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We report measurements of the charge-separated Wþð�Þ ! eþð�Þ þ �eð ��eÞ and Z=�� ! eþe� produc-

tion cross sections at mid-rapidity in proton-proton collisions at
ffiffiffi
s

p ¼ 500 GeV. These results are based

on 13:2 pb�1 of data recorded in 2009 by the STAR detector at RHIC. Production cross sections

for W bosons that decay via the e� channel were measured to be �ðpp!WþXÞ �BRðWþ!eþ�eÞ¼
117:3�5:9ðstatÞ�6:2ðsystÞ�15:2ðlumiÞ pb, and �ðpp!W�XÞ �BRðW�!e� ��eÞ¼43:3�4:6ðstatÞ�
3:4ðsystÞ�5:6ðlumiÞ pb. For Z=�� production, �ðpp ! Z=��XÞ � BRðZ=�� ! eþe�Þ ¼ 7:7�
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2:1ðstatÞþ0:5
�0:9ðsystÞ � 1:0ðlumiÞ pb was measured for di-lepton invariant masses meþe� between 70 and

110 GeV=c2. First measurements of the W cross section ratio, �ðpp ! WþXÞ=�ðpp ! W�XÞ, at ffiffiffi
s

p ¼
500 GeV are also reported. Theoretical predictions, calculated using recent parton distribution functions,

are found to agree with the measured cross sections.

DOI: 10.1103/PhysRevD.85.092010 PACS numbers: 14.20.Dh, 13.38.Be, 13.85.Qk, 14.70.Fm

I. INTRODUCTION

Studies of inclusive W and Z=�� boson production in
proton-proton collisions provide valuable information,
both to test the standard model of particle physics and to
advance our understanding of the proton’s substructure.

Measurements of the production cross sections �ðpp !
Wþð�ÞXÞ � BRðWþð�Þ ! eþð�Þ þ �eð ��eÞÞ and �ðpp !
Z=��XÞ � BRðZ=�� ! eþe�Þ can be compared to theoreti-
cal calculations that involve the weak couplings between
intermediate vector bosons and quarks, and which must
account for higher-order terms in perturbative QCD. Such
calculations also rely on models of the parton distribution
functions (PDFs) for the quarks and, in pp collisions, for
the antiquark ‘‘sea.’’

Until recently, most measurements of W and Z=��
production in hadronic interactions have been confined to
experiments using proton-antiproton collisions. First re-
sults were obtained by the UA1 [1,2] and UA2 [3,4]
collaborations at

ffiffiffi
s

p ¼ 630 GeV at the CERN Sp�pS facil-
ity, followed by the CDF [5,6] and D0 [7,8] p �p measure-
ments at the Fermilab Tevatron, at

ffiffiffi
s

p ¼ 1:8 and 1.96 TeV.
It is only in the last few years that pp colliders have
reached sufficient center-of-mass energies for comparable
studies, at

ffiffiffi
s

p ¼ 500 GeV by the STAR (Solenoidal
Tracker at RHIC) [9] and PHENIX [10] collaborations at
the Relativistic Heavy Ion Collider (RHIC), and most
recently by the LHC experiments ATLAS [11] and CMS
[12,13] at

ffiffiffi
s

p ¼ 7 TeV.
RHIC is unique in its capability to collide high-energy

polarized proton beams, and the observation of W produc-
tion in these polarized proton collisions provides a new
means to explore the spin-flavor structure of proton sea
quark distributions. First measurements of the parity-
violating longitudinal single-spin asymmetry for W� de-
cay leptons have also been reported by the STAR [9] and
PHENIX [10] collaborations and are in good agreement
with predictions from NLO and resummed calculations
[14,15].

At hadron colliders, the leading process in Wþð�Þ pro-
duction is uþ �dðdþ �uÞ fusion. This suggests that while
the Wþ and W� production cross sections should be close
to equal in p �p collisions, they can be expected to differ in
pp measurements due to differences in the u and d quark
and antiquark distributions within the proton. The PDFs
that characterize the valence u and d quarks of the proton
(or �u and �d in the antiproton) are well determined from
decades of high precision, deep-inelastic lepton scattering
experiments (see, for example, Ref. [16]). Comparable

distributions for the antiquarks within the proton sea, how-
ever, are much more weakly constrained. Interest in these
poorly-known antiquark PDFs has also increased over the
last few years, due to results from Drell-Yan experiments
[17,18] which find evidence for a much larger �d= �u flavor
asymmetry in the nucleon than had been anticipated, es-
pecially at momentum fractions near and above x� 0:2.
Detailed measurements of W� and Z=�� production in
proton-proton collisions will provide new and complemen-
tary information about this flavor asymmetry in the sea,
from different reactions and at very different momentum
scales.
This paper describes the first measurement of the Wþ,

W�, and Z=�� boson production cross sections in proton-
proton collisions at

ffiffiffi
s

p ¼ 500 GeV by the STAR collabo-
ration at RHIC. The cross sections are derived from studies

of the charge-separated Wþð�Þ ! eþð�Þ þ �eð ��eÞ and
Z=�� ! eþe� decay channels for outgoing leptons near
mid-rapidity (j�ej< 1), and are based on 13:2 pb�1

of data recorded during the 2009 run. In addition to
the individual cross sections, a first measurement of the
Wþ=W� cross section ratio at

ffiffiffi
s

p ¼ 500 GeV is also
presented.
The paper is organized as follows. Section II provides a

brief overview of the STAR detector, focusing on the
subsystems used in this analysis. Section III describes
the data and simulation samples analyzed, Sec. IV details
the extraction of theW and Z=�� signal spectra, and Sec. V
explains the estimation and subtraction of the background
from the signal spectra. Finally, we discuss the calculation
of theW and Z=�� production cross sections in Sec. VI and
the Wþ=W� cross section ratio in Sec. VII, and compare
these results to several theoretical calculations. Some
of the data analysis methods employed here have been
described briefly in Ref. [9], and are discussed in more
detail in this paper which incorporates a slightly larger data
sample as well as improved detector calibrations.

II. THE STAR DETECTOR

The STAR detector [19], shown schematically in Fig. 1,
is a large acceptance, multipurpose detector designed pri-
marily for measurements of hadronic and electromagnetic
particle production in high-energy heavy ion and polarized
proton-proton collisions. STAR is comprised of many
separate subsystems, each with specific capabilities; only
those subsystems most relevant for the present analysis
will be mentioned below.
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The heart of STAR is a large time projection chamber
(TPC) [20] which is situated within a highly uniform, 0.5 T
solenoidal magnetic field. The TPC provides charged par-
ticle tracking, particle identification (via ionization energy
loss, dE=dx), and precision momentum measurements
over the range j�j< 1:3 and with full 2� azimuthal cover-
age. Although the pT resolution of the TPC deteriorates
with increasing pT , the spatial accuracy of tracks recon-
structed between the inner and outer radius of the TPC,
located at 50 and 200 cm, respectively, remains accurate
up to �1–2 mm in Cartesian space. In this analysis, TPC
tracks were used in identifying the high-pT e� candidates,
determining candidate charge signs, reducing contamina-
tion from the significant QCD background (see Sec. IV),
and reconstructing the pp interaction vertex for the events
of interest.

Surrounding the TPC radially is the barrel electromag-
netic calorimeter (BEMC) [21], a high granularity lead/
scintillator-based sampling calorimeter. This detector is
used to measure the energy deposited by energetic photons
and electrons with pseudorapidities j�j< 1:0 over the full
azimuth. The BEMC is segmented into 4800 optically
isolated projective towers, each of which subtends 0.05

rad in azimuth (�) and 0.05 units in �, and is roughly 20
radiation lengths deep. Based on cosmic ray and test
beam data, the nominal energy resolution of the barrel

calorimeter is calculated to be �E=E ¼ 14%=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðGeVÞp �

1:5% [21]. The BEMC was used to measure the e� candi-
date energy, and to aid in background reduction. By
identifying events with large, highly localized, electromag-
netic energy deposition, the BEMC also provided our
first-level trigger signal for leptonic W and Z decays.
Located at one end of the STAR TPC, directly in

front of the magnetic field return pole tip, is the endcap
electromagnetic calorimeter (EEMC) [22], which pro-
vides electromagnetic energy measurement over the
range 1:09<�< 2 and 2� in azimuth. The EEMC is
similar in design to the BEMC: a lead/scintillator sampling
calorimeter, finely segmented in � and � into 720 towers
with projective geometries, though it is approximately
3–4 radiation lengths thicker than the BEMC due to its
more forward position. In the work presented here, the
EEMC was only used for background reduction, via the
isolation and missing energy requirements discussed in
Sec. IV.

III. DATA AND SIMULATION SAMPLES

Events in this analysis were selected online using a two-
level trigger requirement in the BEMC. The hardware
level-0 trigger accepted events containing at least one
tower with a transverse energy, ET , greater than 7.3 GeV.
A dedicated software trigger algorithm then selected
events by constructing 2� 2 clusters of towers, and requir-
ing that at least one cluster consist of a seed tower with
ET > 5 GeV and a cluster sum ET > 13 GeV. During the
2009 run 1:2� 106 events were recorded satisfying these
trigger conditions.

A. Luminosity measurement

The integrated luminosity of the data sample was deter-
mined using the vernier scan technique [23]. The trans-
verse widths (�x and �y) of the beam overlap region are

determined by measuring the trigger rate as the beams
are swept through each other in the transverse plane. The
intensity of each beam is determined during a scan by
the wall current monitors (WCM) [24]. With the assump-
tion of Gaussian beams, the instantaneous luminosity can
be written as

L ¼ frevK

2��x�y

(1)

where frev is the revolution frequency and K ¼ P
Na

i N
b
i is

the product of the bunch intensities (Ni) of the two beams
(a, b) summed over all bunches. The dedicated trigger used
in the vernier scan, and also to monitor the luminosity in
this analysis, is the level-0 hardware trigger, described
above, with a coincidence away-side ET requirement
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FIG. 1 (color online). (a)W candidate event display embedded
in a schematic of the STAR detector. Descriptions of the sub-
systems relevant for this analysis are given in Sec. II. (b) TPC pT

and (c) BEMC and EEMC ET distributions in � and � for the
same W candidate event as shown in (a).
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imposed offline to reduce non-collision background.
The cross section for this trigger can be written as �ver ¼
Rmax
ver =L, where Rmax

ver is the maximum trigger rate while the
beams are fully overlapping. The value measured for this
work was �ver ¼ 434� 8ðstatÞ � 56ðsystÞ nb. Figure 2
shows an example of the trigger rate as a function of the
x and y beam displacements during one of the vernier
scans, which was fit to extract the transverse beam widths
and maximum trigger rate. The fit function used was a
Gaussian in x and y combined with a constant term to
account for remaining non-collision background. The larg-
est contribution to the �ver systematic uncertainty was
attributed to possible non-Gaussian components of the
beam profile (10%), with smaller contributions coming
from possible BEMC gain drift (5%), and uncertainties
in the bunch intensity measurements (4%). This value for
�ver was used to normalize the total number of events
which satisfy this trigger condition, resulting in an inte-
grated luminosity for the data sample of L ¼ R

Ldt ¼
13:2� 0:2ðstatÞ � 1:7ðsystÞ pb�1.

B. Simulation samples

Monte Carlo (MC) simulation samples were generated
in order to determine detector efficiencies, estimate back-
ground contributions from electroweak processes, and
compare various predicted observables to data. Signal
samples for both theW ! e� and Z=�� ! eþe� channels
were generated, along with a W ! �� sample which is an
expected background in the W analysis due to the �’s
leptonic decay. All the samples were produced using the
PYTHIA 6.422 [25] event generator and a GEANT [26]
model of the STAR detector response. The same recon-
struction and analysis algorithm was used for both the data

and MC samples, and each MC sample was normalized to
the integrated luminosity of the data unless otherwise
stated.
Because of the high luminosity of the pp collision

environment at
ffiffiffi
s

p ¼ 500 GeV at STAR, a significant
number of pile-up tracks is present in the TPC at any given
time. The pile-up tracks are the result of either another
collision from the same bunch crossing as the triggered
event, or a collision that occurred in an earlier or later
bunch crossing. Note that the bunch crossing period at
RHIC is about 107 ns, while it can take up to �38 	s
for track ionization to drift through the TPC. In the simu-
lation, these pile-up tracks are accounted for by embedding
the full GEANT detector response of the simulated event
into a zero-bias triggered event before reconstruction. The
zero-bias events are selected randomly during nominal
beam crossings at a rate of & 1 Hz with no detector
requirements, resulting in a good representation of the
pile-up contained in the TPC for BEMC triggered collision
events.

IV. W AND Z=�� SIGNAL RECONSTRUCTION

This section details the identification and reconstruction
ofW and Z=�� candidate events, as well as the reduction of
the large QCD background. This reduction is achieved
through cuts designed to take advantage of the kinematical
and topological differences between electroweak and QCD
processes. ‘‘Z=��’’ will be used interchangeably with ‘‘Z’’
for the remainder of this paper.
Candidate events were selected from the sample of

BEMC triggered events described in Sec. III by requiring
a reconstructed primary vertex. A primary vertex is one
reconstructed from either a single TPC track with pT >
10 GeV=c or multiple tracks originating from the same
location along the beamline. Each track considered in
vertex reconstruction is assigned an increased weight if it
either points to a region of energy deposition in the calo-
rimeters, or if it uses hit points from both sides of the TPC
central membrane. Tracks satisfying either of these two
conditions are likely to be from the triggered collision;
therefore weighting these tracks more heavily in vertex
reconstruction strongly reduces the contamination from
pile-up tracks. The distribution of primary vertices along
the beam direction is approximately Gaussian with an
RMS width of 52 cm. Events of interest were required to
have a jzvertexj< 100 cm, where zvertex is the distance along
the beam direction of the primary vertex from the center of
the STAR interaction region.

A. Identification of high-ET isolated
electrons and positrons

A candidate electron or positron track is defined to be a
TPC track with pT > 10 GeV=c that is associated with a
primary vertex satisfying the criteria described above.
Candidate tracks were also required to have:
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(i) a minimum of 15 TPC points,
(ii) more than 51% of the maximum number of TPC

points allowed,
(iii) a first TPC point with radius less than 90 cm,
(iv) a last TPC point with radius greater than 160 cm.

These requirements help to ensure that the track and its
charge sign are well reconstructed, as well as reject pile-up
tracks which may be mistakenly associated with a primary
vertex. Candidate TPC tracks are extrapolated to the
BEMC to determine to which tower the track points, then
the four possible 2� 2 BEMC tower clusters containing
the tower pointed to by the track are formed. The 2� 2
cluster with the largest summed transverse energy, Ee

T , is
assigned to the e� candidate. The Ee

T is required to be
greater than 15 GeV to be safely above the trigger turn-on
region. Also, the two-dimensional distance between the
energy log-weighted centroid of the tower cluster position
and the extrapolated TPC track position, j� ~rj, is required
to be less than 7 cm, to reject candidates where the BEMC
cluster may not have originated from the particle which
produced the high pT TPC track.

Electrons and positrons from W and Z decays should
be well isolated from other particles in ��� space; thus,
in the next stage of the candidate selection process
two isolation criteria are applied. The first isolation cut
was made by summing the ET in the 4� 4 BEMC tower
cluster which surrounds the e� candidate cluster, E4�4

T , and
requiring Ee

T=E
4�4
T > 0:95. The other isolation require-

ment is imposed to reduce jet-like events. The quantity
E�R<0:7
T is defined as the sum of all BEMC and EEMC

tower ET and TPC track pT within a cone radius of �R ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
��2 þ��2

p
< 0:7 around the candidate track, and the

ratio Ee
T=E

�R<0:7
T is required to be greater than 0.88. The e�

candidate track is excluded from the sum of TPC track pT

to avoid double-counting the candidate energy in the
E�R<0:7
T sum. Figure 3 shows the isolation ratios described

above for both data and W ! e� MC. The values of the
cuts, shown by the dashed lines, were chosen to retain a
large fraction of the signal, while significantly reducing
the QCD background. Note that differences between the
isolation ratios in Fig. 3 of this paper and Fig. 1 of Ref. [9]
are expected due to differences in the data samples used
and improved calibrations. Also, the order of the Ee

T=E
4�4
T

and candidate track-cluster matching j� ~rj cuts were in-
verted in Ref. [9] with respect to the ordering described in
this section.

B. W candidate event selection

The selection of W ! e� candidate events is based on
differences in the event topology between leptonic W
decays and the QCD background or Z ! eþe� events.
W ! e� events contain a nearly isolated e� with a
neutrino close to opposite in azimuth. Electrons and
positrons emitted near mid-rapidity from W decay are

characterized by a large Ee
T that peaks near half the W

mass (� 40 GeV) with a distribution referred to as a
Jacobian peak. There is also a large missing transverse
energy in W ! e� events opposite, in azimuth, to the e�
due to the undetected neutrino. As a result, there is a large
imbalance in the vector pT sum of all reconstructed final
state objects for W events. In contrast, Z ! eþe� events
and QCD hard-scattering events, such as di-jets, are char-
acterized by a small magnitude of this vector pT sum
imbalance.
In order to enforce this missing transverse energy

requirement, we define the pT balance vector:

~p bal
T ¼ ~pe

T þ X

�R>0:7

~p
jets
T (2)

where ~pe
T is the e

� candidate pT vector, which is composed
of a momentum direction and a magnitude determined by
the candidate TPC track and BEMC cluster, respectively.
The second term on the right of Eq. (2) is the sum of the pT

vectors for all reconstructed jets whose thrust axes are
outside the cone radius of �R ¼ 0:7 around the e� candi-
date. Jets are reconstructed using a standard mid-point
cone algorithm used in STAR jet measurements [27] based
on the tracks from the TPC and tower energies in the
BEMC and EEMC. A scalar signed PT-balance variable
is then formed, defined as

signedPT-balance ¼ signð ~pe
T � ~pbal

T Þj ~pbal
T j: (3)

This quantity is required to be larger than 15 GeV/c as
indicated by the dashed line in Fig. 4. Also in Fig. 4 one can
see that in theW ! e�MC sample, the signed PT-balance
variable andEe

T are very well correlated, as contributions to
the ~pbal

T vector from reconstructed jets outside the cone of
�R ¼ 0:7 are generally small. The data show a similar
correlation at high Ee

T , where the distribution is dominated
by W ! e� events. At low Ee

T where contributions from

T
4×4 / ET

eE
0.5 1

C
o

u
n

ts

0

1000

2000

 STAR 2009 Data

 MCν e→ W 

T
R<0.7∆ / ET

eE
0.5 1

100

200

300

FIG. 3 (color online). Distributions of the isolation ratios
Ee
T=E

4�4
T (left) and Ee

T=E
�R<0:7
T (right) used in e� candidate

selection. W ! e� MC shape distributions (arbitrary normaliza-
tion) are shown as filled histograms for comparison with the data
distributions. The vertical dashed lines indicate the values of the
cuts on these isolation ratios.
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QCD background events are larger, more events have
a small value for the signed PT-balance variable, as
expected.

The signed PT-balance requirement provides a signifi-
cant suppression of QCD di-jet and Z ! eþe� background
events, and a further reduction of the Z ! eþe� back-
ground is achieved by rejecting events with an additional

e-like 2� 2 cluster in a reconstructed jet where E2�2
T >

p
jet
T =2 and the invariant mass of the two e�-like clusters is

within the range of 70 to 140 GeV=c. This reduces Z !
eþe� contamination in both theW signal sample and in the
sample that will be used for the data-driven QCD back-
ground, described in Sec. VA.

The reduction in the W candidate yield after each of the
selection criteria is shown in Fig. 5. Initially, when only a
candidate TPC track and BEMC cluster have been recon-
structed, the distribution (solid line) is dominated by QCD
background, which is exponentially falling with Ee

T , and
there is no evidence of the Jacobian peak. However, once
the e� selection, isolation and signed PT-balance cuts are
applied, a W signal can be seen above the background at
Ee
T �MW=2.

The charge sign of the e� candidate is determined by
the direction of curvature of the TPC track in the STAR
magnetic field, while the magnitude of the track curvature
provides a measure of 1=pT . Figure 6 shows the product
of the reconstructed charge sign and 1=pT for the lepton
candidates that satisfy all the cuts described above with
Ee
T > 25 GeV. Two well-separated regions are seen for

the positive and negative charges, cleanly distinguishing
between the eþ and e� candidates.

C. Z candidate event selection

Using the isolated e� sample found in Sec. IVA, Z !
eþe� events were selected by requiring a pair of isolated
e� candidates with opposite charge signs. The invariant
mass of each eþe� pair was reconstructed, and the result-
ing mass distributions are shown in Fig. 7 after each of the
selection criteria described in Sec. IVA has been satisfied
for both the eþ and e� candidates. After all selection cuts
are applied, there is a signal near the invariant mass of the
Z and a small signal at lower invariant mass. This is
consistent with the expectations from the Z=�� ! eþe�
MC, as shown in Fig. 8.
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V. BACKGROUND ESTIMATION

A. W background estimation

There are a number of background processes that can
contribute to the W ! e� candidate yield. Other electro-
weak processes yield isolated electrons as well, which can
be misidentified as W ! e� events. Also, QCD jets may
fragment in such a way that they satisfy the isolated
electron requirements, and detector acceptance effects
can allow these events to satisfy the remaining W ! e�
event selection criteria. This section describes how the
contributions of these background processes are estimated.

The electroweak background processes considered in
this analysis are W ! �� and Z ! eþe�. Their contribu-
tions to the W ! e� signal yield were estimated using the
MC samples described in Sec. III B. W ! �� events,
where the � decays leptonically (i.e. � ! e� ��), contain
an isolated e� with a large missing energy opposite in
azimuth, similar to the W ! e� signal. However, the e�
which comes from the � decay must share the energy of the
� with the two secondary neutrinos, and thus it has a much
lower Ee

T on average than those e� which come directly

from a W decay. Therefore, the W ! �� background con-
tributions are largest at low Ee

T , as can be seen in Fig. 9.

Z ! eþe� events can contaminate the W signal when one
of the decay leptons escapes detection, either from a
detector inefficiency or by traversing an uninstrumented
region of phase space. Unlike the other background
sources described in this section, the Z ! eþe� back-
ground yield is approximately constant in Ee

T , resulting

in a significant contribution to the total background, even
though the cross section is small compared to other pro-
cesses. Table I lists each of the background processes and
its estimated contribution to the W yield for candidates
with Ee

T > 25 GeV. The uncertainties for these electro-

weak background components are due to the statistical
uncertainty of the MC calculation and the uncertainty in

the normalization of the MC samples to the integrated
luminosity of the data.
The STAR detector has only one EEMC, resulting in

missing calorimetry acceptance for the pseudorapidity
region �2<�<�1:09 compared to the positive pseu-
dorapidity portion of the detector. If the isolation cone of
�R< 0:7 around an e� candidate overlaps with this miss-
ing acceptance, or a jet opposite in azimuth of an e�
candidate falls within this acceptance, background QCD
events may satisfy all the W ! e� selection requirements.
This contamination of the W yield, referred to as the
‘‘second EEMC’’ background, was determined by repeat-
ing the W signal selection a second time, with the EEMC
towers excluded from the isolation ratio, Ee

T=E
�R<0:7
T , and

the reconstruction of jets summed in the ~pbal
T vector. The

events which satisfy the requirements of this second
pass analysis (without the EEMC), but fail the nominal
requirements described in Secs. IVA and IVB are a direct
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TABLE I. Summary of background event contributions to
the W ! e� yield and their uncertainties for candidates with
Ee
T > 25 GeV and j�ej< 1.

Wþ ! eþ�e W� ! e� ��e

W ! �� 13:4� 1:7� 3:2 3:3� 0:8� 0:8
Z ! eþe� 7:3� 0:4� 1:7 7:3� 0:4� 1:7
Second EEMC 9:1� 3:0� 0:5 9:2� 3:0� 0:4
Data-driven QCD 7:0� 0:6 þ2:3

�1:6 5:8� 0:5 þ2:6
�1:2

Total 36:6� 3:5 þ5:4
�5:2 25:8� 3:2 þ3:6

�2:8

L. ADAMCZYK et al. PHYSICAL REVIEW D 85, 092010 (2012)

092010-8



measure of the background rejected by the EEMC.
Moreover, these events also estimate the amount of back-
ground that would have been rejected by a second EEMC.

While this sample of second EEMC background is ex-
pected to be predominantly the result of QCD processes, it
does contain a small amount of Z ! eþe� contamination
as well. Because background from the Z ! eþe� process
was already taken into account separately, the Z ! eþe�
MC sample was used to remove any contamination from
Z ! eþe� processes in the second EEMC background
distribution, to avoid double-counting. The uncertainty
on the second EEMC background is the statistical uncer-
tainty of the events vetoed by the EEMC and the systematic
uncertainty in the normalization of Z ! eþe� contamina-
tion which was subtracted using the Z ! eþe� MC.

The remaining contribution to the background is pre-
dominantly from QCD 2 ! 2 processes in which one jet
fragments such that it satisfies our e� candidate require-
ments, while all other jets escape detection outside the
j�j< 2 acceptance. This component of the background
was estimated using a data-driven QCD background dis-
tribution as a function of Ee

T , which is obtained by selecting

events which satisfy all the isolated e� candidate criteria,
but have a signed PT-balance< 15 GeV=c. Similar to the
way the second EEMC background was corrected, contri-
butions to the data-driven background distribution from the
Z ! eþe� process were removed using the Z ! eþe�
MC sample, to avoid double-counting the Z ! eþe�
background.

The data-driven QCD background distribution was then
normalized to the remaining W ! e� candidate signal
distribution after the W ! ��, Z ! eþe�, and second
EEMC background components had been removed. The
normalization was determined over the range 15< Ee

T <
19 GeV, and accounts for the possibility of true W signal
events in this region using the W ! e� MC. The system-
atic uncertainty of this data-driven QCD background
contribution was estimated by varying the data-driven
background distribution and the Ee

T region over which

the distribution was normalized. Twenty different back-
ground distributions were obtained by varying the cut on
the signed PT-balance variable from 5 to 25 GeV=c in
steps of 1 GeV=c. The 20 background distributions were
then fit to the signal, as described above, using three
different normalization regions (15<Ee

T < 17, 19, and

21 GeV), resulting in 60 different normalized background
distributions. The systematic uncertainty in each Ee

T bin

was taken to be the largest deviation among these 60
distributions from the nominal value.

The charge-separated Ee
T distributions of W� ! e� þ

�e candidates satisfying all the selection criteria described
in Secs. IVA and IVB are shown in Fig. 9. Also shown here
are the contributions from the different backgrounds dis-
cussed in this section and the W ! e� signal MC distri-
bution, which is normalized to the integrated luminosity of

the data. A 
2 test of homogeneity comparing the data and
the sum of background components and W ! e� signal
MC (dashed line) Ee

T spectra results in a 
2 value of 9.5
and 6.9 for the Wþ and W�, respectively. For 12 degrees
of freedom this results in a 66% and 86% probability,
respectively, to obtain a larger 
2. This indicates a good
agreement between data and MC and further validates the
procedure used in the background estimation described
in this section. The e� pseudorapidity distributions are
shown in Fig. 10, where the background contributions
were found independently for each �e bin using the
methods described above. Again, good agreement is found
between the data and the sum of the W ! e� signal MC
and background components.

B. Z background estimation

The background for the Z ! eþe� signal is expected
to be very small due to the coincidence requirement of a
pair of oppositely charged, high ET , isolated eþ and e�.
Background contributions from electroweak processes
were estimated using the MC samples described in
Sec. III B. Within the defined mass window to be used
for the cross section measurement (70<meþe� <
110 GeV=c2), the background contributions were deter-
mined to be 0:1þ0:3

�0:1 events from W ! e� and negligible

from the other Z decay channels. TheW ! e� background
uncertainty was estimated using the 68% C.L. interval of
the unified statistical approach described in Ref. [28].
An accurate data-driven estimate of the QCD back-

ground is difficult to obtain for the Z signal due to the
limited statistics of the data set. One method for estimat-
ing the background is to determine the number of e� pairs
that satisfy all the Z ! eþe� signal criteria other than
the opposite charge-sign requirement. However, no same
charge-sign pairs were observed in the data, therefore, the
QCD background was found to be consistent with zero. An
upper bound on the QCD background systematic uncer-
tainty was estimated to be 1.3 events using a 68% C.L.
interval [28].
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VI. THE W AND Z CROSS SECTIONS

The W and Z production cross sections were measured
from the sample of events which satisfy the fiducial and
kinematic requirements of this analysis. As stated previ-
ously, only e� candidates at mid-rapidity (j�ej< 1) were
considered in this analysis. Candidates for the W analysis
must have Ee

T > 25 GeV, and for the Z analysis we re-
quired that both eþ and e� have Ee

T > 15 GeV and 70<
meþe� < 110 GeV=c2. The cross sections measured within
these constraints are defined as the fiducial cross sections,
and can be written as:

�fid
WðZÞ � BRðWðZÞ ! e�ðeeÞÞ ¼ Nobs

WðZÞ � N
bkgd
WðZÞ

L � �totWðZÞ
(4)

where
(i) Nobs

WðZÞ is the number of observed WðZÞ candidates
within the defined kinematic acceptance satisfying
all the selection criteria described in Sec. IV,

(ii) N
bkgd
WðZÞ is the total number of WðZÞ background

events within the defined kinematic acceptance sat-
isfying all the selection criteria described in Sec. IV,
and estimated from various contributions described
in Sec. V,

(iii) �totWðZÞ is the total efficiency correction described in

Sec. VIA below,
(iv) and L is the integrated luminosity of the data set

discussed in Sec. III A.
To determine the total production cross sections, it is

necessary to apply acceptance correction factors, AWðZÞ,
to the fiducial cross sections defined above, to account
for the fiducial and kinematic constraints imposed in the
analysis. The total production cross sections are then de-
fined via the relations

�tot
W � BRðW ! e�Þ ¼ �fid

W � BRðW ! e�Þ
AW

(5)

�tot
Z � BRðZ ! eþe�Þ ¼ �fid

Z � BRðZ ! eþe�Þ
AZ

: (6)

The determination of the acceptance corrections necessary
to extract the total production cross sections is discussed in
Sec. VI C.

A. The efficiency correction factors

The efficiency corrections were obtained using the
W ! e� and Z ! eþe� PYTHIA MC samples described
in Sec. III B. Only the subset of events from the MC
samples which satisfy the acceptance conditions for
the fiducial cross sections were used in the efficiency
calculations, as the acceptance correction is accounted
for separately in the definition of the total cross section.

The total efficiency can be factorized into four efficiency
terms, written as

�totWðZÞ ¼ �trigWðZÞ � �vertWðZÞ � �trkWðZÞ � �algoWðZÞ: (7)

The values for each of the terms in Eq. (7) are listed in
Table II, along with their uncertainties, for the Wþ, W�,
and Z signals. The remainder of this section describes how
those values were obtained.
The trigger efficiency, �trig, is the fraction of MC signal

events which satisfy the online trigger condition defined in
Sec. III. This was determined by emulating the trigger
condition used online in the MC. Because of the relatively
wide zvertex distribution of our data sample, some candi-
dates may satisfy the j�ej< 1 kinematic condition at the
MC generator level, but will fall outside the acceptance
of the BEMC. This was observed in the W analysis as an
Ee
T-dependent trigger efficiency due to the correlation of

the Ee
T and �e of the decay e�. An Ee

T-dependent trigger
efficiency correction was therefore used in the computation
of theW� cross sections. This effect also leads to a notably
smaller average W� trigger efficiency relative to Wþ, as
the �e distribution is expected to be peaked more strongly
at zero for theWþ candidates thanW�, which is consistent
with Fig. 10. To estimate the uncertainty on �trig, the
BEMC energy scale was varied by its uncertainty of
�3:6%. Because the offline kinematic requirement of
Ee
T > 25 GeV was significantly larger than the trigger

threshold of 13 GeV, for this analysis we observed only
small variations in the trigger efficiency due to the uncer-
tainty of the BEMC energy calibration.
The vertex efficiency, �vert, is defined as the fraction of

events satisfying the trigger which contain a reconstructed
primary vertex within the fiducial cut of jzvertexj< 100 cm,
as described in Sec. IV. The tracking efficiencies for theW
and Z decay e�s are defined as follows. ForW events with
a reconstructed primary vertex, �trkW is the efficiency for
reconstructing a single TPC track which satisfies the track
requirements in Sec. IVA, however for Z ! eþe� events
the tracking efficiency, �trkZ , is the efficiency for recon-
structing two TPC tracks satisfying those conditions. In
comparing the reconstructed TPC track 1=pT distributions
between data and MC, a slightly worse resolution was seen
in the data. This was accounted for by reweighting the MC
distributions to match the data. The uncertainty on the

TABLE II. Summary of efficiency correction factors included
in Eq. (7). The average values for the trigger and algorithm
efficiencies for the W� analysis are given here, however an
Ee
T-dependent correction was used for the measured cross sec-

tion, as described in the text.

Wþ ! eþ�e W� ! e� ��e Z ! eþe�

�trig 0:857� 0:007 0:825� 0:007 0:968� 0:006
�vert 0:881� 0:005 0:886� 0:006 0:938� 0:006
�trk 0:741� 0:030 0:748� 0:031 0:511� 0:032
�algo 0:892� 0:024 0:892� 0:024 0:730� 0:024
�tot 0:498� 0:026 0:488� 0:026 0:338� 0:024
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tracking efficiency was estimated from the error in this
reweighting resulting from the limited statistics of the data
distribution.

Finally, the algorithm efficiency, �algo, is the fraction of
events with one (two) reconstructed e� candidate TPC
tracks, which satisfy the remaining W (Z) selection crite-
ria. As discussed in Sec. IV, these remaining selection
criteria include reconstruction of BEMC clusters, matching
extrapolated track and cluster positions, isolation require-
ments, and finally the signed PT-balance and pair of oppo-
site charge-sign candidate requirements for W and Z
events, respectively. A weak Ee

T dependence was observed
in the algorithm efficiency for theW ! e�MC due mainly
to the efficiency of the Ee

T=E
�R<0:7
T isolation cut being

reduced at low Ee
T . Thus, an Ee

T-dependent algorithm effi-
ciency correction was used in the computation of the W�
cross sections. The uncertainty on �algo was determined by
varying the BEMC scale uncertainty, as was done for the
trigger efficiency.

B. The measured fiducial cross sections

The fiducial cross sections are calculated according to
Eq. (4), and the measured values are summarized in
Tables III and IV forW� and Z respectively. The dominant
uncertainty for both the Wþ and W� cross sections comes
from the systematic uncertainty in the measured lumi-
nosity of the data sample. The Z cross section measure-
ment, however, is currently dominated by the statistical
uncertainty.

C. The acceptance correction factors

As stated previously, to determine the total cross sections,
acceptance correction factorsAWðZÞ, must be used to account

for the fiducial and kinematic acceptance requirements of
the analysis, which are defined at the beginning of Sec. VI.
AWðZÞ were calculated using the FEWZ program [29], which

provides cross section calculations for W and Z boson
production up to NNLO in pQCD. Table V lists the values
of the acceptance factors using the MSTW 2008 [30] and
CTEQ 6.6 [31] parton distribution function sets. The nomi-
nal values for the acceptance corrections, used in the total
cross section measurements, were taken from the next-to-
leading order (NLO) calculation using the MSTW08 PDF
set. Theoretical uncertainties in the calculation of these
factors arise from several sources, including differences
between PDF sets, uncertainties within a PDF set, and
uncertainties in the modeling of the production process.
The uncertainty due to differences between PDF sets

was taken to be the difference between the CTEQ 6.6 and
MSTW08 acceptance values at NLO. Both groups provide
error eigenvector PDF sets which were used to estimate the
acceptance uncertainty, at the 90% confidence level, within
each set. The average of the CTEQ 6.6 and MSTW08 error
eigenvector uncertainty was taken to be the uncertainty due
to the PDF itself. Finally, the uncertainty in the modeling
of the production process was estimated by comparing
the acceptance values from calculations with different
orders of QCD corrections, using the MSTW08 PDF set.
The maximum difference from the nominal value (NLO
MSTW08) was taken as this final uncertainty contribution.
Table VI summarizes the contributions to the uncertainties
in the acceptance values. The individual contributions were
added in quadrature to determine the total uncertainty for

TABLE III. Summary of input and measured values for the
W ! e� fiducial cross sections, with their statistical, system-
atic, and luminosity uncertainties. As noted in the text, an
Ee
T-dependent efficiency correction factor is used for the cross

section measurement, and only the average value is shown here.

Wþ ! eþ�e W� ! e� ��e

value stat syst lumi value stat syst lumi

Nobs 496 22.3 � � � � � � 148 12.2 � � � � � �
Nbkgd 36.6 3.5 þ5:4

�5:2 � � � 25.8 3.2 þ3:6
�2:8 � � �

�tot 0.498 0.006 0.025 � � � 0.488 0.007 0.025 � � �
Lðpb�1Þ 13.2 0.2 � � � 1.7 13.2 0.2 � � � 1.7

�fidðpbÞ 70.0 3.5 3.5 9.1 19.2 2.1 1.1 2.5

TABLE IV. Summary of input and measured values for the
Z ! eþe� fiducial cross section, with their statistical, system-
atic, and luminosity uncertainties.

Z ! eþe�
value stat syst lumi

Nobs 13 3.6 � � � � � �
Nbkgd 0.1 0.1 þ1:3

�0:0 � � �
�tot 0.338 0.012 0.021 � � �
Lðpb�1Þ 13.2 0.2 � � � 1.7

�fidðpbÞ 2.9 0.8 þ0:2
�0:3 0.4

TABLE V. Summary of acceptance values calculated with the
FEWZ program. The NLO MSTW08 values are used for the
total cross section calculations in Sec. VID.

AWþ AW� AZ

LO MSTW08 0.591 0.444 0.377

NLO MSTW08 0.597 0.444 0.378

NNLO MSTW08 0.603 0.435 0.385

NLO CTEQ 6.6 0.592 0.430 0.370

TABLE VI. Summary of the relative uncertainties in the ac-
ceptance correction factors, AWðZÞ, as computed by the FEWZ

program.

�AWþð%Þ �AW�ð%Þ �AZð%Þ
Difference between PDFs 1.0 3.2 2.1

MSTW08 NLO error PDFs 0.9 2.7 1.2

CTEQ 6.6 NLO error PDFs 0.9 4.5 1.8

Calculation Order 1.0 2.0 1.9

Total 1.7 5.2 3.2
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each acceptance factor. The AW� uncertainties are signifi-
cantly larger than those for AWþ , driven primarily by the
PDF-related errors. This is expected, due to the larger
uncertainties in the �u and d quark PDFs with respect to
those of the �d and u quarks.

D. The measured total cross sections

The total cross sections are calculated according to
Eqs. (5) and (6), by dividing the measured fiducial cross
sections by the acceptance correction factors determined in
the previous section. The results for pp ! W� total pro-
duction cross sections at

ffiffiffi
s

p ¼ 500 GeV are the following:

�tot
Wþ � BRðWþ ! eþ�eÞ
¼ 117:3� 5:9ðstatÞ � 6:2ðsystÞ � 15:2ðlumiÞ pb

�tot
W� � BRðW� ! e� ��eÞ
¼ 43:3� 4:6ðstatÞ � 3:4ðsystÞ � 5:6ðlumiÞ pb:

The result for the pp ! Z=�� total production cross
section at

ffiffiffi
s

p ¼ 500 GeV in the invariant mass range of
70<meþe� < 110 GeV=c2 is

�tot
Z=�� � BRðZ=�� ! eþe�Þ
¼ 7:7� 2:1ðstatÞþ0:5

�0:9ðsystÞ � 1:0ðlumiÞ pb:
Figure 11 shows the measured total cross sections, multi-
plied by the respective branching ratios, in comparison
with the theoretical predictions at NLO from the FEWZ

program using the MSTW08 PDF set. Measurements from
other experiments at the Sp�pS, Tevatron, RHIC, and LHC
are also shown as a function of

ffiffiffi
s

p
for comparison.

Theoretical predictions for the production cross sections
computed by the FEWZ [29] and fully resummed
RHICBOS [15] calculations are shown in Table VII. The
theoretical uncertainties were determined for the FEWZ
predictions using the 90% confidence level error eigen-
vector PDF sets; error eigenvector sets are not provided
for the RHICBOS calculation. Variations in the strong
coupling constant, �s, from the associated error PDF sets
were considered as well, but the uncertainties were found
to be negligible compared to the uncertainties from the
PDFs. The theoretical predictions agree well with the
measured cross sections within the theoretical and experi-
mental uncertainties. Interestingly, differences between the
MSTW08 and CTEQ 6.6 PDF sets result in significant
differences in the predicted cross sections at NLO.

VII. THE W CROSS SECTION RATIO

The W cross section ratio is defined as

RW ¼ �fid
Wþ

�fid
W�

¼ Nobs
Wþ � Nbkgd

Wþ

Nobs
W� � N

bkgd
W�

� �
tot
W�

�tot
Wþ

: (8)

If the small contributions from strange quarks are
neglected, this ratio should be equal to [32]

RW ¼ uðx1Þ �dðx2Þ þ �dðx1Þuðx2Þ
�uðx1Þdðx2Þ þ dðx1Þ �uðx2Þ : (9)

Measurements of the cross section ratio should therefore be
sensitive to the flavor asymmetry of the antiquark sea in the
Bjorken-x range 0:1 & x & 0:3 probed at RHIC. Drell-Yan
experiments [17,18] have measured a large asymmetry in
this x range, and precision measurements of RW at RHIC
can provide independent constraints on the flavor asym-
metry which are free from the assumption of charge sym-
metry required in Drell-Yan. Measurements of the lepton
charge asymmetry at the LHC [33,34] provide similar
constraints on the quark and antiquark PDFs, though at
significantly lower x due to the much higher energy of the
collisions.
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FIG. 11 (color online). Measurements of W and Z=�� (70<
meþe� < 110 GeV=c2) total cross sections times branching ratio
versus center-of-mass energy. For the W cross sections in pp
collisions, the closed symbols represent Wþ and the open
symbols represent W�. The theory curves are from the FEWZ
program at NLO using the MSTW08 PDF set.

TABLE VII. Summary of total cross section (times branching
ratio) theoretical predictions at

ffiffiffi
s

p ¼ 500 GeV calculated with
the FEWZ and RHICBOS programs. The Z=�� values are
defined within the invariant mass range of 70<meþe� <
110 GeV=c2.

�tot
WþðpbÞ �tot

W�ðpbÞ �tot
Z � ðpbÞ

NLO MSTW08 132:4� 9:0 45:7� 3:6 10:8� 0:8
NNLO MSTW08 136:7� 9:5 48:1� 3:0 11:2� 0:8
NLO CTEQ 6.6 121:8� 8:8 41:1� 4:3 9:8� 0:8
Ressum. CTEQ 6.6 121.1 39.9 -
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The W cross section ratio was measured in two j�ej
regions, as this coarsely constrains the x of the partons
involved in theW production. In each j�ej bin, the fiducial
cross sections were computed using the same procedures
described in Sec. VI, where the background and efficien-
cies were separately calculated for each charge and j�ej
bin. The luminosity, and its sizable uncertainty, cancel in
the cross section ratio, significantly reducing the system-
atic uncertainty, with respect to the Wþ and W� cross
sections independently.

Our results for the measured cross section ratio are listed
in Table VIII. Figure 12 shows the cross section ratio as a
function of j�ej, where the statistical and systematic un-
certainties of the data have been added in quadrature. Also
displayed in Fig. 12 are theoretical calculations of the cross
section ratio computed with the FEWZ program at NLO.
Both the MSTW08 and CTEQ 6.6 PDF sets were used to
compute the ratio; the error bands shown are the 90%
confidence level error eigenvector uncertainties. The pre-
dictions agree with the measured values within the large
uncertainties, which are dominated by the statistical preci-
sion of the W� yield.

VIII. SUMMARY

We have presented measurements of the Wþ ! eþ�e

and W� ! e� ��e production cross sections in proton-
proton collisions at

ffiffiffi
s

p ¼ 500 GeV by the STAR detector
at RHIC. A first measurement of the Z=�� ! eþe� pro-
duction cross section at

ffiffiffi
s

p ¼ 500 GeV is also presented.
Theoretical predictions based on pQCD calculations are
in good agreement with the measured cross sections. In
addition, a first measurement of theW cross section ratio is
presented. Future high statistics measurements of the W

cross section ratio at RHIC will provide a new means of
studying the flavor asymmetry of the antiquark sea which is
complementary to fixed-target Drell-Yan and LHC collider
measurements.

ACKNOWLEDGMENTS

We thank the RHIC Operations Group and RCF at BNL,
the NERSC Center at LBNL and the Open Science Grid
consortium for providing resources and support. We are
grateful to F. Petriello for useful discussions. This work
was supported in part by the Offices of NP and HEP within
the U.S. DOE Office of Science, the U.S. NSF, the Sloan
Foundation, the DFG cluster of excellence ‘‘Origin and
Structure of the Universe’’ of Germany, CNRS/IN2P3,
FAPESP CNPq of Brazil, Ministry of Education and
Science of the Russian Federation, NNSFC, CAS, MoST,
and MoE of China, GA and MSMTof the Czech Republic,
FOM and NWO of the Netherlands, DAE, DST, and CSIR
of India, the Polish Ministry of Science and Higher
Education, Korea Research Foundation, the Ministry
of Science, Education, and Sports of the Republic of
Croatia, and RosAtom of Russia.

[1] C. Albajar et al. (UA1), Phys. Lett. B 198, 261 (1987).
[2] C. Albajar et al. (UA1), Z. Phys. C 44, 15 (1989).
[3] J. Alitti et al. (UA2), Z. Phys. C 47, 11 (1990).
[4] J. Alitti et al. (UA2), Phys. Lett. B 276, 365 (1992).
[5] F. Abe et al. (CDF), Phys. Rev. Lett. 76, 3070 (1996).
[6] A. Abulencia et al. (CDF), J. Phys. G 34, 2457 (2007).
[7] S. Abachi et al. (D0), Phys. Rev. Lett. 75, 1456 (1995).
[8] B. Abbott et al. (D0), Phys. Rev. D 61, 072001 (2000).
[9] M. Aggarwal et al. (STAR), Phys. Rev. Lett. 106, 062002

(2011).

[10] A. Adare et al. (PHENIX), Phys. Rev. Lett. 106, 062001
(2011).

[11] G. Aad et al. (ATLAS), J. High Energy Phys. 12 (2010) 060.
[12] V. Khachatryan et al. (CMS), J. High Energy Phys. 01

(2011) 080.
[13] S. Chatrchyan et al. (CMS), J. High Energy Phys. 10

(2011) 132.
[14] D. de Florian and W. Vogelsang, Phys. Rev. D 81, 094020

(2010).
[15] P.M. Nadolsky and C. Yuan, Nucl. Phys. B666, 31 (2003).

TABLE VIII. Measurements of the W cross section ratio, RW ,
for the two e� pseudorapidity bins.

RW � ðstatÞ � ðsystÞ
j�ej< 0:5 4:3� 0:7� 0:3
0:5< j�ej< 1:0 2:9� 0:5� 0:2

|
e

η|
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

W
 R

0 0.2 0.4 0.6 0.8 1

1

2

3

4

5

 STAR 2009 Data

 FEWZ NLO MSTW08

 FEWZ NLO CTEQ 6.6 

FIG. 12 (color online). W cross section ratio, RW , for the two
e� pseudorapidity bins. Theory calculations at NLO from the
FEWZ program using the MSTW08 and CTEQ 6.6 PDF sets
(with 90% confidence level error eigenvector uncertainties) are
shown for comparison.

MEASUREMENT OF THE W ! e� AND . . . PHYSICAL REVIEW D 85, 092010 (2012)

092010-13

http://dx.doi.org/10.1016/0370-2693(87)91509-7
http://dx.doi.org/10.1007/BF01548582
http://dx.doi.org/10.1007/BF01551906
http://dx.doi.org/10.1016/0370-2693(92)90333-Y
http://dx.doi.org/10.1103/PhysRevLett.76.3070
http://dx.doi.org/10.1088/0954-3899/34/12/001
http://dx.doi.org/10.1103/PhysRevLett.75.1456
http://dx.doi.org/10.1103/PhysRevD.61.072001
http://dx.doi.org/10.1103/PhysRevLett.106.062002
http://dx.doi.org/10.1103/PhysRevLett.106.062002
http://dx.doi.org/10.1103/PhysRevLett.106.062001
http://dx.doi.org/10.1103/PhysRevLett.106.062001
http://dx.doi.org/10.1007/JHEP12(2010)060
http://dx.doi.org/10.1007/JHEP01(2011)080
http://dx.doi.org/10.1007/JHEP01(2011)080
http://dx.doi.org/10.1007/JHEP10(2011)132
http://dx.doi.org/10.1007/JHEP10(2011)132
http://dx.doi.org/10.1103/PhysRevD.81.094020
http://dx.doi.org/10.1103/PhysRevD.81.094020
http://dx.doi.org/10.1016/S0550-3213(03)00455-3


[16] A. Martin, R. Roberts, W. Stirling, and R. Thorne, Eur.
Phys. J. C 28, 455 (2003).

[17] A. Baldit et al. (NA51), Phys. Lett. B 332, 244 (1994).
[18] R. Towell et al. (E866/NuSea), Phys. Rev. D 64, 052002

(2001).
[19] K. H. Ackermann et al. (STAR), Nucl. Instrum. Methods

Phys. Res., Sect. A 499, 624 (2003).
[20] M. Anderson et al. (STAR), Nucl. Instrum. Methods Phys.

Res., Sect. A 499, 659 (2003).
[21] M. Beddo et al. (STAR), Nucl. Instrum. Methods Phys.

Res., Sect. A 499, 725 (2003).
[22] C. Allgower et al. (STAR), Nucl. Instrum. Methods Phys.

Res., Sect. A 499, 740 (2003).
[23] S. van der Meer, Report No. CERN-ISR-PO 68-31, 1968.
[24] P. Cameron et al., Proceedings of the Particle Accelerator

Conference (1999), p. 2146.

[25] T. Sjostrand, S. Mrenna, and P. Z. Skands, J. High Energy
Phys. 05 (2006) 026.

[26] R. Brun et al., Report No. CERN-DD-78-2-REV, 1978.
[27] B. Abelev et al. (STAR), Phys. Rev. Lett. 97, 252001

(2006).
[28] G. J. Feldman and R.D. Cousins, Phys. Rev. D 57, 3873

(1998).
[29] K. Melnikov and F. Petriello, Phys. Rev. D 74, 114017

(2006).
[30] A. Martin, W. Stirling, R. Thorne, and G. Watt, Eur. Phys.

J. C 63, 189 (2009).
[31] P.M. Nadolsky et al., Phys. Rev. D 78, 013004 (2008).
[32] J. Peng and D. Jansen, Phys. Lett. B 354, 460 (1995).
[33] G. Aad et al. (ATLAS), Phys. Lett. B 701, 31 (2011).
[34] S. Chatrchyan et al. (CMS), J. High Energy Phys. 04

(2011) 050.

L. ADAMCZYK et al. PHYSICAL REVIEW D 85, 092010 (2012)

092010-14

http://dx.doi.org/10.1140/epjc/s2003-01196-2
http://dx.doi.org/10.1140/epjc/s2003-01196-2
http://dx.doi.org/10.1016/0370-2693(94)90884-2
http://dx.doi.org/10.1103/PhysRevD.64.052002
http://dx.doi.org/10.1103/PhysRevD.64.052002
http://dx.doi.org/10.1016/S0168-9002(02)01960-5
http://dx.doi.org/10.1016/S0168-9002(02)01960-5
http://dx.doi.org/10.1016/S0168-9002(02)01964-2
http://dx.doi.org/10.1016/S0168-9002(02)01964-2
http://dx.doi.org/10.1016/S0168-9002(02)01970-8
http://dx.doi.org/10.1016/S0168-9002(02)01970-8
http://dx.doi.org/10.1016/S0168-9002(02)01971-X
http://dx.doi.org/10.1016/S0168-9002(02)01971-X
http://dx.doi.org/10.1088/1126-6708/2006/05/026
http://dx.doi.org/10.1088/1126-6708/2006/05/026
http://dx.doi.org/10.1103/PhysRevLett.97.252001
http://dx.doi.org/10.1103/PhysRevLett.97.252001
http://dx.doi.org/10.1103/PhysRevD.57.3873
http://dx.doi.org/10.1103/PhysRevD.57.3873
http://dx.doi.org/10.1103/PhysRevD.74.114017
http://dx.doi.org/10.1103/PhysRevD.74.114017
http://dx.doi.org/10.1140/epjc/s10052-009-1072-5
http://dx.doi.org/10.1140/epjc/s10052-009-1072-5
http://dx.doi.org/10.1103/PhysRevD.78.013004
http://dx.doi.org/10.1016/0370-2693(95)00652-2
http://dx.doi.org/10.1016/j.physletb.2011.05.024
http://dx.doi.org/10.1007/JHEP04(2011)050
http://dx.doi.org/10.1007/JHEP04(2011)050

