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The parity-violating (PV) asymmetry of inclusive �� production in electron scattering from a liquid

deuterium target was measured at backward angles. The measurement was conducted as a part of the G0

experiment, at a beam energy of 360 MeV. The physics process dominating pion production for these

kinematics is quasifree photoproduction off the neutron via the �0 resonance. In the context of heavy-

baryon chiral perturbation theory, this asymmetry is related to a low-energy constant d�� that characterizes

the parity-violating �N� coupling. Zhu et al. calculated d�� in a model benchmarked by the large

asymmetries seen in hyperon weak radiative decays, and predicted potentially large asymmetries for this

process, ranging from A�
� ¼ �5:2 toþ5:2 ppm. The measurement performed in this work leads to A�

� ¼
�0:36� 1:06� 0:37� 0:03 ppm (where sources of statistical, systematic and theoretical uncertainties

are included), which would disfavor enchancements considered by Zhu et al. proportional to Vud=Vus. The

measurement is part of a program of inelastic scattering measurements that were conducted by the G0

experiment, seeking to determine the N �� axial transition form factors using PV electron scattering.

DOI: 10.1103/PhysRevLett.108.122002 PACS numbers: 11.30.Er, 13.60.�r, 14.20.Dh, 25.30.Bf

In electron scattering, the size of parity-violating asym-
metries is usually related to an interference between Z and
� exchange amplitudes. Therefore, in the photoproduction

limit (Q2 ¼ 0, where Q2 is the negative four-momentum
transfer squared) virtual Z bosons cannot be exchanged,
and the asymmetry is expected to tend to zero. But, in the
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case of scattering from nucleons, parity violation also
occurs in weak interactions among quarks, generically
referred to as the hadronic weak interaction; this form of
an electroweak radiative correction can lead to nonzero
asymmetries in the photoproduction limit.

Zhu et al. [1,2] studied electroweak radiative corrections
in the photoproduction limit theoretically for PV inelastic
scattering of electrons from nucleons. The variation of the
PV asymmetry with Q2 in this case is particularly of
interest because of the desire to extract N �� axial tran-
sition form factors, and to compare to and improve the
determinations made by neutrino scattering experiments.

In Ref. [1], the PVasymmetry A�
� was calculated for the

process ~�þ d ! �0 þ p ! �� þ pþ p using heavy-
baryon chiral perturbation theory (HB�PT). The PVasym-
metry was found to be related to a new low-energy constant
in the effective weak Lagrangian d�� characterizing the PV

�N� coupling:

A�
� � d�R � d�L

d�R þ d�L

¼ � 2d��
CV
3

MN

��

; (1)

where d�R;L are the differential cross sections for right-

(R) or left- (L) circular-polarized incident photons, CV
3 is

the dominant N � � vector transition form factor, MN is
the mass of the nucleon, and �� is the scale of chiral

symmetry breaking. Nonresonant, higher order chiral,
and 1=MN corrections are neglected here, as in Ref. [1].

By naive dimensional analysis, it would be expected that

d�� � g�, where g� �GFF
2
�=2

ffiffiffi

2
p � 5� 10�8 is the scale

of the weak charged-current hadronic process. (Here, the
quantity dþ� refers specifically to the process ~�þ p !
�þ ! �þ þ n.) Zhu et al. considered possible enhance-
ments to d�� via the inclusion of intermediate J� ¼ 1

2� and
3
2� resonances which would mix with the nucleon or �

respectively via the hadronic weak interaction. A similar
treatment yielded excellent agreement with observables in
hyperon decay, simultaneously describing weak radiative
and weak hadronic decay in the �S ¼ 1 sector of the
hadronic weak interaction [3]. In the �S ¼ 0 sector, less
information about the amplitudes was known, and so their
scale was taken to be of order the �S ¼ 1 amplitudes.
Because of unknown possible phase factors between the
amplitudes, this resulted in a range of predictions of jd�� j �ð10–25Þg�. Since the amplitudes could be related to the
hadronic charged-current interaction, the �S ¼ 0 ampli-
tudes might be further enhanced over their �S ¼ 1 coun-
terparts by a factor Vud=Vus where Vij are elements of the

CKM matrix.
Zhu et al. concluded that a reasonable range of predic-

tions is jd�� j ¼ ð1–100Þg�, citing a ‘‘best value’’ of jd�� j ¼
25g� [1]. Through Eq. (1), this corresponds to a range
jA�

� j ¼ ð0:052–5:2Þ ppm, with a best value of 1.3 ppm.

We sought to test these predictions experimentally via

inclusive electroproduction of �� off the deuteron. The
detailed analysis is presented in Ref. [4].
Data were acquired during the backward angle phase of

the G0 experiment, performed in Hall C at Jefferson
Laboratory [5]. Data were acquired during our low-energy
liquid deuterium (LD2) target measurements, collected
simultaneously with inclusive quasielastic and inelastic
electron scattering data, over a two-week period.
The G0 experimental apparatus was described in

Ref. [6]. A polarized electron beam of current 35 �A
and energy 360 MeV impinged on a 20 cm liquid deute-
rium target [7]. The average beam polarization, measured
with Møller [8] and Mott polarimeters [9], was 85:8�
2:1% (combined statistical and systematic uncertainty).
Helicity-correlated current changes were corrected with
an active feedback system.
A superconducting toroidal spectrometer, consisting of

an eight-coil magnet, collimators, and eight detector sets,
detected �� scattered at an average angle of 100�. Each
detector set included two arrays of scintillators, one near
the exit of the magnet (‘‘CED’’), and the second along its
focal surface (‘‘FPD’’). For each detector set, an aerogel
Čerenkov detector with a pion threshold of 570 MeV was
used in concert with the scintillators, allowing separation
of �� from electrons.
The pion rate was signified by a coincidence between

particular pairs of CEDs and FPDs, and an absence of a
signal above threshold in the Čherenkov detector. Rates
were corrected for deadtime and random coincidences in a
manner analogous to our electron data [5]. The overall
deadtime for this data set was 15%. The rate sensed within
the selected locus of CED-FPD pairs is displayed graphi-
cally in Fig. 1.
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FIG. 1 (color online). Pion counting rates for various CED-
FPD combinations (FPDs 1 and 2 not used). Pion tracks occur
mainly in the lower left corner of the matrix. Rates in the far
upper right corner are due to misidentification of electrons via
Čerenkov inefficiency for electron detection. The locus of com-
binations analyzed for inclusive pion production is outlined
in black.
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Helicity-correlated beam properties were characterized
using beam-current and beam-position monitors.
Sensitivities of the detector to changes in beam-current,
position, angle, and energy were also measured. Instead of
correcting for helicity-correlated beam properties, a
conservative error of 0.21 ppm was assigned, determined
by multiplying the largest observed helicity-correlated
property times the largest sensitivity, averaged separately
over the run period. Averaging the product of the two
appropriately would have resulted in negligible overall
corrections.

Possible electronic leakage of the helicity signal into the
data-acquisition system was studied by periodically insert-
ing a half-wave plate into the laser beam path in the
polarized source, which would act to reverse the direction
of the polarization of incident electrons. Upon insertion, all
asymmetries measured by the experiment should reverse
sign, and averaging the results for different half-wave plate
states should result in zero. In the case of these data, the
average determined in this way showed some lack of
consistency across octants. Averaging in turn over octants
gave ð1:7� 0:8Þ ppm (prior to correction for beam polar-
ization), in reasonable agreement with zero. No evidence
of an unknown systematic effect could be found subdivid-
ing the data in different ways and, in particular, studying
known octant-dependent corrections. Furthermore, the
data, when the correct half-wave plate setting was taken
into account, were statistically consistent. Therefore, no
additional systematic uncertainty was assigned.

The data were then corrected for backgrounds. In these
data, backgrounds were mainly due to misidentified elec-
trons which did not create a signal above threshold in the
Čerenkov detector. The backgrounds were characterized in
special data-taking runs where the electron beam was
pulsed at 31 MHz. In these runs, time-of-flight (TOF)
spectra for particles (their flight path being from the target
to the FPD’s) were used as an alternate method to deter-
mine the particles’ identities. By defining hard cuts on
TOF, pure samples of pions and electrons could be defined,
which would then be used to characterize Čerenkov per-
formance (see Fig. 2). Particle fluxes could be estimated
from two-Gaussian fits to the TOF spectrum. The combi-
nation of techniques allowed determination of the pion
efficiency and electron contamination for the pion sample.

The CED-FPD pairs in the pion locus were selected by
requiring the electron contamination of the pion sample, in
a given pair, before background correction, to be below
10%. The resultant average contamination by electrons for
the pion locus was 2.6%. This was corrected by appropri-
ately subtracting the measured electron asymmetry in each
of the same CED-FPD pairs. (Without the veto provided by
the Čerenkov counter, the electron contamination would
have been 20%.) The average efficiency for pion identifi-
cation was >99% for pions satisfying the CED-FPD coin-
cidence condition.

The polarization axis of the electron beam was con-
trolled by a Wien filter in the 5 MeV section of the
accelerator. The Wien filter setting was adjusted to opti-
mize the longitudinal polarization in dedicated measure-
ments with the Møller polarimeter in Hall C [8]. The
resultant beam, while dominantly polarized in the longitu-
dinal direction, possessed a slight degree of polarization
transverse to the direction of propagation, in the bend plane
of the accelerator. This in turn resulted in a parity-
conserving azimuthal dependence to the asymmetries mea-
sured by the experiment, which can be sensed because of
the azimuthal segmentation of the detectors into octants.
By adjusting the Wien filter setting, dedicated runs were

conducted with the degree of transverse polarization ar-
ranged to be as large as possible, so that the sensitivity of
the detector to this azimuthal asymmetry could be de-
duced. The azimuthal asymmetry measured by this tech-
nique was sinusoidal in its dependence over octants, with
an amplitude of �170 ppm. It is believed that this rather
strong azimuthal dependence ultimately results from a
sensitivity to the LT interference term seen in parity-
conserving pion electroproduction [10], and we intend to
study this process in a separate publication.
The luminosity monitors for the experiment [6] were

also segmented azimuthally. By comparing the luminosity
monitor asymmetry under the transverse and longitudinal
Wien filter settings, the degree of transverse polarization in
the nominally longitudinal beam was deduced to be 4:3�
0:2%. Using the azimuthal pion asymmetries determined
for transversely polarized beam, and the degree of trans-
verse polarization measured using the luminosity monitors,
the pion longitudinal asymmetries could be corrected as a
function of octant. The success of this correction in remov-
ing the residual azimuthal dependence in the nominally
longitudinally polarized electron beam data is displayed
graphically in Fig. 3.

TOF, arb. offset (ns)
156 158 160 162 164 166 168

E
ve

nt
s

0

20

40

60

80

100

120

140

160
Electron Pion
Sample Sample

FPD 9

FIG. 2. Sample time-of-flight spectrum (for particles sensed by
detector FPD09) during a data-taking run using a pulsed beam.
Electrons correspond to the left peak and pions to the right peak.
Analysis of the time spectrum in concert with the Čerenkov
counter enabled a measurement of the particle identification
properties of the Čerenkov counter.
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Backgrounds due to the thin aluminum target windows
were 2%. These were not corrected because quasifree
production of �� off neutrons is expected to dominate
the asymmetry, and therefore this process should carry
the same asymmetry as the deuterium data to well within
the precision of the data. Correcting finally for beam
polarization results in the measured raw PV asymmetry
attributable to inclusive production of �� off the LD2

target. The inclusive pion asymmetry including all experi-
mental corrections was Ameas ¼ �0:55� 1:03�
0:37 ppm, where the first uncertainty is statistical, and
the second systematic. A list of the systematic uncertainties
is presented in Table I.

The measured asymmetry, Ameas, includes pion fluxes
induced by both photoproduction and electroproduction of
pions. We desire to extract the photoproduction asymmetry
A�
� that would be induced by incident real photons. The

two are related by

Ameas ¼ fbremshDðyÞiA�
� þ fvirthA�

e ðQ2Þi: (2)

Here, fbrems and fvirt are the fractional fluxes of pions
initiated by bremsstrahlung photons and virtual photons
(i.e., electroproduction), respectively, (fbrems þ fvirt ¼ 1).
The factor DðyÞ is the degree of circular polarization

carried by the bremsstrahlung beam [11], relative to the
electron beam (y being the fractional energy carried by the
photon). The factor A�

e ðQ2Þ is the asymmetry for electro-
production of pions. According to theoretical expectation
[2], A�

e ðQ2Þ is approximately linear in Q2 for the range
of Q2 dominating this experiment, with the intercept at
Q2 ¼ 0 being equal to A�

� . We therefore characterized the

average Q2 for the electroproduction events and extrapo-
late to the photon point. Since the scattered electrons were
not detected in coincidence with the scattered pions, for
this measurement, we employed simulation techniques to
calculate the factors fvirt, hDðyÞi, and hQ2i. Theoretical
input was used to constrain the slope of the electroproduc-
tion asymmetry with Q2.
The simulation was benchmarked by comparing with

our measured pion rates, and their distribution in the
acceptance of the experiment. The simulation of the detec-
tor acceptance was based on the GEANT3 toolkit [12]. Pion
absorption in the apparatus was estimated to affect the rate
at the percent level, and would not affect the PVasymmetry
determination. Physics generators for both bremsstrahlung
and virtual-photon induced reactions were developed. The
cross sections used in the generators were based on the
MAID model of pion production [13], applied to a neutron
target. These were further tested by comparing with pub-
lished extractions of the nð�;��Þ process, which were
based on measurements of dð�;��Þpps [14], and found
to be in good agreement. Nuclear corrections to the cross
section were based on the same reference. Additionally,
corrections for Fermi motion were computed by generating
a random initial-state neutron momentum according to a
parametrization of the nucleon momentum distribution in
the deuteron, and were found to smear the pion rates in the
detector acceptance. (Possible nuclear corrections to the
PV asymmetry were argued to be small in Ref. [1], and
therefore we made no correction for such effects.)
Particular care was taken in the generation of electropro-
duction events, where virtual-photon flux formulae valid
down to Q2 �m2

e were used. This part of the cross section
was also compared with analytical formulas [15] over a
broad range of kinematics.
The simulation of the pion rate was found to agree with

the data to within 15%, generally reproducing trends seen
in CED-FPD space. The fraction of events induced by
virtual photons was found to be fvirt ¼ 0:45� 0:07, in
good agreement with simple estimates based on the target’s
radiation length and the effective radiation length for
virtual-photon induced reactions. The uncertainty was as-
signed based on the level of agreement of the simulation
with data, and with the simple estimates.
The average hDðyÞi was 0:95� 0:05, where the stated

uncertainty is systematic. The quantityDðyÞ becomes unity
as y ! 1 and for 90% of the simulated events, y > 0:7
corresponding to DðyÞ> 0:9 [11]. We therefore think the
assigned systematic uncertainty is conservative. The

TABLE I. Systematic uncertainties assigned for the correc-
tions described in the text.

Source Uncertainty (ppm)

Rate corrections 0.26

Helicity-correlated corrections 0.21

Backgrounds, particle identification 0.12

Residual transverse polarization 0.08

Beam Polarization 0.01

octant
1 2 3 4 5 6 7 8

A
sy

m
m

et
ry

 (
pp

m
)

-15

-10

-5

0

5

10

15
Before correction

After correction

FIG. 3. Measured pion asymmetries before and after correc-
tion for the residual transverse polarization in the electron beam.
The correction successfully diminishes the sinusoidal variation
with octant number from the data, with little impact on the
octant-averaged result for the asymmetry, and reduces �2=DOF
for a fit to a flat line from 3.5 to 1.2.
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average accepted photon energy was 320 MeV (y ¼ 0:89);
the average invariant mass of the final-state hadronic sys-
tem was W ¼ 1220 MeV.

The average hQ2i for electroproduction events was de-
termined to be 0:0032 ðGeV=cÞ2. A systematic uncertainty
of 10% on hQ2i was assigned based on shifts observed in
the simulation varying the magnetic field, beam energy,
and target position within reasonable ranges. This agreed
to the same level of precision with a simple estimate based
on the virtual-photon flux factor varying approximately as
1=Q2 and averaging over the permitted electron kinemat-
ics. The simulated electroproduction events were heavily
weighted towards low Q2 with 90% of them falling below
Q2 ¼ 0:01 ðGeV=cÞ2.

The slope of A�
e ðQ2Þ with Q2 was estimated based on

Ref. [2]. The dominant term in the slope is a constant
related linearly to sin2�W . The slope was assigned a 14%
theoretical uncertainty, which is the full size of the non-
resonant and structure-dependent terms in the asymmetry,
including the electroweak radiative corrections, calculated
in the same reference.

Solving Eq. (2) then yields A�
� ¼ �0:36� 1:06�

0:37� 0:03 ppm where the third uncertainty is the theory
uncertainty explained above. Using Eq. (1) with the values
CV
3 ¼ 1:6 and �� ¼ 1 GeV (from Ref. [2]) then yields

d�� ¼ð8:1�23:7�8:3�0:7Þg� where g�¼3:8�10�8.

No additional uncertainty was assigned for the interpreta-
tion in this particular model.

Our new result means that possible enhancements con-
sidered in Ref. [1], proportional to Vud=Vus, are disfavored.
The possibility of an unexpectedly large PV asymmetry in
pion photoproduction on the � resonance has been limited
to the ppm level.

Results on related parameters in PV inclusive inelastic
electron scattering are forthcoming from the G0 experi-
ment [16] and will be related in a separate publication [17].
Measurements being conducted by the Qweak experiment
[18] will shed light on the inclusive parameter d�
via PV inclusive inelastic electron scattering at low
Q2 � 0:027 ðGeV=cÞ2.

We gratefully acknowledge the strong technical contri-
butions to this experiment from many groups: Caltech,
Illinois, LPSC-Grenoble, IPN-Orsay, TRIUMF and par-
ticularly the Accelerator and Hall C groups at Jefferson
Lab. CNRS (France), DOE (U.S.), NSERC (Canada) and
NSF (U.S.) supported this work in part.
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