai’s’’) representation of VMD, denoted VMD2, is
equivalent [33] to VMD1. The presently pertinent part of
the VMD2 Lagrangian reads5

L VMD2 ¼
em2

�

g��
A�

�
�0
� þ 1

3
!�

�
: (11)

Our starting CQL Lagrangian (3) is thus finally augmented
to include vector mesons (further denoted as the
CQL-VMD model):

Leff ¼Leff þLVMD2 þL��� � �qð6@þMq þ . . .Þq: (12)

The ellipsis in Eq. (12) again serve to remind one that the
terms not pertinent for photon-pion processes are not
shown. (E.g., if the starting Lagrangian (3) was the
sigma-model one, we would have terms containing scalar,
�-mesons also in Eq. (12), but they do not contribute to the
presently interesting �� ! 3� and �0 ! 2�. That is, the
contribution of the graphs analogous to the resonant
triangles, but with intermediate � ! �þ�� instead of
�0 ! �þ��, vanishes due to parity conservation.) These
terms are, in general, different for different theories, but
since they are presently irrelevant, our conclusions will be
the same for many different models, from the � model to
the chiral quark models [24], after the � and ! mesons are
introduced to them. In that sense, CQL-VMD denotes not
just one, but the whole class of models.
In contrast toLVMD1 (8), there is no direct quark-photon

coupling in the VMD2 picture (12). Thus, in VMD2, the
six box graphs exemplified by Fig. 1 do not contribute to
�� ! 3� in the precise form depicted in Fig. 1. Instead,
they are modified so that the photon first couples to the
intermediate !-meson which in turn couples to quarks.
That is, the quark-photon coupling in Fig. 1 is replaced
by the photon coupling g!� to ! propagating to its q �q

vertex. There is no need to spend space on re-drawing
Fig. 1 to depict this insertion of ! since it modifies the
photon coupling in the same way in all graphs, and is
illustrated in Fig. 3. (Note that in VMD1, there are both
the graphs with the direct quark-photon coupling and their
partners with the !-insertion, but since the momentum
dependence is different than in VMD2, the sum of these
graphs in VMD1 yields the same results as VMD2.)

FIG. 2. The form factor G��� seen as a quark triangle diagram
in the CQL model.

FIG. 3. One of the ‘‘resonant’’ triangle diagrams for the pro-
cess �ðqÞ ! �þðp1Þ�0ðp2Þ��ðp3Þ, where the two pions with
momenta p1 and p2 are obtained by the decay of the intermedi-
ate � meson transferring the momentum Q ¼ p1 þ p2. Two
more analogous graphs are obtained by replacing �þ ! �þ�0

and �� by, respectively, �0 ! �þ�� and �0, or by �� !
���0 and �þ. Also, each of the three graphs has its crossed
graph.

5Where we omit the kinetic term and the fictitious ‘‘photon
mass term’’ which arises (e.g., see [33]) from the gauge invari-
ance of the theory, which is manifest in VMD1 (10).
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The box and resonant triangle graphs in which the
photon is coupled to �0 (instead of to !), all vanish, as
must be due to G-parity conservation.

C. �0 ! 2� through CQL-VMD models

Since we choose to work with VMD2, the outgoing
photons in this process are created only through the me-
diation with the �0 and !. In our model, these, in turn,
come from a triangle PVV quark loop. If the photons are on
shell there is a complete cancellation of the ! and �
propagators with m2

� in the VMD coupling. In the same

manner, and by using universality, the g� �qq and g! �qq

couplings get canceled with the g�� and g!�, respectively.

Then, our Lagrangian (12) leads to the same �0ðpÞ !
�ðk1Þ�ðk2Þ amplitude as the standard quark-triangle-loop
calculation (e.g., see [35]), namely

M2�
� ¼ k1��

�

ðk1; �1Þk2����ðk2; �2Þ"�
��T�ðk1; k2Þ; (13)

where ki and �i are the momentum and polarization of
�ðkiÞ, and

T�ðk1; k2Þ ¼ e2Nc

12�2

g� �qq

Mq

~C0ðk1; k2Þ: (14)

Here ~C0 ¼ ð2!M2=i�2ÞC0, where C0 is the standard
’t Hooft-Veltman [41] scalar three-point function. The
limit m� � Mq, together with the GT relation, reproduces

the analytical result

lim
m�!0

T� ¼ e2Nc

12�2

1

f�
¼ A2�

� (15)

for the anomalous chiral �0 decay into two real photons,
k21 ¼ 0, k22 ¼ 0.

D. The problem with �� ! 3� in CQL-VMD models

Previous short calculation served as a consistency check
aimed at reproducing the correct low-energy limit even
when vector mesons are introduced. Here we perform a
similar calculation for ��ðqÞ ! �þðp1Þ�0ðp2Þ��ðp3Þ,
and obtain the amplitude

M 3�
� ¼ ��ðq; �Þp1
p2�p3�"

�
��F3�
� ðp1; p2; p3Þ; (16)

In this notation, the contribution from the resonant tri-
angles reads

Fres
4 ðp1; p2; p3Þ

¼ 1

2

eNc

6�2

g� �qq

Mq

g2� �qq

m2
�

m2
�

m2
� þ q2

�
m2

�

m2
� � s

~C0ðp1; p2Þ

þ m2
�

m2
� � t

~C0ðp2; p3Þ þ
m2

�

m2
� � u

~C0ðp1; p3Þ
�
: (17)

where the Mandelstam variables are defined6 by s ¼
�ðp1 þ p2Þ2, t ¼ �ðp2 þ p3Þ2, u ¼ �ðp1 þ p3Þ2. The
form factor from the box graphs of Fig. 1, is

F	ðp1;p2;p3Þ¼1

3

eNc

6�2

g� �qq

Mq

g2� �qq

m2
�

m2
�

m2
�þq2

½ ~D0ðp1;p2;p3Þ

þ ~D0ðp1;p3;p2Þþ ~D0ðp2;p1;p3Þ� (18)

where ~D0 ¼ ð3!M4=i�2ÞD0 andD0 is the ’t Hooft-Veltman
scalar four-point function [41]. The total amplitude would
be F3�

� ¼ Fres
4 þ F	.

In the soft-point and chiral limit (i.e. p1, p2, p3 ! 0),

where ~C0, ~D0 ! 1, and with the usage of GT and KSFR
relations,

Fres
4 ! 3

2

eNc

12�2

1

f3�
¼ 3

2
A3�
� ; F	 ! eNc

12�2

1

f3�
¼ A3�

� ;

(19)

which would mean a total of F3�
� ð0;0;0Þ! 5

2
eNc

12�2
1
f3�
¼ 5

2A
3�
� ,

which is by the factor 5=2 bigger than the correct anoma-
lous amplitude. Notice that if we had included only the
resonant triangles we would have a result that is off by 3=2;
these are the very same 3=2 that we mentioned after Eq. (6)
as the reason for Rudaz adding the !� 3� contact term
into the previously pure VMD description. It appears that
the above Lagrangian (7) and (11) leads to an inconsis-
tency; if we want to calculate anomalous processes with
more than one pseudoscalar, it is not legitimate to just add
vector mesons à la Sakurai to a CQL coupled to pseudo-
scalar mesons. It is easy to check by explicit calculation
that the same problem persists (as expected) if VMD1
approach is used instead.

III. A RESOLUTION THROUGH
WEINBERG-TOMOZAWA INTERACTION

In the present context of strong interactions and hadrons,
which, after all, have substructure, one may think of in-
troducing a form factor F VðQ2Þ for the transition from the
vector quark vertex to 2� instead of the corresponding part
of the resonant triangle graphs (Fig. 3), which makes the
latter troublesome. Such a form factor would be con-
strained by the known anomalous behavior of the total
form factor F3�

� ðp1; p2; p3Þ in the soft point. However,

introducing it by hand and ad hoc, without an insight
into the underlying dynamics, would not be a satisfactory

6Note that this definition is different from the convention in the
Serpukhov paper [7] and, e.g., Ref. [42]. Our notation is closest
to that of the proposal of the CEBAF experiment [11], where the
outgoing pion pair is �þ�0. Thus the choice s¼�ðp1þp2Þ2¼�ðp�þ þp�0 Þ2, while the squared invariant mass of the pion
pair outgoing in the Serpukhov experiment, ���0, is t ¼
�ðp2 þ p3Þ2 ¼ �ðp�0 þ p��Þ2 (see Fig. 1).
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way of removing the superfluous contributions. To under-
stand which modifications of the CQL-VMD approach to
make, we seek guidance from a more fundamental, sub-
structure level.

A. Insight from the Dyson-Schwinger approach

In the Introduction we already mentioned the DS ap-
proach to QCD. Although there is no full derivation of
CQL or VMD from QCD as the underlying theory, much
of their features can be reproduced and understood in the
process of describing pseudoscalar and vector mesons and
their interactions in the DS approach, which is free from
the above problem of the superfluous contributions 3

2A
3�
�

(17) of the resonant graphs to the anomalous amplitude.
The DS approach employs dynamically dressed quark

propagatorsSðkÞ ¼ ½i6kAðk2Þ þ Bðk2Þ��1 obtained by solv-
ing the ‘‘gap’’ DS equation, so that the momentum-
dependent mass function Mqðk2Þ � Bðk2Þ=Aðk2Þ takes

place of the simple constant constituent mass Mq. Also,

the solutions of the Bethe-Salpeter (BS) equations for the
pseudoscalar meson bound-state vertices replace the point
pseudoscalar couplings g� �qq�5 of the CQL model (3), and

a vector WI-preserving dressed quark-photon vertex
��ðk; k0Þ is in place of the bare quark-photon vertex ��.

(In the vast majority of phenomenological applications this
is the Ball-Chiu Ansatz [25,26].) This procedure defines the
generalized impulse approximation (GIA). As we already

mentioned, this reproduces the A2�
� and A3�

� low-energy

theorems.
On the other hand, the momentum dependence, i.e., the

growth of the form factor F3�
� ðp1; p2; p3Þ from its soft-

point limit A3�
� turned out to be so slow (after all six

permutations of the graph in Fig. 1 were taken into account
properly [29]), that the Serpukhov data point could not
possibly be explained in that approach. (Also the related
processes �, �0 ! 2�� could hardly be reconciled with
such a weak momentum dependence [29] of the �� ! 3�
form factor.) This indicated that the DS approach should
include the contributions from vector mesons—or rather,
in the DS context, their microscopic, q �q-substructure
equivalent. To this end, Ref. [43] went beyond GIA in its
treatment of the box graph, inserting and summing the
infinite set of gluon ladder exchanges in the s, t and u
channel of the box graph. The resulting momentum depen-
dence of F3�

� ðp1; p2; p3Þ agrees well with the VMD be-

havior; the inclusion of these gluon diagrams beyond GIA
successfully produced �-meson-like intermediate states in
the two-pion channels. Thus, their contributions corre-
spond to our resonant triangle graphs, but with the crucial
difference that in the DS case these contributions vanish
as one approaches the soft limit of vanishing momenta, so
that the correct anomalous amplitude is obtained, unlike
Eq. (19).

This favorable behavior can be understood on the basis
of Maris and Tandy’s DS results on dressed vector vertices

[44]. In the DS approach one does not have elementary
meson fields, but one explicitly constructs physical,
on-mass-shell mesons as q �q bound states which are eigen-
states of mass. Thus, the mesons are not well-defined
away from their mass poles, nor are their couplings (such
as g���, g�� and g� �qq). Therefore, at the level of meson

substructure, the issue of the �-meson-like intermediate
states, including the resonant � contributions to the
two-pion channels, should be addressed within the dressed
quark vector vertex ��ðk; k0Þ, which couples not only

to photons but also to the pion vector current
Trð½�; ð@��Þ�taÞ.
Using the same DS dynamical model7 for the quark-

gluon interactions as later Ref. [43], Maris and Tandy [44]
solved this inhomogeneous BS equation for the dressed
quark vector vertex ��ðk; k0Þ. In this way they essentially

reconciled the VMD picture with the QCD picture of a
photon coupled to quarks in a q �q bound state; for the
present paper their most important result was that the
inhomogeneous BS equation generated both resonance
and nonresonance contributions to the full (model) vector
vertex ��ðk; k0Þ, which, unlike the BC vertex, contains

timelike vector-meson pole (at the model value Q2 ¼
�m2

V ¼ �m2
� ¼ �m2

! 
 �0:55 GeV2) in the part of the

vertex transverse to Q�. While this part (the resonant part)

of the vector vertex BS solution is significantly enhanced
over the BC Ansatz, it also vanishes as Q2 ! 0. This is
explicitly shown in Eqs. (30) and (34) of Ref. [44].

B. Subtraction of the Weinberg-Tomozawa interaction

In terms of meson degrees of freedom, this means that
the resonant contribution from the intermediate vector
meson with Q2 ¼ 0 is absent. This is reasonable as it
would correspond to a constant meson propagator 1=m2

V ,
and this in turn corresponds to a point interaction in the
coordinate space. In the present case, it would correspond
to a �-meson propagating zero distance from its q �q vertex
before turning into two pions, i.e., to a q �q vertex producing
two pions immediately, since here Q2 is either s, t, or u,
depending on the two-pion channel coupled to �. Note that
this unphysical situation is quite different from the situ-
ation when such ‘‘intermediate but non-propagating’’ �
turns into a �: this just means that also VMD2 incorporates
implicitly the situation when the photon couples to quarks
immediately and directly (for example, as in the case of
�0 ! 2�, where the factors ofm� and couplings, except e,

cancel). Contrary to that, two pions can come from a vector
q �q vertex only via a truly propagating intermediate �
meson (with transferred momentum Q2 � 0), while there

7This model is the most widely used one in the phenomeno-
logical branch of DS studies—see DS approach reviews such as
Refs. [25–27]
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is no direct conversion of quarks and antiquarks into the
two-pion vector current.

This is the reason why our previous calculation has led
to the spurious soft-point contribution 3

2A
3�
� (19): in the

resonant graphs, the part

�q��taq ! intermediate��
a ! �abc�b@

��c

yields simply8 the ‘‘vector q �q ! 2� form factor’’

F V
�ðQ2Þ / g�q �q

1

Q2 þm2
�

g��� ¼ m2
�

2f2�

1

Q2 þm2
�

; (20)

which is, nevertheless, wrong as it stands because it con-
tains the contribution of the intermediate � with Q2 ¼ 0.
The correct vector q �q ! 2� form factor can be obtained
by subtracting this contribution:

F VðQ2Þ ¼ F V
�ðQ2Þ �F V

�ð0Þ

/ g�q �q
1

Q2 þm2
�

g��� � g�q �q
1

m2
�

g���

¼ 1

2f2�

�Q2

Q2 þm2
�

; (21)

i.e., the resonant contributions depend on Q2 essentially as
in the DS substructure considerations such as [43,44] [see
esp. Eqs. (30) and (34)].

One may visualize the removal of the point q �q ! 2�
interaction (nonpropagating,Q2 ¼ 0 �) leading to Eq. (21)
as the subtraction of the point-interaction triangle graphs
(such as Fig. 4) from the corresponding resonant triangles
(e.g., Fig. 3). In terms of formulas, this subtraction corre-
sponds to including the following �� �qq point coupling
into the effective ��� part like this:

2ig���Trð½�; ð@��Þ���Þ
! 2iTrð½�; ð@��Þ�ðg����� � ig�� �qqJ

�ÞÞ; (22)

where J� ¼ taJ
�
a , J

�
a ¼ �q��taq, and g�� �qq is fixed pre-

cisely in a way to respect the �� ! 3� low-energy theo-
rem, i.e., in a way that it cancels the resonance part in the
soft-point limit completely, yielding g�� �qq ¼ 1

2f2�
. Written

in this form, it turns out to be nothing else but the quark-
level Weinberg-Tomozawa (WT) interaction [45,46].
However, it must be understood that Eq. (22) indicates
only the subtraction of the resonant graphs and does not
mean adding a new �� �qq interaction term to the
Lagrangian (12). If one would try this, the KSFR relation
would be spoiled in the same way as when the analogous
two-pion interaction with nucleons is added to the VMD-
nucleon Lagrangian [40].
This subtraction, that needs to be included only when

dealing with PVV triangles coupled to vector mesons
decaying to two pseudoscalars, completes the definition
of our constituent quark model coupled to pseudoscalar
and vector mesons. With it, the combination of the reso-
nant triangles (e.g., Fig. 3) and the ‘‘subtraction triangles’’
with the added point �� �qq interaction (e.g., Fig. 4) yields
the behavior in accord with the Abelian axial anomaly of
QCD, as shown in detail in the beginning of the next
section, where we complete the calculation of the
�� ! 3� form factor.

IV. RESULTS AND DISCUSSION

A. Completing the calculation

When we include the nonresonant, WT triangles (Fig. 4)
in the amplitude, the complete triangle form factor F4 ¼
Fres
4 þ FWT

4 becomes

F4ðp1; p2; p3Þ ¼ 1

2

eNc

6�2

g� �qq

Mq

g2� �qq

m2
�

m2
�

m2
� þ q2

�
�

s

m2
� � s

~C0ðp1; p2Þ

þ t

m2
� � t

~C0ðp2; p3Þ

þ u

m2
� � u

~C0ðp1; p3Þ
�
: (23)

With the usage of GT and KSFR relations, the constant
prefactor becomes

eNc

6�2

g� �qq

Mq

g2�

m2
�

¼ eNc

12�2f3�
¼ A3�

� :

The total amplitude isF3�
� ¼ F4 þ F	. In the soft-point

limit (i.e. p1, p2, p3 ! 0), where ~C0, ~D0 ! 1, F4 ¼
Fres
4 þ FWT

4 ! 0 and the total is in this limit given by the

pseudoscalar box contribution

FIG. 4. One of the graphs for the �� ! 3� nonresonant tri-
angle contribution depicting a �þ�0 pair coming out from the
�qq�� Weinberg-Tomozawa interaction that is needed for the
appropriate subtraction. The two analogous graphs are obtained
by exchanging the pion pair by �þ�� and �0��. There are two
of each of these graphs.

8—thanks to vanishing of the transverse part of � propagators
when contracted with Levi-Civita symbols from the traces of
PVV triangles. The second equality is from the KSFR relation.
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F3�
� ðp1;p2;p3!0Þ!F	ðp1;p2;p3!0Þ! eNc

12�2

1

f3�
¼A3�

� :

It is interesting to note that for real photons (q2 ¼ 0),
and by ‘‘squeezing’’ the quark triangles and boxes to
points, the total form factor F3�

� ¼ F	 þ F4 reads

F3�
� ! A3�

�

�
1þ 1

2

�
s

m2
� � s

þ t

m2
� � t

þ u

m2
� � u

��
: (24)

where we used the GTand KSRF relation. This is precisely
the Terent’ev phenomenological form [4,5] for  ¼ 0 and
C� ¼ 1=2 (in other words, a modified VMD result

[32,39]).
The following Figs. 5–7 show the normalized form

factor ~F3�
� ¼ F3�

� =A3�
� . For constituent u and d masses

the typical estimates are around Mq �mp=3 
 330 MeV

and Mq �m�=2 
 385 MeV, but Figs. 5–7 also show

results starting from Mq ¼ 300 MeV and going up to the

DS scale [28] � ¼ 565:69 MeV. The ’t Hooft-Veltman
integrals, C0 and D0, were calculated numerically for the
case where the photon can be taken on shell q2 
 0 (perti-
nent in all experiments [7,11,13]), and for
(i) Primakoff type experiments, [7,13], where all pions

are on shell, so that sþ tþ u ¼ 3m2
�, and where we

take u ¼ m2
� for definiteness.

(ii) CEBAF experiment [11], where the third pion (��)
is off-shell. The kinematical range explored at
CEBAF will be mostly in the s channel, and the
amplitudes themselves have a weak dependence on
the virtuality of ��, so we take p2

3 
 m2
�. Now

sþ tþ u ¼ m2
�, and we also fix t ¼ �m2

�.
Quarks are not confined in our model, so there are possible
spurious contributions to the amplitude from the �qq chan-
nel in the box as well as in the triangle if any of the
Mandelstam variables s, t, u, is bigger than 4M2

q. For Mq

varied in the range of some 300–500 MeV, the q �q

FIG. 5 (color online). For various values of the mass parameter
Mq, our numerically calculated form factors ~F3�

� ðs; t; uÞ are

shown as functions of t ¼ �ðp2 þ p3Þ2 ¼ �ðp�0 þ p��Þ2,
i.e., of the invariant mass of the outgoing pion pair �0�� in
the Serpukhov and COMPASS experiments. There, all pions are
on shell, and for definiteness we fix u ¼ m2

�. The curves belong-
ing to the lower stripe (blue online) are only the quark box
contribution (i.e., the lower stripe represent predictions of the
simple CQL approach for various Mq). The upper stripe (with

black curves) represents the corresponding predictions from the
presently pertinent CQL-VMD approach; that is, the black
curves represent predictions which include the �-resonant tri-
angle loops with the subtracted Weinberg-Tomozawa interac-
tion. In the both stripes, the dotted curves correspond to
Mq ¼ 300 MeV, the dashed ones to Mq ¼ 330 MeV and the

solid ones toMq ¼ 360 MeV. The exhibited data point [7] really

corresponds to the average value of the form factor over the
momentum range covered by the experiment (between the two-
pion threshold and 10 m2

�), which measured the total cross
section—see the discussion in Sec. IVB.

FIG. 6 (color online). The form factors ~F3�
� ðs; t; uÞ from vari-

ous approaches are depicted as functions of t, the invariant mass
of the outgoing pion pair �0ðp2Þ, ��ðp3Þ, as in the Serpukhov
and COMPASS experiments, where all pions are on shell. We fix
u ¼ m2

� for definiteness. The upper shaded stripe covers the
results of our CQL-VMD approach for constituent masses be-
tween Mq ¼ 360 MeV (corresponding to the solid black curve

marking the upper edge of that stripe) and Mq equal to the DS

scale � ¼ 565:69 MeV of Ref. [29] (corresponding to the lower
edge of that stripe). The lower shaded stripe (blue online) covers
the results of the pure CQL model [30] for the same Mq interval.

That is, the (blue) dashed curve depicts the CQL model form
factor for Mq ¼ 360 MeV, while the lower edge of that stripe is

the very slowly varying CQL form factor for the high Mq ¼
� ¼ 565:69 MeV, the DS scale of Ref. [29]. A comparison is
made with results of the modified VMD [32,39] (green dotted
curve) and of DS (in GIA) [29] (red dash-dotted curve). Again,
the exhibited Serpukhov point [7] is actually the average value
extracted from the total cross section—see Sec. IVB for the
comparison with experiment.
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thresholds are at 600–1000 MeV. Even the lower value,
600 MeV, is beyond CEBAF upper bound [11]:

ffiffiffiffiffiffiffiffiffi
smax

p ¼
4m� ¼ 554 MeV (for m� ¼ 138:5 MeV). The vector me-
sons are especially important at COMPASS, where the
proposed momentum range to be covered should go well
above the ���0 threshold, up to the �-peak [47]. For such
momenta, constituent quark masses Mq employed in the

CQL-VMD approach should be Mq >m�=2, say around

400 MeV, in order to avoid spurious q �q thresholds.
The general behavior of the amplitudes can be under-

stood through three essential factors. The first is the pres-
ence of the � resonance, which is the dominant cause of the
increase of the amplitude in the present approach.

The second factor is the characteristic mass scale of a
given model: in the simple CQL (e.g., Ref. [30]) and the
present CQL-VMD models, this scale is simply the con-
stituent mass parameter Mq, which is typically not much

higher than � 1
3Mnucleon � 1

2m�. In DS models, their char-

acteristic scales are also related to their dynamically gen-
erated momentum-dependent constituent masses and are
relatively high compared to typical Mq (e.g., � ¼
565:69 MeV in the DS model [28] used in Ref. [29]). In
the CQL model, momentum dependences are stronger for
smaller values ofMq, while forMq ¼ � ¼ 565:69 MeV it

is even slightly weaker than in the DS approach with this
scale � [29]. (See Figs. 5–7 and Ref. [30].) That larger
characteristic mass scales suppress more the momentum
dependence of F3�

� ðp1; p2; p3Þ, is manifest in its power

series expansions in CQL [30] and DS [29] papers, where
vector mesons were not included. Nevertheless, it is suffi-
cient to note that the contributions of the quark loops are
suppressed if the quark propagators are suppressed by large

masses in their denominators. Thus, understandably, the
present CQL-VMD approach also exhibits weaker momen-
tum dependences for larger Mq’s, although now the �

resonance of course dramatically boosts this dependence
overall.
The third factor is the symmetry of the �� ! 3� ampli-

tude under the interchange of the external momenta pi. It
was shown in earlier CQL [30] and DS [29] approaches
without vector mesons, most clearly in the aforementioned
expansions of F3�

� ðp1; p2; p3Þ in powers of the momenta pi

(divided by an appropriate mass scale). Reference [29]
clarified how due to this symmetry, the contribution of
the terms of the second order in momenta [Oðp2Þ], is in
fact a small constant (of the order of m2

�) up to the
virtuality of the third pion. Therefore, the main contribu-
tion, dominating the s, t, u dependence for momenta
smaller than some characteristic model mass scale, comes
from Oðp4Þ and not Oðp2Þ. This gives the parabolic shape
to the curves displaying form factors as functions of
Mandelstam variables in Refs. [29,30] and here. In con-
junction with the large mass scale �, this also causes the
weak momentum dependence of F3�

� ðp1; p2; p3Þ found

[29] in the DS approach using GIA, motivating Ref. [43]
to go beyond GIA for this process.
We also show the results for F3�

� obtained frommodified

VMD (which is basically our Eq. (24), see also [32,39] and
references within), and DS approach in GIA [29].

B. Comparison with experiment

We should first note that the Sepukhov experiment [7]
did not, in fact, measure the presently pertinent form factor
F3�
� ðp1; p2; p3Þ, but the Primakoff total cross section �tot.

The latter is thus the experimental quantity which is the
safest to compare with various theoretical predictions,
which we do in Fig. 8. The measurements on various
targets (with eZ being the nucleus charge) yielded
�tot=Z

2 ¼ 1:63� 0:23� 0:13 nb [7], which is repre-
sented by the grey area in Fig. 8, where it is compared
with the theoretical predictions of VMD and, for various
constituent quark masses Mq between 300 MeV and

400 MeV, of the CQL and CQL-VMD approaches. The
former is not compatible with the (admittedly scarce)
experimental data, but its vector-meson extension, the
CQL-VMD approach, is.
This relationship between the CQL and CQL-VMD ap-

proaches would seem to indicate that agreement with
experiment mandates the enhancement due to vector me-
sons and VMD already at the momentum scales where the
Serpukhov data were gathered. However, such conclusion
would be too rash, since Ametller et al. [42] showed that, in
this kinematical domain, chiral perturbation theory
(ChPTh) describes the measured ��� ! �0�� process
well, after the one-photon-exchange electromagnetic cor-
rections are included (in their t channel, which is the u
channel in our conventions). This brought their theoretical

FIG. 7 (color online). Same as previous Fig. 6, but for the
CEBAF kinematics, where the two outgoing and on-shell pions
are �þ and �0. The form factor is thus given as the function of
their invariant mass squared, the s variable. For the off-shell
pion, ��, we use p2

3 ¼ m2
�. We also fix t ¼ �m2

�.
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prediction for the cross section to �th
tot=Z

2 ¼ 1:33�
0:03 nb, in agreement with experiment. They also pointed
out the importance of the one-loop [48] and two-loop [49]
chiral perturbation theory contributions, especially for ex-
tracting from the experimental cross section the form factor
value (call it F3�

0;expt ¼ A3�
� ðexptÞ) which would correspond

to the unphysical soft point (s ¼ t ¼ u ¼ 0). Table I in
Ref. [42] reviews how including 1- and 2-chiral loop and
electromagnetic corrections gradually bring about F3�

0;expt ¼
10:7� 1:2 GeV�3, consistent with theory, Eq. (1).

These electromagnetic- and loop-corrected ChPTh re-
sults indicate that at Serpukhov energies VMD is not yet
needed for agreement with experiment. Thus, the fact that
in the COMPASS measurements of �� ! 3�, the mo-
menta to be covered should surpass the Serpukhov range
and approach the � peak [47] in the vicinity of which VMD
dominates, remains the strongest motivation to combine
the simple CQL approach with vector mesons and VMD.

V. SUMMARY

The �� ! 3� form factor, presently being measured
with high statistics at CERN by the COMPASS
Collaboration through the Primakoff experiments [12,13],
has been computed in the present paper using the simple
free constituent quark-loop model extended by vector me-
sons. This extension turned out to present a problem for the
transitions connecting one vector and three pseudoscalar
particles, because the box graph, which saturates the
anomalous amplitude A3�

� (in the chiral and soft limit), is

then supplemented by the �-resonant triangle graphs yield-

ing the superfluous contribution of 3
2A

3�
� . The same prob-

lem appears in ! ! 3� and �, �0 ! 2�� decays, where
the contribution of the �-resonant triangles successfully
reproduces the empirical decay widths [18,20], but the
chiral and soft-point limit of the pertinent amplitudes are
then in conflict with the low-energy theorems [6,16].
This problem is cured in the present CQL-VMD ap-

proach by removing the spurious contribution of the inter-
mediate but nonpropagating � meson. Thanks to this, our
model reproduces correctly the anomalous �� ! 3� chi-
ral- and soft-limit amplitude A3�

� while including the ef-

fects of the vector mesons at higher momentum scales.
The appropriate subtraction (21), of the form of the WT

interaction [45,46], was inspired by the insights obtained
on a more fundamental, microscopic level through DS
approach [28,29,43,44]. The question then arises why not
use this, more fundamental QCD-based approach, to cal-
culate the �� ! 3� form factor, instead of the present
simplified approach of constituent quarks plus VMD. In
fact, this was done a decade ago in GIA, but the momentum
dependence of the resulting form factor F3�

� ðs; t; uÞ is then
very slow [29], for the reasons explained in detail in the
subsection IVA, but also because VMD effects are lacking.
Reference [43] thus endeavored to reproduce VMD effects
working from a microscopic level, in DS approach, but
found that this problem then requires going beyond GIA,
making the task so intractable in spite of many model
simplifications, that only the results for symmetric kine-
matics (with at least twoMandelstam variables equal) were
given [43]. At this point, this DS approach (beyond GIA
and reproducing VMD effects) seems hardly tractable for
general kinematics, including those of COMPASS and
CEBAF. Hence there is a need for related, more simplified
models like the present CQL approach extended by vector
mesons, called the CQL-VMD approach, where the re-
quired features are put in by hand under the guidance
from phenomenology, WI and more microscopic ap-
proaches. Thus we may consider the CQL-VMD approach
as mimicking the more microscopic DS approach [43]
beyond GIA: the relationship between the box graphs in
the respective approaches is obvious, and the (resonant-
subtracted) triangle contributions in the CQL-VMD ap-
proach may be regarded as mimicking the VMD effects
reproduced in the DS approach beyond GIA by inserting
and summing up the infinite set of gluon ladder exchanges
in the s, t and u channel of the box graph [43]. However, in
contrast to the very demanding and difficult-to-use DS
approach beyond GIA, the CQL-VMD approach can be
easily used for any kinematics that are below the spurious
quark thresholds.
The DS approach beyond GIA, like in Ref. [43] but for

general kinematics, is a very difficult task which has to be
relegated to a future work. The same holds for calculating
electromagnetic corrections, since in contrast to the corre-
sponding calculation of Ametller et al. [42], in the present

FIG. 8 (color online). Total cross sections for various Mq

predicted by CQM is depicted by the lower solid curve, while
CQM-VMD yielded the upper solid curve. The (constant) value
predicted by VMD alone is depicted by the dotted line, and the
ChPTh prediction (electromagnetically and chiral-loop cor-
rected) of 1:33� 0:03 nb [42], is given by the dashed line.
The experimental cross section is denoted by the grey area.
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framework the contributing diagrams contain the
momentum-dependent form factor F3�

� ðs; t; uÞ in the �3�

vertex. It makes this task much more difficult, but it is
obviously necessary in order to reach the next level of
refinement in the present approach. A much more straight-
forward future work in this direction will include a
CQL-VMD calculation of the reaction K��� ! K��0,
which can also be measured by the COMPASS
Collaboration [12,13]. We will also test the present ap-
proach by applying it to numerous meson decays currently

studied experimentally by WASA-at-COSY with high pre-

cision and statistics [50,51], such as �, �0 ! 2��ð�Þ.
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