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Measurement of J=c Azimuthal Anisotropy in AuþAu Collisions at
ffiffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV
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J. Butterworth,40 X. Z. Cai,44 H. Caines,57 M. Calderón de la Barca Sánchez,6 D. Cebra,6 R. Cendejas,35

M. C. Cervantes,47 P. Chaloupka,13 Z. Chang,47 S. Chattopadhyay,53 H. F. Chen,42 J. H. Chen,44 J. Y. Chen,9

L. Chen,9 J. Cheng,50 M. Cherney,12 A. Chikanian,57 W. Christie,4 P. Chung,14 J. Chwastowski,11

M. J.M. Codrington,48 R. Corliss,26 J. G. Cramer,55 H. J. Crawford,5 X. Cui,42 S. Das,16 A. Davila Leyva,48

L. C. De Silva,49 R. R. Debbe,4 T. G. Dedovich,21 J. Deng,43 R. Derradi de Souza,8 S. Dhamija,18 B. di Ruzza,4

L. Didenko,4 F. Ding,6 A. Dion,4 P. Djawotho,47 X. Dong,25 J. L. Drachenberg,52 J. E. Draper,6 C.M. Du,24

L. E. Dunkelberger,7 J. C. Dunlop,4 L. G. Efimov,21 M. Elnimr,56 J. Engelage,5 G. Eppley,40 L. Eun,25

O. Evdokimov,10 R. Fatemi,23 S. Fazio,4 J. Fedorisin,21 R. G. Fersch,23 P. Filip,21 E. Finch,57 Y. Fisyak,4 E. Flores,6

C. A. Gagliardi,47 D. R. Gangadharan,31 D. Garand,37 F. Geurts,40 A. Gibson,52 S. Gliske,2 O.G. Grebenyuk,25

D. Grosnick,52 A. Gupta,20 S. Gupta,20 W. Guryn,4 B. Haag,6 O. Hajkova,13 A. Hamed,47 L-X. Han,44 J.W. Harris,57

J. P. Hays-Wehle,26 S. Heppelmann,35 A. Hirsch,37 G.W. Hoffmann,48 D. J. Hofman,10 S. Horvat,57 B. Huang,4

H. Z. Huang,7 P. Huck,9 T. J. Humanic,31 G. Igo,7 W.W. Jacobs,18 C. Jena,30 E. G. Judd,5 S. Kabana,45 K. Kang,50

J. Kapitan,14 K. Kauder,10 H.W. Ke,9 D. Keane,22 A. Kechechyan,21 A. Kesich,6 D. P. Kikola,37 J. Kiryluk,25

I. Kisel,25 A. Kisiel,54 S. R. Klein,25 D.D. Koetke,52 T. Kollegger,15 J. Konzer,37 I. Koralt,32 W. Korsch,23

L. Kotchenda,29 P. Kravtsov,29 K. Krueger,2 I. Kulakov,25 L. Kumar,22 M.A. C. Lamont,4 J.M. Landgraf,4

K. D. Landry,7 S. LaPointe,56 J. Lauret,4 A. Lebedev,4 R. Lednicky,21 J. H. Lee,4 W. Leight,26 M. J. LeVine,4 C. Li,42

W. Li,44 X. Li,37 X. Li,46 Y. Li,50 Z.M. Li,9 L.M. Lima,41 M.A. Lisa,31 F. Liu,9 T. Ljubicic,4 W. J. Llope,40

R. S. Longacre,4 Y. Lu,42 X. Luo,9 A. Luszczak,11 G. L. Ma,44 Y.G. Ma,44 D.M.M.D. Madagodagettige Don,12

D. P. Mahapatra,16 R. Majka,57 S. Margetis,22 C. Markert,48 H. Masui,25 H. S. Matis,25 D. McDonald,40

T. S. McShane,12 S. Mioduszewski,47 M.K. Mitrovski,4 Y. Mohammed,47 B. Mohanty,30 M.M. Mondal,47

M.G. Munhoz,41 M.K. Mustafa,37 M. Naglis,25 B.K. Nandi,17 Md. Nasim,53 T. K. Nayak,53 J.M. Nelson,3

L. V. Nogach,36 J. Novak,28 G. Odyniec,25 A. Ogawa,4 K. Oh,38 A. Ohlson,57 V. Okorokov,29 E.W. Oldag,48

R. A.N. Oliveira,41 D. Olson,25 M. Pachr,13 B. S. Page,18 S. K. Pal,53 Y.X. Pan,7 Y. Pandit,10 Y. Panebratsev,21

T. Pawlak,54 B. Pawlik,33 H. Pei,10 C. Perkins,5 W. Peryt,54 P. Pile,4 M. Planinic,58 J. Pluta,54 N. Poljak,58

J. Porter,25 A.M. Poskanzer,25 C. B. Powell,25 C. Pruneau,56 N.K. Pruthi,34 M. Przybycien,1 P. R. Pujahari,17

J. Putschke,56 H. Qiu,25 S. Ramachandran,23 R. Raniwala,39 S. Raniwala,39 R. L. Ray,48 C. K. Riley,57 H.G. Ritter,25

J. B. Roberts,40 O. V. Rogachevskiy,21 J. L. Romero,6 J. F. Ross,12 L. Ruan,4 J. Rusnak,14 N. R. Sahoo,53 P. K. Sahu,16

I. Sakrejda,25 S. Salur,25 A. Sandacz,54 J. Sandweiss,57 E. Sangaline,6 A. Sarkar,17 J. Schambach,48

R. P. Scharenberg,37 A.M. Schmah,25 B. Schmidke,4 N. Schmitz,27 T. R. Schuster,15 J. Seger,12 P. Seyboth,27

N. Shah,7 E. Shahaliev,21 M. Shao,42 B. Sharma,34 M. Sharma,56 S. S. Shi,9 Q. Y. Shou,44 E. P. Sichtermann,25

R. N. Singaraju,53 M. J. Skoby,18 D. Smirnov,4 N. Smirnov,57 D. Solanki,39 P. Sorensen,4 U.G. deSouza,41

H.M. Spinka,2 B. Srivastava,37 T.D. S. Stanislaus,52 J. R. Stevens,26 R. Stock,15 M. Strikhanov,29 B. Stringfellow,37

A. A. P. Suaide,41 M. C. Suarez,10 M. Sumbera,14 X.M. Sun,25 Y. Sun,42 Z. Sun,24 B. Surrow,46 D.N. Svirida,19

T. J.M. Symons,25 A. Szanto de Toledo,41 J. Takahashi,8 A.H. Tang,4 Z. Tang,42 L. H. Tarini,56 T. Tarnowsky,28

J. H. Thomas,25 J. Tian,44 A. R. Timmins,49 D. Tlusty,14 M. Tokarev,21 S. Trentalange,7 R. E. Tribble,47 P. Tribedy,53

B. A. Trzeciak,54 O.D. Tsai,7 J. Turnau,33 T. Ullrich,4 D.G. Underwood,2 G. Van Buren,4 G. van Nieuwenhuizen,26

J. A. Vanfossen, Jr.,22 R. Varma,17 G.M. S. Vasconcelos,8 F. Videbæk,4 Y. P. Viyogi,53 S. Vokal,21 S. A. Voloshin,56

A. Vossen,18 M. Wada,48 F. Wang,37 G. Wang,7 H. Wang,4 J. S. Wang,24 Q. Wang,37 X. L. Wang,42 Y. Wang,50

G. Webb,23 J. C. Webb,4 G.D. Westfall,28 C. Whitten, Jr.,7 H. Wieman,25 S.W. Wissink,18 R. Witt,51 Y. F. Wu,9

Z. Xiao,50 W. Xie,37 K. Xin,40 H. Xu,24 N. Xu,25 Q.H. Xu,43 W. Xu,7 Y. Xu,42 Z. Xu,4 L. Xue,44 Y. Yang,24

Y. Yang,9 P. Yepes,40 L. Yi,37 K. Yip,4 I-K. Yoo,38 M. Zawisza,54 H. Zbroszczyk,54 J. B. Zhang,9 S. Zhang,44

X. P. Zhang,50 Y. Zhang,42 Z. P. Zhang,42 F. Zhao,7 J. Zhao,44 C. Zhong,44 X. Zhu,50 Y.H. Zhu,44

Y. Zoulkarneeva,21 and M. Zyzak25

PRL 111, 052301 (2013) P HY S I CA L R EV I EW LE T T E R S
week ending

2 AUGUST 2013

0031-9007=13=111(5)=052301(7) 052301-1 � 2013 American Physical Society



(STAR Collaboration)

1AGH University of Science and Technology, Cracow, Poland
2Argonne National Laboratory, Argonne, Illinois 60439, USA
3University of Birmingham, Birmingham, United Kingdom

4Brookhaven National Laboratory, Upton, New York 11973, USA
5University of California, Berkeley, California 94720, USA
6University of California, Davis, California 95616, USA

7University of California, Los Angeles, California 90095, USA
8Universidade Estadual de Campinas, Sao Paulo, Brazil

9Central China Normal University (HZNU), Wuhan 430079, China
10University of Illinois at Chicago, Chicago, Illinois 60607, USA

11Cracow University of Technology, Cracow, Poland
12Creighton University, Omaha, Nebraska 68178, USA

13Czech Technical University in Prague, FNSPE, Prague 115 19, Czech Republic
14Nuclear Physics Institute AS CR, 250 68 Řež/Prague, Czech Republic
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The measurement of J=c azimuthal anisotropy is presented as a function of transverse momentum for

different centralities in Auþ Au collisions at
ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV. The measured J=c elliptic flow is

consistent with zero within errors for transverse momentum between 2 and 10 GeV=c. Our measurement

suggests that J=c particles with relatively large transverse momenta are not dominantly produced by

coalescence from thermalized charm quarks, when comparing to model calculations.

DOI: 10.1103/PhysRevLett.111.052301 PACS numbers: 25.75.Cj, 12.38.Mh, 14.40.Pq

Quantum chromodynamics (QCD) predicts a quark-
gluon plasma (QGP) phase at extremely high temperature
and/or density, consisting of deconfined quarks and gluons.
Over the past twenty years, heavy quarkonia production in
hot and dense nuclear matter has been a topic attracting
growing interest. In relativistic heavy-ion collisions the c �c
bound state is subject to dissociation due to the color
screening effect in the deconfined medium. As a conse-
quence, the production of the J=c is expected to be sup-
pressed compared to protonþ proton (pþ p) collisions
scaled by number of binary collisions, and such suppression
has been proposed as a signature of QGP formation [1].
However, the J=c suppression observed in experiments
[2–6] can also be affected by additional cold [7,8] and hot
[9–14] nuclear effects. In particular, the recombination of
the J=c from a thermalized charm quark and its antiquark
[11–14] has not been unambiguously established experi-
mentally at the top RHIC energy. By measuring J=c
azimuthal anisotropy, especially its second Fourier coeffi-
cient v2 (elliptic flow), one may infer the relative contribu-
tion of J=c particles from direct perturbative QCD (pQCD)
processes and from recombination. J=c particles produced
from direct pQCD processes, which do not have initial
collective motion, should have little azimuthal preference.
In noncentral collisions, the produced J=c particles will
then gain limited azimuthal anisotropy from azimuthally
different absorption due to the different path lengths in
azimuth. On the other hand, J=c particles produced from
recombination of thermalized charm quarks will inherit the
flow of charm quarks, exhibiting considerable flow.

Many models that describe the experimental results of
heavy-ion collisions depend on the assumption that light
flavor quarks in the medium reach thermalization on a
short time scale (� 0:5 fm=c) [15,16]. However, this rapid
full thermalization has not been directly certified. The flow
pattern of heavy quarks provides a unique tool to test the
thermalization. With much larger mass than that of light
quarks, heavy quarks are more resistant to having their
velocity changed, and are thus expected to thermalize
much more slowly than light partons. If charm quarks are
observed to have sizable collective motion, then light
partons, which dominate the medium, should be fully
thermalized. The charm quark flow can be measured
through open [17] and closed charm particles. The J=c
is the most prominent for experiment among the latter.

However, because the J=c production mechanism is not
well understood, there is significant uncertainty associated
with this probe, since only J=c particles from recombina-
tion of charm quarks inherit their flow. A detailed com-
parison between experimental measurements and models
on J=c v2 vs transverse momentum (pT) and centrality, in
addition to nuclear modification factor, will shed light on
the J=c production mechanism and charm quark flow.
This analysis benefits from a large amount of data taken

during the RHIC [18]
ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV Auþ Au run in

the year 2010 by the new data acquisition system of STAR
[19], capable of an event rate up to 1 kHz. In addition, the
newly installed time of flight (TOF) detector [20] allows
STAR to improve electron identification, and background
electrons from photon conversion are reduced by one order
of magnitude due to less material around the center of the
detector setup. The data presented consist of 360 million
minimum bias (MB) events triggered by the coincidence
of two vertex position detectors [21], 270 million central
events triggered by a large hit multiplicity in the TOF
detector [20], and a set of high tower events triggered by
signals in the towers of the barrel electromagnetic calo-
rimeter (BEMC) [22] exceeding certain thresholds (2.6,
3.5, 4.2, and 5.9 GeV). The high tower sample is equivalent
to approximately 7 billion MB events for J=c production
in the high-pT region. In addition, in order to cope with
the large data volume coming from collisions at high
luminosity, a high level trigger (HLT) was implemented
to reconstruct charged tracks online, select events with
J=c candidates and tag them for fast analysis. There are
16 million J=c enriched events selected by the HLT.
The J=c particles were reconstructed through the

J=c ! eþe� channel, which has a branching ratio of
5.9%. The daughter tracks of the J=c particles were
required to have more than 20 hits in the time projection
chamber (TPC) [23], and a distance of closest approach
less than 1 cm from the primary vertex. Low-momentum
electrons and positrons can be separated from hadrons by
selecting on the inverse velocity (0:97< 1=� < 1:03),
which is calculated from the time of flight measured by
the TOF detector [20] and the path length measured by the
TPC. At large momentum (p > 1:5 GeV=c), with the en-
ergy measured by towers from the BEMC [22], a cut of the
momentum to energy ratio (0:3<p=E < 1:5) was applied
to select electrons and positrons. The electrons and
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positrons were then identified by their specific energy loss
(hdE=dxi) inside the TPC. More than 15 TPC hits were
required to calculate hdE=dxi. The hdE=dxi cut is asym-
metric around the expected value for electrons, because the
lower side is where the hadron hdE=dxi lies. It also varies
according to whether the candidate track passes the 1=�
and/or p=E cut to optimize efficiency and purity. The
combination of cuts on 1=�, p=E, and hdE=dxi enables
electron and positron identification in a wide momentum
range. Our measured J=c particles cover the rapidity range
�1< y< 1, favoring J=c particles near y ¼ 0 because of
detection efficiency variation due to acceptance and decay
kinematics. A total of just over 13 000 J=c particles were
reconstructed in the entire pT range of 0–10 GeV=c.

The followingmethod has been used to calculate thev2 of
the J=c . First, measurements of�-�, ranging from 0 to�,
were divided into 10 bins. Here � is the azimuthal angle of
the J=c candidate, and� is the azimuthal angle of the event
plane reconstructed from TPC tracks with the azimuthally
nonuniform detector efficiency corrected for [24]. The event
plane resolution [24] (R) is different for different centrality
ranges, as listed in Table I. Then two bins at supplementary
angles were combined into one. For example, the bin at
0–0:1� is combined with 0:9�–�, and the invariant mass
distribution of electron and positron pairs in this combined
�-� bin is shown in the top of Fig. 1. To avoid bias from
different event plane resolution for different centrality,
entries in the histogram were weighted by 1=R accordingly
[25]. Theweighted J=c yieldwithin this combined�-� bin
was obtained by fitting the eþe� invariant mass distribution
with a Crystal Ball function [26] signal on top of a second
order polynomial background, as shown in the plot. The
Crystal Ball function connects a Gaussian core with a
power-law tail at low mass to account for daughter energy
loss fluctuations and J=c radiative decays. Then v2 was
obtained by fitting the weighted J=c yield vs �-� with a
functional form of A½1þ2v2cosf2ð�-�Þg�, as shown in the
bottom of Fig. 1. Finally, the observed v2 was scaled by
h1=Ri to obtain the true v2 [25].

Three dominant sources of systematic error have been
investigated for this measurement: assumptions in the v2

calculation method, hadron contamination for the daughter
eþe� pairs, and the nonflow effect. The first source can
be estimated from the difference in v2 calculated by meth-
ods with different assumptions. Two other methods are
used here. One is similar to the original method, except
that the J=c yield in each combined �-� bin was not
obtained from fitting, but from subtracting the like-sign
background from unlike-sign distribution within the

possible invariant mass range of the J=c
(2:9–3:3 GeV=c2). In the other method, the overall v2 of
both signal and background was measured first as a func-
tion of invariant mass, and then it was fitted with an
average of J=c v2 and background v2 weighted by their
respective yields vs invariant mass [27]. The systematic
error from hadron contamination can be estimated from the
difference in calculated v2 with different electron (posi-
tron) identification cuts. While the original cuts aim for the
best J=c significance, a purer electron (positron) sample
can be obtained from a set of tighter cuts. The overall
systematic uncertainty for the first two sources was esti-
mated from the maximum difference between the calcu-
lated v2 with the 3� 2 ¼ 6 combinations of v2 methods
and electron (positron) identification cut sets mentioned
above. Besides elliptic flow, there are also some other
two- and many-particle correlations due to, for example,
resonance decay and jet production.Whenv2 of a particle is
measured, other particles having nonflow correlations with
the measured particle are more likely to be azimuthally
nearby, drawing the reconstructed event plane closer to
the measured particle, and make the measured v2 larger
than its real value. To estimate this nonflow influence on the
v2 measurement, a method of scaling nonflow in pþ p
collisions to that inAuþ Au collisions [28] was employed.
This method assumes that 1) J=c -hadron correlation in

TABLE I. Event plane resolution (R) for different centralities.

Centrality

(%) 0–10 10–20 20–30 30–40 40–50 50–60 60–70 70–80

R 0.600 0.748 0.805 0.787 0.719 0.608 0.478 0.364
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FIG. 1 (color online). Top: 1=R weighted invariant mass
spectrum of electron and positron pairs for �-� in 0–0:1�
and 0:9�–�, 4< pT < 6 GeV=c, in 0%–80% central collisions.
The points are unlike-sign pairs with the J=c signal, fitted by a
Crystal Ball plus second order polynomial function. The poly-
nomial background component of the fit is shown by the dashed
line. The solid line histogram shows the like-sign background.
Bottom: 1=R weighted J=c yield vs �-� with fitted v2.
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pþ p collisions is entirely due to nonflow, and 2) the
nonflow correlation to other particles per J=c in
Auþ Au collisions is similar to that in pþ p collisions.
Under these assumptions, it can be deduced that the nonflow
influence on measured J=c v2 in AuþAu collisions is
hPi cos2ð�J=c ��iÞi=Mv2. Here, the sum is over all mea-

sured charged hadrons and the average is over J=c particles
in pþ p collisions. M and v2 are the multiplicity and
average elliptic flow of charged hadrons in Auþ Au colli-
sions, respectively. Since the away side correlation may
be greatly modified by the medium in heavy-ion collisions,
this procedure gives an upper limit of the nonflow effect.
Detector acceptance and efficiency variation with pT , cen-
trality, and rapiditymay lead to a biased J=c sample, which
may induce some systematic effects when v2 also changes
with these parameters. But these effects are estimated to be
negligible compared to statistical errors.

Figure 2 shows J=c v2 as a function of transverse
momentum for different centralities. Due to the nonflow
effect, the real v2 can be lower than the measured value
shown in the plot. The boxes indicate the maximummagni-
tude of the nonflow influence. Data from the central trigger,
minimum bias trigger and high tower triggers are used for
the 0%–10% most central bin, while only minimum bias
and high tower triggered events are used for other centrality
bins. Considering errors and themagnitude of nonflow, J=c
v2 is consistent with 0 for pT > 2 GeV=c for all measured
centrality bins. Light particles usually have a largerv2 in the
intermediate centrality than in the most central and periph-
eral collisions. This can be explained by a larger initial
spatial eccentricity in the intermediate centrality, which is
transferred into final state momentum anisotropy due to
different pressure gradients in different directions, when

there are sufficient interactions in the medium. However,
no strong centrality dependence for J=c v2 has been
observed with the statistical significance of the data.
The top panel of Fig. 3 shows J=c v2 for 0%–80%

central collisions as a function of transverse momentum.
For reference, two other sets of v2 measurements are also
plotted, one is for charged hadrons (dominated by pions)
[29] and the other is for the � meson [30] which is heavier
than the pion but not as heavy as the J=c . Unlike v2 of
hadrons consisting of light quarks, J=c v2 at pT >
2 GeV=c is found to be consistent with zero within statis-
tical errors. However, the significant mass difference
between the J=c and light particles makes the direct
comparison of v2 vs pT less conclusive. For example, for
the same velocity at y ¼ 0, the pT of J=c particles at
3:0 GeV=c corresponds to pT of pions (�) at 0.14
ð1:0Þ GeV=c. Thus, comparisons between the experimen-
tal result and theoretical calculations are needed.
In the bottom panel of Fig. 3, a comparison is made

between the measured J=c v2 and various theoretical
calculations, and a quantitative level of difference is shown
in Table II by �2=NDF and the p value. v2 of J=c particles
produced by initial pQCD processes is predicted to stay
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close to zero [31]. Although anomalous suppression in
the hot medium due to color screening are considered in
the model, the azimuthally different suppression along the
different path lengths in azimuth leads to a limited v2

beyond the sensitivity of the current measurement. On the
contrary, if charm quarks get fully thermalized and J=c
particles are produced by coalescence from the thermalized
flowing charm quarks at the freeze-out, the v2 of the J=c is
predicted to reach almost the same maximum magnitude as
v2 of light flavor mesons, although at a larger pT (around
4 GeV=c) due to the significantly larger mass of the J=c
[32]. This is nearly 3� above the measurement for pT >
2 GeV=c, leading to a large �2=NDF of 16:2=3 and a small
p value of 1:0� 10�3, and is, thus, inconsistent with the
data. Models that include J=c particles from both initial
production and coalescence production in the transport
model [31,36] predict a much smaller v2 [33,34], and are
consistent with our measurement. In these models, J=c
particles are formed continuously through the system evo-
lution rather than at the freeze-out, so many J=c particles
could be formed from charm quarks whose v2 has still not
fully developed. Furthermore, the initial production of J=c
particleswith very limitedv2 dominates at highpT , thus, the
overall J=c v2 does not rise rapidly as for light hadrons.
This kind ofmodel also describes themeasured J=c nuclear
modification factor over a wide range of pT and centrality
[5]. The hydrodynamic model, which assumes local thermal
equilibrium, can be tuned to describe v2 for light hadrons,
but it predicts a J=c v2 that rises strongly with pT in the
region pT < 4 GeV=c, and thus, fails to describe the main
feature of the data [35]. For heavy particles such as the J=c ,
hydrodynamic predictions suffer from large uncertainties
related to viscous corrections (�f) at freeze-out and the
assumed freeze-out time or temperature.

In summary, J=c elliptic flow is presented as a function
of transverse momentum for different centralities in
ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV Auþ Au collisions. Unlike light flavor

hadrons, J=c v2 at pT > 2 GeV=c is consistent with zero
within statistical errors. Comparing to model calculations,
the measured J=c v2 values disfavor the scenario that J=c
particles with pT > 2 GeV=c are produced dominantly by

coalescence from (anti-)charm quarks which are thermal-
ized and flow with the medium.
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