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We consider dc-electronic transport through a nanowire suspended between two normal-metal leads in

the presence of an external magnetic field. We show the very mechanism through which such a system,

whose stationary current-voltage characteristic is essentially characterized by positive differential con-

ductance, becomes unstable with respect to an onset of self-excited oscillations in electrical transport and

mechanical vibrations. The self-excitation mechanism is based on the correlation between the occupancy

of the quantized spin-split electronic energy levels inside the nanowire and the velocity of the nanowire

with the crucial influence of strong enough retardation effects in magnetomotive coupling coming from

mechanical vibrations.

DOI: 10.1103/PhysRevLett.111.186802 PACS numbers: 73.63.�b, 73.23.Hk, 75.76.+j, 85.85.+j

The physics of nanoelectromechanical systems (NEMS)
and resonators at mesoscopic scales has been the central
point of research in the field of nanophysics and nano-
technology for over a decade [1]. In this respect, suspended
single-wall carbon nanotubes provide a unique nanosystem
where both bulk beam mechanics and electronic transport
exhibit pronounced mesoscopic features [2]. The central
point which defines NEMS performance is an electrome-
chanical coupling—a coupling between electronic and
mechanical subsystems. One can achieve such a coupling
by exploiting Coulomb or Lorentz forces induced by an
external electric or magnetic field applied to the system.
These forces are also used to generate mechanical oscil-
lations if resonant ac gate or bias voltages are applied. At
the same time, it is possible to generate self-sustained
oscillations in NEMS by applying the dc voltage—a shuttle
instability [3]. However, it requires a very special archi-
tecture of the NEMS which such simple systems as sus-
pended carbon nanotubes do not possess. In a dc regime,
Coulomb coupling between suspended nanotube and gate
electrodes results only in an additional damping of
mechanical oscillations [4]. In this Letter, we address a
question: can we exploit Lorentz coupling to generate self-
sustained oscillations of the nanotube in the dc regime? We
start with an analysis of the quasiadiabatic situation when
tunneling rates between source (drain) electrodes and
nanotube �SðDÞ are much greater than a mechanical fre-

quency !. There, a current through the system I ¼ JðVÞ is
controlled by a total voltage drop V between source and
drain electrodes. The Lorentz force acting on the nanowire
is given by FL ¼ BLJðVÞ, where B is the magnetic field, L
is the length of the nanotube, and V is a sum of the bias
voltage Vb and the electromotive force " / �BL _u gener-
ated by the motion of the wire in a magnetic field, where
u is the nanotube displacement perpendicular to B.
Therefore, for a small displacement, the Lorentz force

takes a form FL ¼ BLJðVbÞ � ðBLÞ2dJ=dVjVb
_u, where

the second term represents an effective friction generated
by the interaction with an electronic subsystem. This
imposes that, under the quasiadiabatic condition, the nega-
tive differential conductance (DC) produces negative fric-
tion which may result in the generation of self-sustained
oscillations [5]. However, if a nanotube is suspended
between normal leads, as it appears in most experimental
setups, the DC is positive and magnetomotive coupling
with an electronic subsystem results in the damping of
mechanical oscillations in the quasiadiabatic limit. In this
Letter we demonstrate the importance of the relation
between tunneling rates and vibrational frequency, and
show that the electromechanical instability can take place
even in NEMS with positive DC if quasiadiabatic condi-
tions are violated. This qualitatively new phenomenon is
based on the correlation between electronic tunneling and
the direction of velocity of the nanotube, induced by
Coulomb correlations, with the crucial role of retardation
coming from a mechanical subsystem.
We consider the system sketched in Fig. 1(a): the nano-

wire, represented as a single-level quantum dot, is sus-
pended between two dc-biased normal-metal leads and
subjected to a perpendicular external magnetic field. To
describe an interplay between the nanowire vibrations and
electronic transport through such a structure, we use the
standard Hamiltonian [6,7]

H ¼ HL þHW þHM þH�; HL ¼X
�;k

E�ka
y
�ka�k;

HW ¼X
�

"�c
y
�c� þUcy" c

y
# c#c"; HM ¼ 1

2
@!ðp̂2 þ û2Þ;

H� ¼
X
�;k;�

��v�c
y
�a�k þH:c: (1)
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HL describes electrons in the metal leads indexed by

� ¼ S, D, where ay�k is a creation operator for electrons

with momentum k and energy E�k. The electron in the
nanowire is described by HW , having two possible spin-
split states "�, achieved, e.g., by Zeeman splitting, with

corresponding creation operators cy�, � ¼# , " . The second
term is the Coulomb interaction U between two electrons
with opposite spin. Here, we assume that the spacing
between quantized energy levels in the nanowire is large
enough with respect to applied bias voltage Vb so that only
one pair of spin-split levels participates in the electronic
transport. HM is the Hamiltonian describing the flexural
vibration of the nanowire, which in our consideration is
restricted to the dynamics of the fundamental mode only. It
is treated as a harmonic oscillator with frequency !,
characterized by the dimensionless displacement operator

û, normalized to a0 �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
@=m!

p
, where m is the mass of the

oscillator, and by the conjugated momentum p̂ that satis-
fies ½û; p̂� ¼ i. Finally, H� describes electron tunneling
between the leads and the nanowire with corresponding
amplitudes ��. The phase factor of the tunneling ampli-
tudes vSðDÞ ¼ e�i�û depends on nanowire displacement,

where the parameter � � eBLa0�=2@c accounts for the
magnetomotive coupling and � ¼ 0:83 is the numerical
factor coming from the spatial profile of the fundamental
mode [8].

To find a stationary, time independent state of the sys-
tem, we start from the Liouville–von Neumann equation
½H;%� ¼ 0 for a total density matrix % [7]. Then, imposing
that the tunneling process does not perturb states of the
bulk leads significantly, we exploit the reduced density
matrix approach [9], presenting the total density matrix

as a direct product % ¼ � � %S � %D, where � describes
the electronic and mechanical states of the nanowire, and
%S;D are the density matrices representing the source and

drain electrodes as electronic reservoirs at thermal equilib-
rium with temperature T and electrochemical potentials
�SðDÞ ¼ �� eVb. Using a standard procedure of tracing

out the leads [10], one gets an equation for �:

�i!½H ; �� ¼ X
�;�

Z 1

0
dzf½v�U

yðzÞvy
�c�c

y
��UðzÞ

�UyðzÞvy
�c

y
��c�UðzÞv��K>

��ðzÞ
þ ½UyðzÞ�cy�c�vy

�UðzÞv�

� v�U
yðzÞc��cy�vy

�UðzÞ�K<
��ðzÞ þ H:c:g;

(2)

whereH � ðp̂2 þ û2Þ=2 is the dimensionless part of HM,

UðzÞ � ei�H z, � � !=kBT, and time is put in scale with
temperature, i.e., z � kBTt. The collision integral kernels
are given by

K>;<
�;� ðzÞ ¼ 1

2
��½	ðzÞ � iP��ðzÞ�;

P��ðzÞ ¼ p:v:
eið���"�Þz=kBT

sinhð
zÞ ;

(3)

where �� ¼ 2
@�1�2��� appears as the electron tunneling
rate between the nanowire and lead � with electronic
density of states �� which is, as well as the tunneling
amplitude ��, assumed to be independent of energy. In
our setup, we choose a bias [see Fig. 1(b)] in which �S ¼
"" and require "" � "#, "� ��D � kBT, meaning that the

charge transfer from the D lead to the nanowire, and from
the "# level in the nanowire to the S lead, is exponentially

suppressed. This simplifies kernels of collision integral
greatly, namely, PS#ðzÞ � i	ðzÞ and PD�ðzÞ � �i	ðzÞ.
Furthermore, we decompose � into blocks describing a
nanowire occupied either by spin- " , spin- # , or no elec-

trons, � ¼ j0i�0h0j þ cy# j0i�#h0jc# þ cy" j0i�"h0jc", with

corresponding coefficients (matrices in mechanical space)
�", �#, and �0, respectively. Imposing a Coulomb blockade

constraintU � eVb, "� ��, we exclude the double occu-

pancy of the nanowire, taking Trfcy" cy# c"c#�g ¼ 0, and

reduce system (2) to the following set of equations:

�i�½H ; �0� ¼ 3

2
�0 � 1

2
v�"v�1 � �v�1ð�" þ �#Þv

� v1=2Fð~�0 þ ~�"Þv�1=2;

�i�½H ; �"� ¼
�
1

2
þ �

�
�" � 1

2
v�1�0v

þ v�1=2Fð~�0 þ ~�"Þv1=2;

�i�½H ; �#� ¼ ��# � v�1�0v; (4)

FIG. 1. (a) A nanowire subjected to an external magnetic field
B, suspended between two normal-metal leads biased symmetri-
cally by voltages �Vb. (b) Electronic energy scheme for the
junction: "";# are spin-split levels in the nanowire, and � is the

chemical potential in the leads without bias. The junction is non-
symmetric in the sense that the tunneling barrier between D and
nanowire is thicker than between S and nanowire. (c) A stationary
current-voltage characteristic of the junction always exhibiting
essentially positive differential conductance (V";# � "";#=e).
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where � � !=�S, � � �D=�S, v � ei�û, ~�0 �
v�1=2�0v

1=2, ~�";# � v1=2�";#v�1=2, and F is the collision

integral, i.e.,

Fð~�Þ ¼ 1

2

Z 1

0
dzv1=2e�i�H zv�1=2 ~�v�1=2ei�H zv1=2PS"ðzÞ

þ H:c:

Below, we analyze system (4) under conditions when three
small parameters emerge, i.e., �, �, � 	 1, while � 
 1.
It is convenient to rewrite system (4) in Wigner represen-
tation, introducing a Wigner function of density operator
W½�� ¼ ð1=2
ÞRd�e�ip�huþ�=2j�ju��=2i �wðu;pÞ
and defining new functions ~w0 ¼ w0ðu� u0; p� �=2Þ,
~w# ¼ w#ðu� u0; pþ �=2Þ, and ~w" ¼ w"ðu� u0; pþ
�=2Þ which we combine into ~we � ~w# þ ~w" and ~wm �
~w0 þ ~we. Displacement u0 ¼ 2��=� ¼ L �IB=ka0, where
k is a rigidity constant and �I an average current, counts the
deformation of the nanowire induced by the average
Lorentz force. Considering relations W½Fð�Þ� ¼
�FðpÞW½�� þOð��Þ, where FðpÞ ¼ ð1=2Þ tanhð��p=2Þ
[7], the equations for Wigner functions ~w#;e;m, in the lead-

ing orders of small � accounting for both the drift and
diffusion terms, are

�f ~H ; ~w#g ¼ ~we � ~wm þ � ~w#;

�f ~H ; ~weg ¼ ð2þ �Þ ~we �
�
1

2
� FðpÞ

�
~w#

�
�
3

2
þ FðpÞ

�
~wm;

�f ~H ; ~wmg ¼ �2��fu; ~weg þ ��fp; ~we � ~wmg
� 2��2fu; fu; ~wegg � L½ ~wm�: (5)

Here, ff; gg ¼ @uf@pg� @pf@ug denotes the Poisson

bracket, while ~H � H � u0u� �p=2. In Eq. (5), we
have also added the phenomenological term L accounting

for the coupling of the mechanical subsystem to the ther-
mal phonon bath in the leads and other vibrational modes
of the nanowire. Based on general consideration regarding
quantum dissipative systems [11], it can be written explic-
itly as L½w� ¼ fu; pwg þDfu; fu; wgg, where  ¼
�=Q, Q is the quality factor of the mechanical oscillator
at zero magnetic field, and D ¼ =2�.

To analyze Eq. (5), we develop a perturbation theory
with respect to small � and . At zeroth approximation,
~H ð0Þ ¼ H and ~wð0Þ

m ¼ WðH Þ, where W is an arbitrary

function of energy, while ~wð0Þ
e;# are defined by the first

and second parts of Eq. (5). Substituting ~we from the first
part of Eq. (5) into the third part of Eq. (5), one gets an

equation for ~wð1Þ
m which is the first order correction to

~wð0Þ
m ¼ WðH Þ:

�fH ; ~wð1Þ
m g ¼ ��ð�2 � 2�2Þfu; ~wð0Þ

# g � L½WðH Þ�
� 2��2fu; fu;WðH Þ � � ~wð0Þ

# gg

� 3���fp; ~wð0Þ
# g ��

�
H � �

2
p;WðH Þ

�

þ f ~H ;R½ ~wð0Þ
# �g; (6)

R½ ~wð0Þ
# � � �2���fu; ~wð0Þ

# g þ�2�fp; ~wð0Þ
# g. From the first

and second parts of Eq. (5), we calculate

~wð0Þ
# ¼ �ðpÞWðH Þ;

�ðpÞ � 1þ 2�� 2FðpÞ
1þ 4�þ 2�2 � 2FðpÞ

(7)

up to the zeroth order in�, enough to preserve the leading
contribution in drift and diffusion after insertion into
Eq. (6). Expression (7) takes into account the relative shift
of �S with respect to "" induced by the motion of the

nanowire in a magnetic field which generates an electro-
motive force across the system. Indeed, if p ¼ 0 )
FðpÞ ¼ 0, the population of "" coincides with one for the

unmovable nanowire. On the other hand, the motion of the
nanowire in a magnetic field with relatively high speed
ðjpj � ð��Þ�1 ) 2FðpÞ ¼ �1Þ shifts �S well above or
below "", depending on the direction of motion, and by this

it doubles or annuls a probability of tunneling from source
to "". Further, we use the action-angle representation

(2E, ’), in which u ¼ ffiffiffiffiffiffi
2E

p
cos’, p ¼ ffiffiffiffiffiffi

2E
p

sin’, and
fH ; wg ¼ @’w, and perform averaging of Eq. (6) over

’. It annuls the last three terms in Eq. (6), and we obtain
a stationary Fokker-Planck equation for WðEÞ [7] which
reduces to

� �ðEÞWðEÞ þD
d

dE
WðEÞ ¼ 0;

�ðEÞ � � 2�ð�2 � 2�2Þffiffiffiffiffiffi
2E

p hsinð’Þ�ð ffiffiffiffiffiffi
2E

p
sin’Þi’ � ;

(8)

where h:::i’ denotes averaging. The sign of the contribution

of the magnetomotive interaction between the nonequilib-
rium electronic subsystem and the nanowire to the
drift coefficient is completely determined by a difference
�2 � 2�2 since �hsinð’Þ�ðpÞi’ < 0. Magnetomotive in-

teraction also contributes into the diffusion coefficient,
appearing in the second order of �, which can be written
as D ¼ ð4��2 þ ��1Þ=2 independent of E. The solution
of Eq. (8) is

WðEÞ ¼ N exp

�
2
R
E
0 �ðE0ÞdE0

4��2 þ ��1

�
; (9)

where N is a normalization constant. WðEÞ describes
stationary mechanics of the nanowire in terms of proba-
bility in (u, p) phase space dependent on energy. For
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�ðEÞ< 0, the function WðEÞ has the only maximum at

E ¼ 0. However, knowing that hsinð’Þ�ð ffiffiffiffiffiffi
2E

p
sin’Þi’ �

����
ffiffiffiffiffiffi
2E

p
=2 at E ! 0, one can find that limE!0�ðEÞ> 0

if ��2�ð�2 � 2�2Þ>. In that case, WðEÞ has a local
minimum at H ¼ 0, while the maximum is formed at
H ðu; pÞ ¼ Ec, where Ec is a finite zero point of the drift
coefficient �ðEcÞ ¼ 0 (see Fig. 2). Knowing that
hsinð’Þ�ðpÞi’ saturates to a constant value of the order of

�1=
 at E ! 1, it is easy to estimate behavior in the
limiting cases. The existence of the maximum of WðEÞ at
energy Ec � 0 corresponds to the formation of a classical
limit cycle in the (u,p) phase space of themechanical system
around the unstable static equilibrium point u, p ¼ 0.

From the above discussion, it appears that the necessary
condition for instability to occur is !2 � 2�2

D > 0 to
ensure that coupling to the nonequilibrium electronic envi-
ronment results in the pumping of energy into mechanical
oscillations. This condition implies that magnetomotive
instability starts only if the mechanical frequency is of
the same order as the electron tunneling rate to the D
lead or higher; otherwise, damping arises. This result is
fully consistent with a general statement that in a quasia-
diabatic limit, the electromotive interaction generates an
additional damping of nanowire vibrations in a system with
positive differential conductance. Also, this condition pre-
vents the usage of the rate equation approach [12], utilized
in Ref. [5], where the magnetomotive instability in a
system with negative DC was studied, and demands a
full quantum treatment of the problem presented above.
To get the instability, one also needs pumping, generated
by magnetomotive interaction with electrons, to overcome
the damping coming from the interaction with thermal
phonons. It gives the following maximal condition for
the zero-B quality factor: Q�1 <��2�ð�2 � 2�2Þ=�.

Taking the small parameters �, �, �� 10�1 and �� 1
(L� 1 �m, nanotube diameter d� 1 nm, @!� 1 �eV,
@�S * 1 �eV, T � 10 mK, B� 10 T), we find that Q
should be greater than 104 to obtain an oscillation ampli-
tude of a few nanometers. This is well within the possible
experimental setup [7,13].
The physical picture: The event of tunneling of an elec-

tron fromanS lead to a nanowire and from a nanowire to aD
lead instantly changes the mechanical momentum of the
nanowire by �p ¼ �eBL=c. If an average value of _u�p is
positive, the pumping of mechanical energy arises.
Therefore, the instability may be achieved by the proper
correlation between the tunneling events and the direction
of the nanowire velocity. Here, such correlations are in-
duced by the motion of the nanowire in a magnetic field
and are arranged by an interplay between specific biasing
[Fig. 1(b)] and the Coulomb blockade effect. If one ignores
the electromotive force, an electron, after tunneling from an
S lead to the "" state on a nanowire, will most likely tunnel

back, since �S � �D, thus producing random momentum
transfer��p leading to diffusion in the phase space. On the
other hand, the electron in the "# state cannot tunnel back to
the S lead, due to the lack of empty states at accessible
energies, and always transfers momentum þ�p. The mo-
tion of the nanowire in a magnetic field generates the
electromotive force �BL _u, depending on the direction of
velocity, that adds to the bias voltage. It changes the effec-
tive chemical potential in the leads, shifting �S above "" if
B _u / _u�p > 0, or below "" if B _u / _u�p < 0. At the same

time, the Coulomb blockade effect, prohibiting the double
occupancy of the nanowire, induces correlation between
the relative position of the electrochemical potential and
events of tunneling to the "# state. If �S < "", the occupa-
tion of the "" state is reduced and tunneling to the "# state
will more likely take place during this phase of oscillation.
It corresponds to _u�p > 0; thus, charge transfer through the
"# state results in energy pumping to the mechanical sub-

system, while the transport through the "" state leads to a

dissipation of mechanical energy. Indeed, in a phase of
oscillations when _u�p < 0, the electrochemical potential
shifts above "", thus increasing the probability of tunneling
to the "" state and then to the D lead. If it occurs while the

nanowire continues to move in that direction, which defi-
nitely happens if �D � !, it results in an energy loss.
The necessary condition for the instability! * �D implies,
in fact, a requirement that the nanowire change its direction
of motion before the electron tunnels from the "" state to the
D lead. As a result, the pumpingmay overcome total damp-
ing and the instability arises. In the high energy limit

(��
ffiffiffiffi
E

p � 1), the amplitude of oscillations becomes large,
generating the electromotive force that shifts�S outside the
pumping-active interval within the kBT vicinity around "".
As the amplitude grows, the system spends less and less
time in the pumping-active interval, effectively leading to
an internal saturation of pumping.

FIG. 2. (a) The ‘‘dynamical potential’’ �ðEÞ=D whose zero
point Ec determines the maximum of the Wigner function
WðEÞ describing the probability of finding a mechanical system
at a certain energy E (dimensionless units). (b) Density plot of
the probability Wðu; pÞ in mechanical (u, p) phase space,
indicating the existence of a classical limit cycle at its maximum
measured from the static equilibrium state determined by u0.
The used parameters are � ¼ 0:1, � ¼ 0:1, � ¼ 0:3, � ¼ 0:95,
and  ¼ 3:5� 10�5 (Q ¼ 8:6� 104).
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In conclusion, we have investigated the electromechani-
cal stability of the nanowire, exposed to the external mag-
netic field and suspended to two normal-metal leads under
dc bias with essentially positive differential conductance.
We show that the tunneling through two spin channels with
different energies and correlated by the Coulomb blockade
leads to the instability and an onset of self-excited oscil-
lations in transport and mechanical vibrations if the retar-
dation effects, coming from the mechanical subsystem and
coupled by electromotive coupling, are pronounced
enough. Since the mechanism of achieving the instability
is based on the effective gating effect by the occupation of
a higher spin state that synchronizes the tunneling process
and momentum transfer into a mechanical subsystem with
the particular direction of motion of the nanowire, in the
setup with positive differential conductance, it is essential
that mechanical vibrations have frequency of the same
order or higher than the electron tunneling rate to the drain
lead in order to maintain the coherent momentum transfer.
The instability appears as soon as the energy pumped into
the system exceeds the mechanical dissipation, which can
be made small enough in modern manufactured carbon
nanotubes. Our numerical analysis indicates that the insta-
bility leads to sustained oscillations with an amplitude of a
few nanometers. Such are detectable by modern experi-
mental techniques [14].
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Poot, H. B. Meerwaldt, L. P. Kouwenhoven, and H. S. J.
van der Zant, Science 325, 1103 (2009).

[14] D. Garcia-Sanchez, A. San Paulo, M. J. Esplandiu, F.
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