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We show that the Cornwall-Jackiw-Tomboulis thermodynamic potential of dynamical quark models

with a quark propagator represented by complex conjugate mass poles inevitably exhibits thermodynamic

instabilities. We find that the minimal coupling of the quark sector to a Polyakov loop potential can

strongly suppress but not completely remove such instabilities. This general effect is explicitly demon-

strated in the framework of a covariant, chirally symmetric, effective quark model.

DOI: 10.1103/PhysRevD.86.074002 PACS numbers: 12.38.Aw, 11.30.Rd, 12.39.�x, 25.75.Nq

I. INTRODUCTION

The fate of hadronic matter in extreme environments,
e.g., in the interior of compact stars or in the early
Universe, remains one of the most interesting aunan-
swered questions today. Heavy-ion experiments performed
at the Relativistic Heavy-Ion Collider (RHIC) at the
Brookhaven National Laboratory or at the LHC at CERN
Geneva show that at sufficiently high temperature or den-
sity, hadronic matter undergoes a phase transition by dis-
solving into its constituents: quarks and gluons. Details of
this transition are encoded in the phase diagram of quan-
tum chromodynamics (QCD).

Due to its nonperturbative nature at low temperatures
and densities, QCD is best studied on the lattice in this
regime. Results for the QCD equation of state (EoS) have
recently become available also at physical quark masses
and were extrapolated to the continuum [1–8]. However, at
finite densities, lattice simulations are still limited due to
the known sign problem.

In this situation, effective models of QCD serve to
interpret and also extrapolate lattice results. To be realistic,
such a model must dynamically break chiral symmetry
and confine the colored degrees of freedom. In particular,
quark and gluon propagators should strongly differ from
their high-energy counterparts. A suitable continuum, non-
perturbative and covariant approach is provided by the
Dyson-Schwinger equations (DSE) (for reviews, see, e.g.,
Refs. [9–11]) and its descendants, the nonlocal chiral quark
models [12–18] (see also Refs. [19–21]), most recently
augmented by the Polyakov loop (PL) [22–29].

A nonperturbative quark propagator is a solution of its
DSE, within the appropriate symmetry-preserving trunca-
tion scheme. The most crucial behavior of these continuum

studies is a strong infrared running of the quark dynamical
mass, which is to be interpreted as dynamical chiral sym-
metry breaking, and of the wave function renormalization.
Confinement can be realized through the absence of poles
of the quark propagator at real timelike four-momenta by
the criteria of positivity violation [9,10]. Indeed, it is a
common feature that, due to strong dynamics, the poles
are pushed deep into the complex four-momentum region
[30–35]. The most simple resulting structure is a series of
quartets of complex conjugate mass poles (CCMPs).
For a successful phenomenological study, it is sufficient

to model the strong interactions via an effective gluon
propagator to be fixed by the infrared observables in the
vacuum. Enhancement of the interaction in the infrared
pushes the quark poles away from the real axis. Another
possible realization is the absence of propagator poles in
the entire complex plane which can be realized either by
the presence of cuts instead of poles [12] or by the absence
of both when the quark propagator is obtained as an entire
function [36,37]. A nonconstant entire function must have
a singularity at infinity. In order for such a quark state to
become deconfined and to restore its approximate chiral
symmetry, e.g., at high temperature, the gluon sector of the
theory must be restructured in the transition region in order
to allow for the appropriate changes in the analytic prop-
erties of the propagators such as the appearance of quasi-
particle poles. But in that case, the usual strategy is no
longer applicable: to predict the behavior at finite tempera-
ture and chemical potential from a straightforward general-
ization using the Matsubara formalism without changing
the analytic properties which were adjusted by constraints
from vacuum observables. A modification of this strategy
lies beyond the scope of the present study.
A CCMP structure in the quark propagator is sufficient

to ensure violation of reflection positivity [33,35,38],
and as such provides a useful form to fit the lattice
quark propagator [35,38]. This led to applications at finite
quark chemical potential [39], or for parton distribution
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functions [40]. On the other hand, QCD bound states are
affected by this structure [41], e.g., a sufficiently heavy
meson state (typically of the order of 1 GeV) has unphys-
ical �qq thresholds [42] if a naive analytic continuation to
the mass pole of the bound state is used (see Ref. [15] for a
suggestion how this problem could be circumvented by a
more elaborate analytic continuation).

In this work, we want to further investigate the proper-
ties of models with CCMPs by concentrating on the finite
temperature and finite quark chemical potential EoS. We
find that the pressure of quark matter leads to an unsatis-
factory scenario; the EoS exhibits oscillations in tempera-
ture which are in turn a consequence of the imaginary part
of the CCMPs. We provide analytic insight into the nature
of these oscillations, and suggest a partial solution to this
problem by coupling the system to the PL.

This paper is organized as follows. In Sec. II, we present
our arguments in a general form by postulating a CCMP
parametrization of the quark propagator for which we then
obtain the kinetic part of the QCD partition function in the
quark sector. This result elucidates that the presence of
CCMPs in the quark propagator entails thermodynamic
instabilities. We introduce the PL variable in the partition
function and show that this step very effectively suppresses
the instability. A separate analysis is performed for the EoS
at zero temperature where for the CCMP parametrization
the quark number density and the pressure can be obtained
in closed form. In Sec. III, we present the example of
dynamical quark models with chirally invariant nonlocal
interaction, including explicit numerical results and their
discussion. In Sec. IV, we give the summary and conclu-
sions of our study.

II. THERMODYNAMICS IN THE CCMP
REPRESENTATION

The (unrenormalized) thermodynamic potential for the
quark sector of QCD can be given in the form of the
Cornwall-Jackiw-Tomboulis effective action [43] as

�ðT;�Þ¼�½S�¼�TrLogðS�1ÞþTr½�S�þ�½S�; (1)

where S�1 represents the inverse of the full quark propa-
gator in Euclidean space,

S�1ð~pnÞ ¼ ið� � pÞAð~p2
nÞ þ i�4 ~!nCð~p2

nÞ þ Bð~p2
nÞ: (2)

The quark dressing functions Að~p2
nÞ, Bð~p2

nÞ and Cð~p2
nÞ

encode effects of the quark self-energy � ¼ S�1 � S�1
0 ,

expressing all deviations from the free propagator S�1
0 due

to nonperturbative interaction effects. At finite temperature
and chemical potential, the ‘‘shifted’’ fermionic Matsubara
frequencies ~!n ¼ !n � i� ¼ ð2nþ 1Þ�T � i� with
temperature T and chemical potential �, are introduced,
so that ~pn ¼ ðp; ~!nÞ. For the free quark propagator S0, we
have A ¼ C ¼ 1 and B ¼ m, the current quark mass. The
Tr operation implies summation over internal degrees
of freedom and ~pn. The leading term in the 2-particle

irreducible (2PI) loop expansion is the usual one-loop
contribution which we denote as the kinetic contribution
to the thermodynamic potential of the system

�kin ¼ �TrLogðS�1Þ; (3)

and the functional�½S� contains all higher loop diagrams.
In the widely used rainbow-ladder approximation (see,
e.g., Ref. [9]), it is given by

�½S� ¼ � 1

2
Tr½�S�: (4)

A quite general and mathematically simple realization
of the analytic structure of the quark propagator exhibits
a series of CCMPs in the p2 plane for p2 ¼ �m2

k and,

p2 ¼ �m�2
k . The complex numbers mk are ordered such

that jmkþ1=mkj> 1. Let us for definiteness assume that all
the poles are simple. The following arguments can easily
be generalized if the quark propagator has higher-order
poles, or branch cuts. At zero three-momentum p ¼ 0, the
pole structure in the p0 � ip4 plane is a series of quartets
of poles located at �mk ¼ �mR

k � imI
k and �m�

k ¼�mR
k � imI

k, and we define mk such that mR
k , m

I
k > 0 for

all k. With p � 0 the poles are given by [16]

E 2
k ¼ p2 þm2

k; (5)

where for each k, their locations form a quartet in
the complex energy plane at �Ek ¼ ��k � i�k and
�E�

k ¼ ��k � i�k, with

�k ¼ 1ffiffiffi
2

p fðmR
k Þ2 � ðmI

kÞ2 þ p2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½ðmR

k Þ2 � ðmI
kÞ2 þ p2�2 þ 4ðmR

k Þ2ðmI
kÞ2

q
g1=2

�k ¼ mR
km

I
k

�k
: (6)

The analytic structure of the quark propagator governs the
thermodynamical properties of the system. Here, we per-
form a simple calculation of the kinetic contribution to the
thermodynamic potential in the quark sector, with the
proposed form of the quark propagator.

A. Consequences for the quark
sector at finite temperature

Performing the trace in Dirac, color, flavor and momen-
tum space, the kinetic term can be written as

�kinðT;�Þ¼�2NcNfT
Xþ1

n¼�1

Z d3p

ð2�Þ3
� log½p2A2ð~p2

nÞþ ~!2
nC

2ð~p2
nÞþB2ð~p2

nÞ�: (7)

For simplicity, we work with Nf equal flavors. Nc ¼ 3 is

the number of colors.
In order to perform the Matsubara sum, we introduce

generalized occupation numbers
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n�ðzÞ ¼ ð1þ e�ðz��ÞÞ�1 (8)

having simple poles at z ¼ i ~!n. With the help of the
residue theorem, the Matsubara sum is converted to an
integral along straight lines ReðzÞ ¼ �� � and ReðzÞ ¼
�þ �, where � > 0 is infinitesimal

I1 þ I2 ¼
Z þi1þ�þ�

�i1þ�þ�
dznþðzÞ logDðzÞ

þ
Z �i1þ���

þi1þ���
dznþðzÞ logDðzÞ

¼ 2�i
Xþ1

n¼�1
ð�TÞ log½Dði ~!nÞ�; (9)

where we defined

D ðzÞ ¼ p2A2ðp2;�z2Þ � z2C2ðp2;�z2Þ þ B2ðp2;�z2Þ:
(10)

Here and in the following, we suppress the p2 dependence
in D for brevity.

Due to the known analytic structure of the quark propa-
gator, the integrals in Eq. (9) can be evaluated. We now
close the contour running from �i1þ�þ � to þi1þ
�þ � by a large semicircle on the positive real axis, and
denote this as C1. Then, we can rewrite

I1 ¼ T
I
C1

dz log½1þ e��ðz��Þ�D
0ðzÞ

DðzÞ
¼ Tð�2�iÞ X

k;�k>�

flog½1þ e��ðEk��Þ�

þ log½1þ e��ðE�
k
��Þ�g; (11)

where the first equality follows from partial integration.
The last line is the result of the residue theorem, and Ek are
the previously defined poles.
For the second term, we first make use of the clockwise-

oriented contour C2 defined as a rectangle having vertices
in (þ i1þ�� �, �i1þ�� �, �i1;þi1) to obtain

I2 ¼ T
I
C2

dz log½1þ e��ðz��Þ�D
0ðzÞ

DðzÞ
�

Z þi1

�i1
dznþðzÞ logDðzÞ: (12)

If the second term in Eq. (12) is rewritten using nþðzÞ ¼
1� n�ð�zÞ, the first of the two resulting terms can be
Wick rotated to the real axis, providing the vacuum con-
tribution, while the second term can be evaluated by yet
another contour, defined as C3, where we close the line
running from �i1 to þi1 by a large semicircle on the
negative real axis. This gives

I2 ¼ T
I
C2

dz log½1þ e��ðz��Þ�D
0ðzÞ

DðzÞ þ T
I
C3

dz log½1þ e��ð�zþ�Þ�D
0ðzÞ

DðzÞ � i
Z þ1

�1
dp4 logDðip4Þ

¼ Tð�2�iÞ X
k;0<�k<�

flog½1þ e��ðEk��Þ� þ log½1þ e��ðE�
k
��Þ�g

þ Tð�2�iÞ X
k;�k>0

flog½1þ e��ðEkþ�Þ� þ log½1þ e��ðE�
k
þ�Þ�g � i

Z þ1

�1
dp4 logDðip4Þ: (13)

Collecting the obtained formulas, we can state the kinetic
contribution to the pressure

�kinðT;�Þ¼�zpt�2TNcNf

X1
k¼1

Z d3p

ð2�Þ3
�flog½1þe��ðEk��Þ�þ log½1þe��ðE�

k
��Þ�

þ log½1þe��ðEkþ�Þ�þ log½1þe��ðE�
k
þ�Þ�g;

(14)

where�zpt is the (divergent) zero-point energy contribution

�zpt ¼ �2NcNf

Z d4p

ð2�Þ4 log½p2A2ðp2Þ þ B2ðp2Þ�: (15)

It is plain to see that in the special case of just one pair of
real poles at �m, the original dispersion (6) is reduced to
the one of a free relativistic particle, and, accordingly,
the second term in Eq. (14) is reduced to the free Fermi
gas expression, a situation also encountered, e.g., in the
Nambu-Jona-Lasinio (NJL) model [44,45], see, e.g.,

Refs. [46–49]. In the first term, the integral over p4 can
be evaluated as well, leading to

�zpt ¼ �4NcNf

X1
k¼1

Z d3p

ð2�Þ3
�
E
2
þ E�

2

�
;

which, again in the case of a pair of real poles, is just the
usual zero-point energy.
By combining the logarithms, Eq. (14) can be cast in a

more transparent form

�kinðT;�Þ¼�zpt�2TNcNf

X1
k¼1

Z d3p

ð2�Þ3
�flog½1þ2e��ð�k��Þcosð��kÞþe�2�ð�k��Þ�
þ log½1þ2e��ð�kþ�Þcosð��kÞþe�2�ð�kþ�Þ�g:

(16)

Note that the oscillating cosine functions in the thermody-
namic potential could render the quark matter unstable.
Their origin is traced back to the appearance of imaginary
parts �k of the quark mass poles.
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B. Introducing the Polyakov loop

The traced PL �ðx; TÞ and its conjugate ��ðx; TÞ are
order parameters for confinement in quenched QCD
[50,51], and as such represent important configurations
of the gluon field which should be accounted for in the
effective thermodynamic description of QCD. They are
given as thermal expectation values

� ¼ 1

Nc

htrcðP Þi�; �� ¼ 1

Nc

htrcðP yÞi�; (17)

where P is the untraced PL. In the Polyakov gauge [50],

the latter takes a simple formP ¼ eið�3�3þ�8�8Þ, where �3;8

are color Gell-Mann matrices, with �3;8 being the back-

ground gluon field. Quark (antiquark) confinement is then

signalled by � ¼ 0 ( �� ¼ 0).
Coupling of the PL to the quarks amounts to a modifi-

cation of the quark occupation number function

n�ðzÞ ! f1þ e�½z�ð��ið�3�3þ�8�8ÞÞ�g�1: (18)

Following the same steps as in the previous subsection, the
kinetic contribution to the thermodynamic potential can be
written as

�kinðT;�Þ

¼ �zpt � 2NfT
X1
k¼1

Z d3p

ð2�Þ3 trcflog½1þ Pe��ðEk��Þ�

þ log½1þ P e��ðE�
k
��Þ� þ log½1þ P ye��ðEkþ�Þ�

þ log½1þ P ye��ðE�
k
þ�Þ�g: (19)

Working out the color trace gives

�kinðT;�Þ

¼�zpt�2NfT
X1
k¼1

Z d3p

ð2�Þ3 flog½1þ3�e��ðEk��Þ

þ3 ��e�2�ðEk��Þþe�3�ðEk��Þ�þlog½1þ3�e��ðE�
k
��Þ

þ3 ��e�2�ðE�
k
��Þþe�3�ðE�

k
��Þ�þð�!��Þg: (20)

Again, in the special case of just one pair of real poles
at �m, this expression is reduced to the corresponding
term of the Polyakov-Nambu-Jona-Lasinio (PNJL) model
(see, e.g., Refs. [52–55]).
The logarithms can be combined to obtain

�kinðT;�Þ ¼ �zpt � 2NfT
X1
k¼1

Z d3p

ð2�Þ3 flog½1þ 6�ðe��ð�k��Þ cosð��kÞ þ e�4�ð�k��Þ cosð2��kÞÞ

þ 6 ��ðe�2�ð�k��Þ cosð2��kÞ þ e�5�ð�k��Þ cosð��kÞÞ þ 9�2e�2�ð�k��Þ þ 9 ��2e�4�ð�k��Þ

þ 18� ��e�2�ð�k��Þ cosð��kÞ þ 2e�3�ð�k��Þ cosð3��kÞ þ e�6�ð�k��Þ� þ ð� ! ��Þg: (21)

Comparing this with Eq. (16), we see that now the
dominant cosine terms are weighted by the PL. As a
consequence, the pressure instabilities are highly sup-
pressed in the confined phase: As long as � and �� are
zero, there remains only one cosine term, which is, how-
ever, suppressed by the third power of the Boltzmann
factor. In fact, the mechanism is basically the same as
in the PNJL model, where the coupling to the PL sup-
presses the quark degrees of freedom at low T, but does
not eliminate them entirely [53–55].

C. Zero temperature, finite chemical potential

In this part, special attention is devoted to the effects
of the CCMPs along the T ¼ 0, �> 0 axis. The
Matsubara sum in Eq. (7) gets converted to an integral
over p4.

�kinð0;�Þ¼�2NcNf

Z d4p

ð2�Þ4
� log½p2A2ð~p2Þþ ~p2

4C
2ð~p2ÞþB2ð~p2Þ�; (22)

where

~p 2 ¼ p2 þ ~p2
4; ~p4 ¼ p4 � i�:

We start by considering the quark number density

nð�Þ¼�@�kin

@�

¼2NfNc

Z d4p

ð2�Þ4 ð�2i~p4Þ@Dði~p4Þ
@~p2

4

1

Dði~p4Þ ; (23)

where Dði~p4Þ is given by Eq. (10). At zero chemical
potential, the quark density is zero, as it is obvious from
the integrand being an odd function of p4. This allows for
the evaluation of the integral by a clockwise-oriented
rectangular contour in the complex p4 plane having verti-
ces in ð�1;1;1� i�;�1� i�Þ. As the poles (6) are
defined in Minkowski space, in Euclidean space, this
means that the only poles which enter the contour have
ReðEkÞ<�. Therefore,
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I
C

dp4

2�
ð�2ip4Þ@Dðip4Þ

@p2
4

1

Dðip4Þ

¼ �2�i
X1
k¼1

½Resð�iEkÞ þ Resð�iE�
kÞ�	ð�� �kÞ:

(24)

The residue can straightforwardly be shown to be 1=2�i in
both cases, giving

nð�Þ ¼ 4NfNc

X1
k¼1

Z d3p

ð2�Þ3 	ð�� �kÞ: (25)

The theta function defines a ‘‘generalized’’ Fermi momentum

pFð�;mR
k ;m

I
kÞ ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½1� ðmR

k Þ2
�2

�½1þ ðmI
kÞ2

�2
�

s
: (26)

The quark number density can now be obtained as

nð�Þ ¼ 2NfNc

3�2

X1
k¼1

p3
Fð�;mR

k ;m
I
kÞ	ð��mR

k Þ: (27)

It is actually remarkable that the density thresholds depend
only on the real parts, mR

k . The imaginary parts mI
k enhance

the Fermi momenta (and thus the density) compared to the
values one would get for mI

k ¼ 0. For mI
k > mR

k and

1

�2 <
1

ðmR
k Þ2

� 1

ðmI
kÞ2

;

the Fermi momentum is even larger than �. This point will
later become important.

Integrating the expression

�kinð0; �Þ ¼ �
Z �

d�0nð�0Þ

¼ �NfNc

3�2

X
k

Z �

mR
k

d�0p3
Fð�0; mR

k ; m
I
kÞ;

the thermodynamic potential can be reconstructed in a
closed form

�kinð0; �Þ ¼ � 2NfNc

3�2

X1
k¼1

!ð�;mR
k ;m

I
kÞ;

where

!ð�;x;yÞ
¼�pF

8�
½4x2y2þ5ðy2�x2Þ�2þ2�4�

þ 3

16
ðx4�6x2y2þy4Þlog

�
y2�x2þ2�ðpFþ�Þ

x2þy2

�

�3

4
xyðy2�x2Þarctan

�
2xy�pF

ðx2�y2Þ�2þ2x2y2

�
: (28)

It is straightforward to see that in the case of only a pair of
real mass poles �m, we get the familiar expression for the
free, massive, relativistic Fermi gas

�kinð0; �Þ ¼ �NfNc

3�2

1

8

�
2�3pF � 5m2�pF

þ 3m4 log

�
pF þ�

m

��
: (29)

We mention that at zero temperature, the PL decouples, so
it has no effect on the EoS.

III. INSTABILITIES IN A NONLOCAL
CHIRAL QUARK MODEL

The dispersion relations Ek which enter Eq. (14) are
governed by the analytic structure of the quark propagator,
so that further insight can be obtained only by studying the
thermal behavior of the quark propagator, i.e., by under-
standing how the CCMPs respond to a change in the
temperature or density.
Parametrizing the analytic structure, say, from lattice

studies at finite T, is very demanding. In this case, the
analytic structure is also somewhat arbitrary as the quark
propagator is known only at a finite number of points,
allowing for different meromorphic forms [35]. For the
present purpose, wewill therefore study a specific model as
an example case. More precisely, we consider a Dyson-
Schwinger model with a separable gluon interaction
[15,19,20]. In the rainbow-ladder approximation, these
models are in fact identical to mean-field nonlocal NJL
models, see, e.g., Refs. [24,27,28]. They capture the
important aspect of momentum-dependent dressing func-
tions in the quark propagator (2) by introducing regulator
functions which also ensure the convergence of loop inte-
grals. Here, we consider the particularly simple rank-1
case, where A ¼ C ¼ 1, while

Bðp2Þ ¼ mþ bf0ðp2Þ; (30)

with b being the chiral symmetry breaking parameter
(mass gap) and f0ðp2Þ the regulator function. The latter
is an input of the model.
For this kind of separable models, it was already

observed in the literature that pressure instabilities appear
in certain regions of the T-� plane. In Refs. [16–19,56],
this was found in full numerical studies, and in Ref. [56]
also by restricting the calculations to a finite number
of CCMPs. The aim of the present section is to demon-
strate that these instabilities are driven by the presence
of the CCMPs, and then to study the effect of the PL.
Results from a full numerical study will be confronted
with a calculation where we restrict ourselves only to
a finite number of CCMPs, demonstrating that the insta-
bility region is actually completely dominated by the first
quartet.
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A. Analytic structure

The analytic structure of the model was detailed in
Refs. [16–18] for Gaussian and Lorentzian regulators.
We briefly summarize their analysis for the case of the
Gaussian regulator, given by

f0ðp2Þ ¼ e�p2=�2
0 ; (31)

with a parameter �0. The quark propagator has then an
infinite number of CCMPs, as exemplified on the left plot
in Fig. 1. The position of the poles is controlled by the
value of the gap. If the gap b is larger than a critical value
bc given by

bc ¼ 1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 2�2

0

q
�m

�
e�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2þ2�2

0

p
=4�2

0 ; (32)

all the poles are complex. For the quartet nearest to the
origin, an especially interesting situation occurs. As the
gap gets smaller, the poles travel to the real axis, where
they meet in doublets at b ¼ bc. If the gap is further
reduced, b < bc, every doublet again splits, with one
pole eventually going to plus (minus) infinity and the other
arriving at m (�m), for b ¼ 0. At that point, the real parts
of the higher quartets go to infinity, while the imaginary
parts go to zero. See Fig. 1 for the behavior of the first and
the second quartet with respect to the mass gap.

In our numerical calculations, we adopt the parameters
of Ref. [19], �0 ¼ 0:687 GeV, m ¼ 0:0096�0 and D0 ¼
128=�2

0, successfully reproducing low-energy phenome-

nology. Here, D0 is the strength of the nonlocal effective
gluon interaction (i.e., four-quark non-local NJL interac-
tion). For these parameters, one obtains bc ¼ 0:295 GeV,
while the vacuum solution of the gap equation is bvac ¼
0:678 GeV. Thus, the gap is overcritical in this case.

B. Thermodynamic potential and
in-medium mass gap

The in-medium properties of the model are obtained
from the thermodynamic potential (1), coupled to the PL.
In mean-field approximation (4), it is given by

�ðb;�; ��Þ¼�condðbÞþ�kinðb;�; ��ÞþUð�; ��Þ; (33)

see, e.g., Ref. [19]. Here, �cond ¼ Nf
9

8D0
b2 and U repre-

sents the mean-field PL potential, for which we use the
familiar polynomial form found in Ref. [53]. Other forms
of this potential are in use, like the logarithmic form [54],
a strong-coupling inspired one [55] or a �-dependent one
[57]. For recent developments, see Refs. [58–60].
�kin is provided by Eq. (7) augmented with the PL. This

amounts to

�kinðb;�; ��Þ ¼ �2NcNfT
Xþ1

n¼�1

Z d3p

ð2�Þ3 trc

� log½~p2
n þ B2ð~p2

nÞ�; (34)

where we now understand ~p2
n as diagonal matrices in color

space

~p2
n ¼ p2 þ ~!2

n;

~!nð�3; �8Þ ¼ !n � i�þ �3�3 þ �8�8:
(35)

To simplify the calculations, a further restriction is

imposed by setting �8 ¼ 0, i.e., � ¼ ��. The thermal
properties of the model then follow from the minimization
of the thermodynamic potential with respect to b and �3.
In particular, the T and � dependence of the dressing
function B is solely determined by the mass gap b, as we
have seen above. The explicit form of the mass gap equa-
tion is presented in the appendix.
In Fig. 2, the mass gap of a system without PL is shown

as a function of the temperature along different lines of

FIG. 1 (color online). Left: The curves where the real (blue, solid) and imaginary (red, dashed) parts of the propagator denominator
D ¼ �z2 þ B2ð�z2Þ vanish for the value of the mass gap b in the vacuum. Right: Real parts (blue, solid) and the corresponding
imaginary parts (red, dashed) of the quark propagator mass poles as functions of the gap parameter b. The lowest-lying poles
correspond to the thick lines, the next-higher-lying quartet to the thin lines.
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constant �=T. The results of a full numerical solution (full
lines) are compared with approximate ones where only a
small number of poles is taken into account. The dotted
lines indicate calculations where the system is approxi-
mated by only the lowest-lying quartet, containing the
states which become physical quark degrees of freedom
when b drops below bc. In order to demonstrate the con-
vergence toward the full numerical results, we also show
the effect of additionally including the second quartet
(dashed lines).

An observation which will be crucial later on is that, at
low temperatures, a perfect agreement with the numerical
solutions is obtained already with the first quartet.
Deviations start only after chiral restoration, so that at

higher temperatures, higher quartets are needed to develop
the correct chiral behavior. In fact, for any finite number of
poles, the mass gap increases again after reaching a mini-
mum, so that the correct high-temperature limit is only
reached if all poles are included.
As seen in Fig. 3, similar conclusions hold when the PL

is introduced, although the deviations are slightly more
pronounced after the chiral/deconfinement transition, and
for higher chemical potential also around the transition.
Let us observe that at �=T ¼ 1 (rightmost plot in Fig. 3),
the system develops a first-order transition.
In Fig. 3, we also show the results for the PL expectation

value. While the overall behavior is the expected one,
rising from � ¼ 0 at low T towards� ¼ 1 at high T, it

FIG. 2 (color online). The mass gap as a function of temperature along lines of constant �=T, for a system without the PL. The full
line is the complete numerical calculation, while the dotted and the dashed lines correspond to the approximation accounting for the
first and the first-plus-second quartet of poles, respectively.

FIG. 3 (color online). The mass gap b (blue), and the PL � (red) as functions of temperature. Line styles as in Fig. 2.
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turns out that there is an intermediate regime below the
crossover temperature, where � gets negative. Although
formally allowed by the definition (17), which at the mean-
field level boils down to � ¼ 1

Nc
½1þ 2 cosð��3Þ�, it is in

sharp contrast to the standard interpretation of � as ex-
ponential of the free energy Fq of a static color source,

� ¼ e��Fq [61]. We also note that, roughly in the same
region, the gap parameter b rises as a function of T, a
feature which is even more pronounced in the calculation
without PL, Fig. 2.

C. Pressure instabilities and instability suppression

To calculate the EoS, the kinetic contribution to the
thermodynamic potential is regularized by subtracting the
zero-point energy of free quarks, i.e.,

�
reg
zpt ¼ �2NcNf

Z d4p

ð2�Þ4 log

�
p2 þ B2ðp2Þ
p2 þm2

�
; (36)

and the EoS is given by pðT;�Þ ¼ ��ðT;�Þ ��0,
where �0 is a constant chosen to achieve zero pressure
in the vacuum.
In Figs. 4 and 5 the pressure is displayed as a function of

temperature, again along lines of constant �=T. In the
model without PL, the results are scaled by the pressure
of NcNf noninteracting massless quarks,

pq
SB ¼ NcNf

�
7�2

180
þ 1

6

�
�

T

�
2 þ 1

12�2

�
�

T

�
4
�
T4; (37)

FIG. 5 (color online). Scaled pressure p=pSB as a function of temperature, for a system with the PL. Line styles as in Fig. 2.

FIG. 4 (color online). Scaled pressure p=pq
SB as a function of temperature, for a system without the PL. Line styles as in Fig. 2.
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whereas in the case with PL, we divide by the full Stefan-
Boltzmann (SB) pressure of NcNf massless quarks and

N2
c � 1 gluons,

pSB ¼ pq
SB þ ðN2

c � 1Þ�
2

45
T4: (38)

The results for the model without PL are displayed in
Fig. 4. The most striking features are the oscillations,
which signal the thermodynamic instabilities, we have
anticipated from the cosine terms in Eq. (16). They turn
out to be particularly troublesome, as there are not only
temperature regions where the pressure drops with increas-
ing temperature, but where it gets even negative.1

Comparing the three panels of the figure, the results
seem to be rather independent of the ratio �=T. We should
keep in mind, however, that the pressure is scaled by the SB
value, which is larger for larger values of �=T. Taking this
into account, the instabilities grow with the chemical
potential, since the Boltzmann factors are even less effec-
tive in damping the oscillating terms. This results in a
rather large negative pressure for �=T ¼ 1.

For comparison, we show again the results obtained
when we only take into account the lowest-lying poles.
In agreement with our findings for the mass gap, we
observe that, at low temperatures and, more importantly,
in the region of the instability, the pressure given by just the
first quartet is an excellent approximation. The oscillations
of the pressure can thus be understood quantitatively from
the temperature dependence of b shown in Fig. 2, together
with the b dependence of the lowest-lying poles shown in
the right panel of Fig. 1. In particular, at T around
150 MeV, the mass gap drops below bc, so that the lowest
quartet splits into two real doublets and no longer yields an
oscillating behavior.

At high temperatures, the full numerical result for
the pressure (solid lines) approaches the SB limit, whereas
the restriction to the first quartet (dotted) strongly over-
shoots this limit and is, thus, not a good approximation
in this regime. The inclusion of the second quartet (dashed
line) leads to some improvement but fails as well to
reproduce the SB limit. This is consistent with Fig. 2,
where the restriction to a few mass poles even qualitatively
failed to reproduce the high-temperature behavior of the
mass gap.

Introducing the PL leads to a dramatic improvement of
the EoS. As demonstrated on Fig. 5, the oscillations are
strongly suppressed. Since the PL does not eliminate all the
cosine terms completely [see Eq. (21)], residual wiggles
are still present on the results for �=T ¼ 0, 1=2, while at
�=T ¼ 1, also a slightly negative pressure is observed
in the full numerical calculation. We also note that the

negative values of the PL, which we have seen in Fig. 3,
appear roughly in the same temperature region, but are
more pronounced at low chemical potentials. So, to some
extent, there seems to be a trade off between an unphysical
behavior of the pressure and an unphysical behavior of the
Polyakov loop (when interpreted as exponential of the free
energy of a static quark).

D. Effect of the poles at T¼ 0

In the final part of this section, we want to discuss
another consequence of the CCMPs, which shows up in
the nonlocal chiral model at zero temperature. We recall
that the PL decouples at T ¼ 0 and therefore has no effect
in this case.
In the left panel of Fig. 6, we show the regularized

thermodynamic potential as a function of the gap parame-
ter b for several values of the chemical potential �.
According to Eq. (27), the threshold chemical potential
for nonzero quark number density is controlled by the
lowest value of mR

k . Hence, at finite chemical potential,

the thermodynamic potential has to stay at its vacuum
value in those regions, where the lowest threshold, mR

1 , is
bigger than �. This is similar to the local NJL model,
where at T ¼ 0, the thermodynamic potential as a function
of the constituent quark mass M stays at its vacuum value
forM>�.2 In the nonlocal model, the essential difference
is that the threshold mR

1 is a nonmonotonic function of
the gap parameter b. As we have seen in Fig. 1, it rises
from mR

1 ¼ m at b ¼ 0 to a maximum at b ¼ bc,

where mR
1 ðbcÞ ¼ 1

2 ðmþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 2�2

0

q
Þ ¼ 0:489 GeV for

our parameters. Above this point, mR
1 slowly decreases,

reaching arbitrarily small values at large b. As a conse-
quence, for 0<�<mR

1 ðbcÞ, the thermodynamic potential
coincides with the vacuum curve only in a finite interval
around bc, bounded by the condition mR

1 ðbÞ ¼ �. For the
mass gap outside this range, there is a finite density of
quarks, and the thermodynamic potential is below the
vacuum one. An example for this case is given by the
dashed line in the left panel of Fig. 6.
For �>mR

1 ðbcÞ, the potential is reduced everywhere
(dashed-dotted line). Eventually, this leads to a pathologi-
cal result: Whereas at intermediate chemical potentials
a global minimum emerges near b ¼ 0, leading to
(approximate) chiral-symmetry restoration, at sufficiently
high chemical potential, the nontrivial minimum at large b
becomes the global one, meaning that chiral symmetry is
broken again (dotted line). The corresponding behavior of
the gap parameter which minimizes the thermodynamic
potential is shown in the middle of Fig. 6. This obviously
unphysical result is a consequence of two facts: First, for

1Let us recall that we defined the vacuum pressure to be zero,
so this result is clearly unphysical.

2More generally, this is a consequence of the so-called ‘‘Silver
Blaze problem’’ [62], meaning that at T ¼ 0, the grand partition
function must not change if � is below the smallest excitation
threshold.
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�>mR
1 ðbcÞ, there are two CCMPs, i.e., twice as many

‘‘degrees of freedom’’ which contribute to the pressure in
the nontrivial minimum. Second, according to Eq. (26), the
Fermi momentum is lowered by the real part but enhanced
by the imaginary part of mk, and eventually becomes even
larger than �. These effects lead to a further enhancement
of the density, and thus the thermodynamic potential
decreases faster in the nontrivial minimum than in the
trivial one. This is also underlined by the right plot, where
the pressure is displayed as a function of the chemical
potential: In the second chirally broken phase, the immense
rise in the density causes the EoS even to overshoot the
pressure of a free quark gas.

The second breaking of chiral symmetry at high chemi-
cal potential is reminiscent of what we have found at high
temperature, when we restricted ourselves to a finite num-
ber of poles, cf. Figs. 2 and 3. In fact, at T ¼ 0, the
chemical potential imposes a sharp cutoff on the thermal
part of the thermodynamic potential, and in this sense,
there is always only a finite number of poles which con-
tribute. For instance, the highest value of � considered in
the left plot of Fig. 6 is still smaller than mR

2 for the shown

range of b, and therefore the thermodynamics is deter-
mined completely by the first quartet.

IV. SUMMARYAND CONCLUSIONS

A realistic continuum effective theory of strongly inter-
acting quarks and gluons should incorporate the two most
striking features of low-energy QCD: chiral symmetry
breaking and confinement. The first one represents a physi-
cally familiar concept, and it is rather easily modeled.
The latter is still lacking a proper explanation, but can

nevertheless be realized by various confining criteria like,
e.g., positivity violation.
The simplest possible model of chiral quark dynamics

is the Nambu—Jona-Lasinio model, exhibiting real mass
poles, a feature shared with its nonlocal, but instantaneous,
generalizations. Although very successful, these models do
not incorporate confinement. Models in which the quark
propagator is an entire function represent the opposite
situation that quasiparticle poles for quarks (and gluons)
are absent, but therefore do not allow for deconfinement. In
between, there is a large class of models which has poles in
the complex plane, which, due to the their manifest covari-
ance, come in complex conjugate pairs.
In this paper, we have reported the observation that

the thermodynamical state in such a class of models is
unstable, due to the possibility of oscillating, or even
negative, pressure. Further consequences can also be
entropy decrease with the temperature or negative heat
capacity, violating the standard stability criteria for ther-
modynamical equilibrium. This underlines that quark con-
finement is a multifaceted phenomenon which cannot
exclusively be modeled as strong momentum dependence
of dynamical mass and wave-function renormalization. In
this context, we have investigated to what extent a sup-
pression of these unphysical instabilities can be achieved
by coupling the system to the Polyakov loop.
A simple quark model which reproduces the CCMP

form of the quark propagator dynamically is a DSE model
with a covariant separable interaction. As an example, we
solved such a model for a Gaussian formfactor ansatz at
finite temperature and chemical potential in mean-field
approximation in order to demonstrate the possible effects
of CCMPs on the thermodynamics. The results show that

FIG. 6 (color online). The first plot shows the behavior of the regularized thermodynamic potential at T ¼ 0 as a function of the mass
gap. The curves correspond to different chemical potentials: � ¼ 0 (solid), � ¼ 0:45 GeV (dashed), � ¼ 0:52 GeV (dash-dotted),
and � ¼ 0:58 GeV (dotted), where chiral symmetry is broken again. This is made transparent on the second plot, where the mass gap
is displayed as a function of the chemical potential. On the third plot, the resulting EoS is shown (full line), in comparison with the EoS
for a gas of free gas of quarks (dashed line).
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CCMPs are indeed the mechanism responsible for the
instability. When coupling the quark propagator to the
PL, we find that the pressure instabilities are strongly
reduced. Unfortunately, more or less in the same region
of the phase diagram, the PL itself becomes negative,
which is in sharp contrast to its standard interpretation as
exponential of the free energy of a static color source.
Thus, although there is no exact one-to-one correspon-
dence, it seems that one unphysical effect could only be
suppressed at the expense of a new one.

At zero temperature and finite chemical potential, the
PL is irrelevant. For very high chemical potentials
(	 500 MeV in our case), CCMPs produce yet another
unexpected and probably unphysical behavior: the chiral
symmetry gets broken again.3 We expect that the same
behavior is persistent in a more realistic setup, i.e., when
one includes the effects of wave-function renormalization
as, e.g., in Refs. [23,24,28].

From a wider perspective, vacuum instabilities in a
mean-field (or ‘‘classical’’) description of QCD are not
uncommon; a prominent example being the tachyonic
mode observed in the Savvidy vacuum [64,65]. It is inter-
esting to note that also in this case, the PL acts as a
‘‘stabilizer,’’ i.e., by suppressing the original tachyonic
modes [66,67]. Unfortunately, this program is also not
entirely successful as new unstable modes arise [66,67].

Apparently, the lesson to be learned is the following: In
order to cure the thermodynamic instability problems in
the low-temperature and low-density domain of effective
‘‘confining’’ models of quark (and /or gluon) matter prop-
erly, one has to go beyond the mean-field level of descrip-
tion, however cleverly it may be designed. Only the
explicit inclusion of the physical degrees of freedom in
that domain, the hadrons as color neutral bound states of
quarks and gluons, will provide the non-negative and
monotonously rising pressure in the confinement domain
of low-energy QCD. As first promising works in this
direction, we refer to Refs. [22,24,26,29] and suggest
developing the CCMP propagator class models beyond
the mean field.
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APPENDIX: GAP EQUATION IN MEDIUM

This appendix presents the quark gap equation in the
mean-field approximation, with the Matsubara summation
being analytically performed.
Minimizing the mean-field thermodynamic potential

(33), the quark gap at T, �> 0 is obtained to be

b ¼ 16D0

9
T

Xþ1

n¼�1

Z d3p

ð2�Þ3 trc

�
Bð~p2

nÞf0ð~p2
nÞ

~p2
n þ B2ð~p2

nÞ
�
; (A1)

where ~pn is to be understood as a diagonal color matrix,
see Eq. (35). The sum over Matsubara frequencies is
evaluated using the standard technique of rewriting it as
the sum over residues of a contour integral in the complex
energy plane over the analytically continued integrand
function folded with the function (18) having simple poles
at the PL shifted Matsubara frequencies. The Matsubara
summation is thus converted into three closed contour
integrals, similar to what was performed in Sec. II. These
are calculated by the residue theorem, giving the result

b ¼ 16D0

9

�
Nc

Z d4p

ð2�Þ4
Bðp2Þf0ðp2Þ
p2 þ B2ðp2Þ

þ 2
X1
k¼1

Z d3p

ð2�Þ3 RefResðEkÞtrc½nþðEkÞ þ n�ðEkÞ�g
�
:

(A2)

The first term is recognized as the vacuum gap equation.
Residues can easily be deduced to be

Res ðEkÞ ¼ Bðp2;�E2
kÞf0ðp2;�E2

kÞ
D0ðEkÞ ; (A3)

withD given by (10) when A ¼ C ¼ 1. An expression for
a color trace of the occupation numbers

trc½n�ðEkÞ�

¼ 3�e��ðEk��Þ þ 6 ��e�2�ðEk��Þ þ 3e�3�ðEk��Þ

1þ 3�e��ðEk��Þ þ 3 ��e�2�ðEk��Þ þ e�3�ðEk��Þ ;

(A4)

completes the calculation.

3At very high chemical potential, chiral symmetry is expected
to be broken again in a color-flavor locked phase [63], but this is
a completely different mechanism.
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At zero temperature, the Matsubara sum is converted to an integral which is performed in a similar fashion as the integral
for the quark number density, see Eq. (24). The result reads

b ¼ 16D0

9
Nc

�Z d4p

ð2�Þ4
Bðp2Þf0ðp2Þ
p2 þ B2ðp2Þ þ 2

X1
k¼1

Z d3p

ð2�Þ3 RefResðEkÞg	ð�� �kÞ
�
; (A5)

with ResðEkÞ given by Eq. (A3).
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