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We theoretically study discrete photonic lattices in more than three dimensions and point out that such systems
can exist in continuous three-dimensional space. We study discrete diffraction in the linear regime and demonstrate
the existence of four-dimensional (4D) tesseract solitons in nonlinear 4D periodic photonic lattices. Finally, we
propose a design towards a potential realization of such periodic 4D lattices in experiments.
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Dimensionality is one of the key attributes of physical
systems which determine their properties. This particularly
holds for photonic lattices—linear or nonlinear photonic struc-
tures conventionally considered in one- and two-dimensional
geometry, where the flow of light exhibits a plethora of
intriguing phenomena which hold great potential for appli-
cations [1,2]. Paradigmatic phenomena occurring in nonlinear
photonic lattices are discrete solitons [1,2]. Their prediction
in one-dimensional (1D) photonic lattices in 1988 [3] has
waited 10 years for the first experimental observation [4].
With the suggestion [5] and the experimental realization of
optically induced photonic lattices, both in one [6] and two [7]
spatial dimensions, novel excitations such as vortices [8,9]
(that cannot occur in 1D) were discovered and explored. The
one- and two-dimensional (2D) photonic lattices discussed
here [1,2] are also referred to as waveguide arrays, because
they are continuous along another dimension (second or third)
along which the light propagates. Photonic crystals provide
the opportunity to study versatile linear (e.g., see Ref. [10])
and nonlinear phenomena [11] in three spatial dimensions.
In those systems one usually applies (continuous) Maxwell
equations, but discrete lattice models may also be used when
the so-called tight-binding approximation (TBA) is applicable
[12]. Here we theoretically study discrete photonic lattices in
more than three dimensions. We point out that such systems
can exist in continuous three-dimensional (3D) space; that
is, their experimental realization is not hindered due to the
properties of our space. The properties of discrete diffraction
and four-dimensional (4D) tesseract solitons are presented
in 4D linear and nonlinear periodic discrete lattices. Finally,
we propose a design towards a potential realization of such
periodic 4D lattices in experiments.

The fact that a discrete lattice can have its dimension larger
than the continuous space it is embedded in is known from
complex networks [13]. For example, the Internet can be
regarded as a network of dimension close to 4.5, and the
network of airports close to 3, even though they are embedded
in the 2D surface of Earth [13]. Complex networks have
been scarcely considered in optical systems. We point out an
interesting concept of complex networks of interacting fields
called solitonets [14,15], where the interaction dynamics at
each individual node in the system has infinite degrees of
freedom [14,15]. Furthermore, it should be pointed out that
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methods for increasing dimensionality in (general) optical
systems have been studied previously, for example, by using a
delayed feedback of nonlinear optical resonators [16] or global
nonlinear coupling of modes in a resonator [17].

We begin with a paradigmatic model—the discrete non-
linear Schrödinger equation (DNLS)—which describes the
dynamics of light in lattices of various dimensions:

i
dψα(t)

dt
= −J

∑
β∈Nα

ψβ − γ |ψα|2ψα, (1)

where ψα is the complex amplitude describing the field,
Nα denotes the sites that are coupled to the site α, J is
the coupling (hopping) parameter that we assume to be
equal between all coupled sites, and γ is the strength of
the nonlinearity. Throughout the paper we use the following
normalization:

∑
α |ψα|2 = 1. This model was successfully

used to describe the dynamics of light in 1D and 2D photonic
lattices (waveguide arrays) [1,2]. It is applicable when the
lattice wells are sufficiently deep, such that each well has a
well-defined resonance, and the coupling between different
lattice sites is weak. Thus, one can think of this model as
describing a system of weakly coupled high-Q resonators.

In theory, any two pairs of resonators can be coupled,
thus yielding versatile structures of complex networks of
resonators, which calls for a more rigorous definition of
dimension. The dimensionality D of any such network can
be calculated by the following procedure: Let us choose one
resonator and calculate the number of resonators [call it N (l)]
that one can reach in l or fewer connections. The number
N (l) scales as N (l) ∼ lD when l → ∞. This procedure is
somewhat altered from that used in Ref. [13] for usual complex
networks due to the fact that it is the possibility of coupling
rather than the Euclidean distance between the resonators
that matters here. It is straightforward to verify that the
dimensionality of a simple cubic lattice corresponds to half
the number of nearest neighbors, but we emphasize that this
is not a generally valid prescription. To see that, note that
the well-known body-centered-cubic or face-centered-cubic
lattices have dimension three as expected.

Up to this point the theoretical model (1) was general
in the sense that coupling between any two pairs of
resonators was possible. From this point on we focus on 4D
“simple cubic” lattices defined as follows: every resonator
is labeled by four indices, α = (i,j,k,l), and it is coupled
to eight resonators labeled by (i + 1,j,k,l), (i − 1,j,k,l),
(i,j + 1,k,l), (i,j − 1,k,l), (i,j,k + 1,l), (i,j,k − 1,l),
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(i,j,k,l + 1), and (i,j,k,l − 1). We proceed with a discussion
of light propagation phenomena encountered in these
4D simple-cubic lattices. The first question concerns the
diffraction of light, i.e., dynamics when nonlinearity is
absent (γ = 0). The phenomenon of discrete diffraction has
been addressed many times in 1D and 2D systems (e.g., see
Refs. [4,7]), yielding a characteristic pattern of lobes spreading
during propagation. In 4D it is impossible to visualize such a
pattern and therefore to characterize diffraction we utilize the
concept of the inverse participation ratio, I (t) = 1/

∑
α I (t)2

α ,
where I (α) = |ψα(t)|2 is the intensity of light. A typical
question that we wish to address is the following: if we
excite a single resonator, how does the excitation spread
through the system? For a D-dimensional simple-cubic
lattice, propagation of the complex amplitude is given by

ψj1j2...jD
=

∏
α=j1...jD

iαJα(2J t), (2)

where the initially excited (at t = 0) site is α0 = (0, . . . ,0) with
amplitude 1, andJn is a Bessel function of order n. For the sake
of the clarity it should be pointed out that Eq. (2) results from
the fact that the linear problem is factorizable with respect to
different dimensions of the system [each α factor in the product
of Eq. (2) is a solution for one dimension]. The evolution of
the inverse participation ratio (IPR) is asymptotically then

I (t) =
( ∞∑

n=−∞
Jn(2J t)4

)−D

∼
(

2J t

ln 2J t

)D

, (3)

where we have utilized a formula from Ref. [18] to express
the sum (the base of the logarithm is e throughout the
manuscript). In what follows, for simplicity we take J = 1.

It is evident that the inverse participation ratio asymp-
totically increases as a power law with a slow logarithmic
modulation, where the power-law exponent equals dimension.
The logarithmic modulation would not have been present in
continuous systems and its existence occurs because of the
presence of the lobes. The effective number of sites excited
by the light is smaller during diffraction in discrete systems
in comparison to volume in continuous systems where the
lobes are not present. Figure 1(a) illustrates diffraction IPR
dynamics for a finite amount of time in a simple-cubic lattice

in 1D, 2D, 3D, and 4D. Superimposed on the results for an
infinite lattice (red dashed lines), we also show the dynamics
for a finite size lattice (blue solid lines) with N = 224 sites and
periodic boundary conditions. This is important because finite
size effects will occur in practical realizations of 4D lattices.
For example, our 4D lattice has the length of only 26 = 64
sites along one dimension and the effect is clearly visible for
large enough times.

Next we consider a 4D lattice of nonlinear resonators that
we model with a DNLS equation, Eq. (1). A paradigmatic non-
linear phenomenon that occurs in nonlinear lattices are discrete
or lattice solitons. Versatile types of 1D–3D discrete solitons
were predicted and/or observed in optics including bright on-
site solitons [3,4,7], staggered solitons [6,19], vortex solitons
[8,9], and octopole solitons [20]. The simplest type of soliton
that one can consider in 4D lattices is a 4D on-site bright soliton
that is centered on a single site. We have found this soliton
by self-consistently numerically solving the stationary DNLS
equation with the focusing nonlinearity γ > 0 (not shown).
It occurs only above some threshold value of the nonlinearity
(this also holds for 2D and 3D solitons [20,21]). The relevant
parameter here is in fact the ratio γ /J , because the DNLS
equation can be scaled; this means that by reducing the cou-
pling parameter J the effective nonlinearity γ /J can be made
stronger. On-site bright solitons are also found in 1D–3D pho-
tonic systems, and one can expect that analogs of other types
of 1D–3D soliton excitations will also exist in 4D systems.

Here we demonstrate a soliton that occurs in
4D lattices: the tesseract solitons equally excite 16 sites of
a 4D cube (i.e., tesseract); these solitons can be considered
as 4D analogs of 1D dipole, 2D quadrupole, and 3D octopole
solitons (e.g., see Ref. [22]). By using the methods outlined in
Ref. [20], we find that these solitons exist when the neighboring
sites are π out-of-phase as illustrated in Fig. 1(b). The stability
of these solitons was checked numerically; Fig. 1(c) shows
the inverse participation ratio dynamics of a stable tesseract
soliton and its discrete diffraction when propagated without
nonlinearity present. Without the π out-of-phase feature the
intensity on the neighboring sites would not repel, and the
excitation would collapse.

Let us discuss the distinction between the solitons that we
found in 4D lattices and a plethora of discrete solitons that were

FIG. 1. (Color online) Discrete diffraction in 4D lattices and tesseract solitons. (a) Evolution of the inverse participation ratio I (t) during
discrete diffraction for linear lattices with D = 1, 2, 3, and 4 (bottom up). The base of the logarithm is e, i.e., we plot ln I (t). Red dashed
lines depict I (t) for an infinite lattice, whereas blue solid lines correspond to a finite size system with N = 224 sites and periodic boundary
conditions. For D = 4 the boundary is reached at t ≈ 15 and the IPR starts to oscillate. (b) A schematic illustration of a tesseract soliton. The
phases at nearest-neighbor nodes differ by π , γ /J = 630. (c) Inverse participation ratio dynamics of a tesseract soliton with (black dotted line)
and without (red dashed line) noise demonstrating stability (the two lines are on top of each other). When the nonlinearity is turned off, the
tesseract initial condition diffracts (solid blue).
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predicted and observed previously [1,2]. Solitons occur when
the tendency of a wave packet to diffract is in balance with
the self-action induced by the nonlinearity. Since diffraction
evidently differs depending on the dimensionality, any soliton
found in 4D systems in that sense differs from its 1D–3D
counterpart (provided that the counterpart exists). However,
soliton excitations in higher dimensions can be more or less
similar to their counterparts in lower-dimensional lattices, and
in that sense more or less interesting. For example, the on-site
bright soliton in 4D lattices discussed above is effectively
equal to its 1D–3D counterparts; however, its tails spread in a
4D lattice and its diffraction (in the absence of nonlinearity)
is different, and therefore it is to some extent a different
excitation. By the same line of reasoning, the tesseract soliton
exciting a 4D cube in that sense differs more from its 1D–3D
analogs mentioned above, and can be regarded as a new type
of excitation.

Up to this point we have theoretically considered a model
which can represent lattices in more than three dimensions
and analyzed some linear and nonlinear phenomena in such
systems. However, one may say that these theoretical con-
siderations are not more than academic curiosity because
experiments are performed in 3D continuous space. We point
out that discrete photonic lattices with dimensionality greater
than three can exist in continuous 3D space. To illustrate that
fact compare a system of coupled resonators schematically
illustrated in Figs. 2(a) and 2(b). (the coupled resonators are
connected by lines). For the sake of the argument let us assume
that the coupling parameters between all coupled resonators
are equal, and zero otherwise. The configuration in Fig. 2(a) is
evidently a discrete 2D lattice. However, the system sketched
in Fig. 2(b) is fully equivalent to that of Fig. 2(a). Thus, a 2D
network of resonators can be constructed by embedding these
resonators in 1D geometry (on a straight line), provided that
connections between distant (in Euclidian sense) resonators
can be made. By using this line of reasoning it is evident that
the existence of discrete photonic lattices of dimension larger
than three, describable with model (1), is not hindered by the
dimensionality of our space.

(a) 

(b) 

FIG. 2. (Color online) Illustration of the idea for creating pho-
tonic lattices in more than three dimensions via complex networks
of optical resonators. (a) A schematic illustration of a (finite size)
2D lattice of coupled resonators. (b) The coupling scheme which is
topologically fully equivalent to the one in panel (a), despite the fact
that resonators are located on a 1D line. By the same token a 4D
(discrete) lattice can be embedded in a continuous 3D space, see text
for details.

The limitations on the dimensionality and structure of
experimentally realizable discrete lattices depend on our
ability to construct coupled resonators that may be on distant
locations. This is not an easy task because usually high-Q
resonators are coupled via evanescent coupling, which implies
that they have to be close to each other because the light is
tightly bound to the resonators and evanescent fields extend
only a few wavelengths. However, in a recent work Sato
et al. [23] have demonstrated that two distant photonic high-Q
cavities can be coupled by using an appropriate waveguide with
mirrors at its ends. The realization of the cavities and coupler
was made in a photonic crystal structure [23]. Importantly,
many Rabi oscillations were observed in that system [23]
which provides great promise for the future construction of
4D lattices.

Two ingredients towards the realization of more than 3D
discrete photonic lattices are thus present: (i) the fact that
more than 3D photonic lattices can in principle exist in our
continuous 3D space, and (ii) distant high-Q cavities can be
coupled as was demonstrated in Ref. [23]. A proposal of a
completely specified photonic structure which would lead to
an experimental realization of more than 3D photonic lattices
is beyond the scope of the present work. However, here we
propose a design which seems to be a viable path towards the
realization of 4D simple-cubic photonic lattices. It is based on
a combination of waveguide coupling and evanescent coupling
between resonators. The design is illustrated in Fig. 3. First
consider a 3D simple-cubic lattice of cavities coupled with
waveguides. Let the unit vectors of this 3D simple-cubic lattice
be a1, a2, and a3. The distance between two adjacent sites al

should be much larger than the size of an individual cavity R.
Consider now that we place two such simple-cubic structures
next to each other such that each site of the second lattice
is displaced by the vector d = d(a1 + a2 + a3)/

√
3 from the

first one, where d is slightly larger than 2R, so that evanescent
coupling (i.e., hopping) from one sublattice to the other is
possible [see Figs. 3(a) and 3(b)]. By adjusting the distances
d and al � R, the coupling constant between two sites of

hopping

(a) (b)

FIG. 3. (Color online) Proposal for the design of a 4D photonic
lattice. (a) Illustration of a simple-cubic 4D lattice. Waveguides
enable coupling between distant resonators along the edges of 3D
cubes. Evanescent coupling (hopping) along the diagonal enables
construction of the fourth dimension for the discrete lattices, see
encircled region enlarged in panel (b). For clarity only two sublattices
are displayed in panel (a); the number of sublattices that can be added
along the fourth dimension depends on the size of each individual
cavity and the lattice size al of every 3D sublattice. See text for
details.
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the same sublattice (coupled via waveguides) and the hopping
parameter between two adjacent sublattices can in principle
be made approximately equal. By this procedure we have
constructed a bi-cubic lattice. However, since al � d ∼ 2R,
we can add a number (roughly up to al

√
3/d) of sublattices

along the direction d thereby creating a finite size 4D lattice.
If al is a bit more than 10 times larger than d, then a finite
size 4D simple cubic lattice with 104 sites can be constructed.
For resonators made of nonlinear materials this construction
yields 4D nonlinear photonic lattices.

Let us comment on the finite size effects and scaling
associated with realizations of these simple-cubic 4D lattices.
From the design scheme presented in Fig. 3 we see that along
the fourth discrete dimension the photonic lattice would have
to be finite; its size along this direction, i.e., the number of
sublattices that one can add, depends on the ratio of the cube
edges al and the distance d between the resonators along
the fourth discrete dimension. Thus, to build a larger 4D
lattice one needs larger al . In practice all lattices are finite
(including 1D–3D) and if they are sufficiently large the finite
size effects would be unimportant. Our calculations show that
4D lattices with 104 sites (ten sites along one dimension)
can already exhibit 4D behavior for some phenomena like
solitons.

In conclusion we have studied discrete photonic lattices
in more than three dimensions and pointed out that such
systems can exist in continuous 3D space. We have studied
discrete diffraction in the linear regime and demonstrated the

existence of 4D tesseract solitons in nonlinear 4D periodic
photonic lattices. These structures would open the way
for investigating new optical phenomena that one does not
encounter in usual 1D–3D systems, but could also provide
us with better understanding of dimensionalities beyond 3D
which is of fundamental importance. We envision the study
of versatile novel types of solitons and instabilities in these
systems including vortexlike structures, gap solitons, surface
states and surface solitons, incoherent light dynamics, and
quantum optical phenomena. The stability of solitons is known
to depend on the dimensionality; therefore, one may expect
new physical phenomena in this context. These structures
also yield opportunities for creating novel optical devices.
Greater dimensionality, i.e., greater connectivity of nodes,
is expected to yield fundamentally novel schemes for light
manipulation not encountered in 1D–3D systems. All of these
reasons provide us with the motivation to further address and
study these complex systems.

Note added in proof. Recently we became aware of a
paper [24] which proposes the realization of a 4D quantum
model by using ultracold atoms in optical traps, where the
fourth dimension is encoded in the internal states of the atoms
providing an extra degree of freedom.
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