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We report the beam energy (
ffiffiffiffiffiffiffiffi
sNN

p ¼ 7.7–200 GeV) and collision centrality dependence of the mean
(M), standard deviation (σ), skewness (S), and kurtosis (κ) of the net-proton multiplicity distributions in
Auþ Au collisions. The measurements are carried out by the STAR experiment at midrapidity (jyj < 0.5)
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and within the transverse momentum range 0.4 < pT < 0.8 GeV=c in the first phase of the Beam Energy
Scan program at the Relativistic Heavy Ion Collider. These measurements are important for understanding
the quantum chromodynamic phase diagram. The products of the moments, Sσ and κσ2, are sensitive to the
correlation length of the hot and dense medium created in the collisions and are related to the ratios of
baryon number susceptibilities of corresponding orders. The products of moments are found to have values
significantly below the Skellam expectation and close to expectations based on independent proton and
antiproton production. The measurements are compared to a transport model calculation to understand the
effect of acceptance and baryon number conservation and also to a hadron resonance gas model.

DOI: 10.1103/PhysRevLett.112.032302 PACS numbers: 25.75.Gz, 12.38.Mh, 25.75.−q

The Beam Energy Scan (BES) program at the Relativistic
Heavy-IonCollider (RHIC) facility aims at studying in detail
the QCD phase structure. This enables us to map the phase
diagram, temperature (T) versus baryonic chemical potential
(μB), of strong interacting matter. Important advancements
have been made towards the understanding of the QCD
phase structure at small μB. Theoretically, it has been found
that at high temperatures there occurs a crossover transition
from hadronic matter to a deconfined state of quarks and
gluons at μB ¼ 0 MeV [1]. Experimental data from RHIC
and the Large Hadron Collider have provided evidence of
the formation of QCD matter with quark and gluon degrees
of freedom [2]. Several studies have been done to estimate
the quark-hadron transition temperature at μB ¼ 0 [3].
Interesting features of the QCD phase structure are expected
to appear at larger μB [4]. These include the QCD critical
point (CP) [5,6] and a first-order phase boundary between
quark-gluon and hadronic phases [7].
Previous studies of net-proton multiplicity distributions

suggest that the possible CP region is unlikely to be below
μB ¼ 200 MeV [8]. The versatility of the RHIC machine
has permitted the center of mass energy (

ffiffiffiffiffiffiffiffi
sNN

p
) to be varied

below the injection energy (
ffiffiffiffiffiffiffiffi
sNN

p ¼ 19.6 GeV), thereby
providing the possibility to scan the QCD phase diagram
above μB ∼ 250 MeV. The μB value is observed to increase
with decreasing

ffiffiffiffiffiffiffiffi
sNN

p
[9]. The goal of the BES program

at RHIC is to look for the experimental signatures of a
first-order phase transition and the critical point by collid-
ing Au ions at various

ffiffiffiffiffiffiffiffi
sNN

p
[10].

Nonmonotonic variations of observables related to the
moments of the distributions of conserved quantities such
as net-baryon, net-charge, and net-strangeness [11] number
with

ffiffiffiffiffiffiffiffi
sNN

p
are believed to be good signatures of a phase

transition and a CP. The moments are related to the
correlation length (ξ) of the system [12]. The signatures of
phase transition or CP are detectable if they survive the
evolution of the system [13]. Finite size and time effects in
heavy-ion collisions put constraints on the significance of the
desired signals. A theoretical calculation suggests a non-
equilibrium ξ ≈ 2–3 fm for heavy-ion collisions [14].Hence,
it is proposed to study the higher moments [like skewness,
S ¼ hðδNÞ3i=σ3, and kurtosis, κ ¼ ½hðδNÞ4i=σ4� − 3, with
δN ¼ N − hNi] of distributions of conserved quantities due
to a stronger dependence on ξ [12]. Both the magnitude and

the sign of themoments [15], which quantify the shape of the
multiplicity distributions, are important for understanding
phase transition andCP effects. Furthermore, products of the
moments can be related to susceptibilities associated with
the conserved numbers. The product κσ2 of the net-baryon
number distribution is related to the ratio of fourth-order

(χð4ÞB ) to second-order (χð2ÞB ) baryon number susceptibilities

[16,17]. The ratio χð4ÞB =χð2ÞB is expected to deviate from unity
near the CP. It has different values for the hadronic and
partonic phases [17].
This Letter reports measurements of the energy depend-

ence of higher moments of the net-proton multiplicity
(Np − Np̄ ¼ ΔNp) distributions from Auþ Au collisions.
The aim is to search for signatures of the CP over a broad
range of μB in the QCD phase diagram. Theoretical
calculations have shown that ΔNp fluctuations reflect
the singularity of the charge and baryon number suscep-
tibility, as expected at the CP [18]. The measurements
presented here are within a finite acceptance range and
use only the protons among the produced baryons.
References [19,20] discuss the advantages of using
net-baryon measurements and effects of acceptance.
The data presented in this Letter were obtained using

the Time Projection Chamber (TPC) of the Solenoidal
Tracker at RHIC (STAR) [21]. The event-by-event proton
(Np) and antiproton (Np̄) multiplicities are measured for
Auþ Au minimum-bias events at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 11.5, 19.6, 27,
39, 62.4, and 200 GeV for collisions occurring within
jΔZj ¼ 30 cm from the TPC center along the beam line.
For 7.7 GeV, jΔZj is 50 cm. The 19.6 and 27 GeV data
were collected in the year 2011 and the other energies were
taken in 2010. Interactions of the beam with the beam pipe
are rejected by choosing events with a radial vertex position
in the transverse plane of less than 2 cm. The numbers of
events analyzed are 3 × 106, 6.6 × 106, 15 × 106, 30 × 106,
86 × 106, 47 × 106, and 238 × 106 for

ffiffiffiffiffiffiffiffi
sNN

p ¼ 7.7, 11.5,
19.6, 27, 39, 62.4, and 200 GeV, respectively. Similar
studies have also been carried out in pþ p collisions
with 0.6 × 106 and 7 × 106 events at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 62.4 and
200 GeV, respectively. The centrality selection utilizes the
uncorrected charged particle multiplicity other than iden-
tified protons and antiprotons within pseudorapidity jηj <
1.0 measured by the TPC. It is found that the measured
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net-proton moment values depend on the choice of the
pseudorapidity range for the centrality selection. However,
the values of the moments do not change if the centrality
selection range is further increased to the full acceptance
of the TPC (which leads to a 15% increase in charged
particle multiplicity). In the UrQMD [22] studies, after
increasing the η range used for centrality selection to
two units, it is observed that the maximum decrease of
moments is ∼2.5% and 35% for

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 and 7.7 GeV,
respectively [23]. There is minimal change for central
collisions compared to other centralities. For each central-
ity, the average number of participants (hNparti) is obtained
by Glauber model calculations. The ΔNp measurements
are carried out at midrapidity (jyj < 0.5) in the range
0.4 < pT < 0.8 GeV=c. Ionization energy loss (dE=dx)
of charged particles in the TPC is used to identify the
inclusive (pðp̄Þ) [24]. The minimum pT cut and a maxi-
mum distance of closest approach to the collision vertex of
1 cm for each pðp̄Þ candidate track suppress contamination
from secondaries [24]. To have a good purity of the proton
sample (better than 98%) for all beam energies, the
maximum pT is taken to be 0.8 Gev=c. This pT interval
accounts for approximately 50% of the total uncorrected
pþ p̄ multiplicity at midrapidity. The average proton
reconstruction efficiency for the pT range studied is
between 70%–78% and 83%–86% for central and periph-
eral collisions, respectively, at different

ffiffiffiffiffiffiffiffi
sNN

p
.

ΔNp distributions from 70%–80%, 30%–40%, and
0%–5% Auþ Au collision centralities are shown in Fig. 1.
The ΔNp is not corrected for reconstruction efficiency. The
distributions are also not corrected for the finite centrality
width effect [23]. The subsequent analysis in this Letter
is corrected for the centrality width effect. The difference
of two Poisson distributions is a Skellam distribution.
The corresponding Skellam distributions are also shown,

PðΔNpÞ¼ðMp=Mp̄ÞN=2INð2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
MpMp̄

p Þexp½−ðMpþMp̄Þ�,
where INðxÞ is a modified Bessel function of the first kind,
and Mp and Mp̄ are the measured mean multiplicities of
proton and antiprotons [25]. The data seem to closely
follow the Skellam distributions. To study the detailed
shape of the distribution, we discuss the various order
cumulants (Cn), where C1 ¼ M, C2 ¼ σ2, C3 ¼ Sσ3, and
C4 ¼ κσ4. For a Skellam ΔNp distribution, C3=C2 ¼
ðMp −Mp̄Þ=ðMp þMp̄Þ and C4=C2 ¼ 1.
The four cumulants that describe the shape of ΔNp

distributions at various collision energies are plotted as a
function of hNparti in Fig. 2. We use the Delta theorem
approach to obtain statistical errors [26]. The typical
statistical error values for C2, C3, and C4 for central Auþ
Au collisions at 7.7 GeV are 0.3%, 2.5%, and 25%,
respectively, and those for high statistics 200 GeV results
are 0.04%, 1.2%, and 2.0%, respectively. Most of the
cumulant values show a linear variation with hNparti. The
C1 values increase as

ffiffiffiffiffiffiffiffi
sNN

p
decreases, in accordance with

the energy and centrality dependence of baryon transport.
C2 and C4 have similar values as a function of hNparti for a
given

ffiffiffiffiffiffiffiffi
sNN

p
. C1 and C3 follow each other closely as a

function of hNparti at any given
ffiffiffiffiffiffiffiffi
sNN

p
. The differences

between these groupings decrease as
ffiffiffiffiffiffiffiffi
sNN

p
decreases. The

decrease in the C3 values with increasing beam energy
indicates that the distributions become symmetric for the
higher beam energies. The particle production at any given
centrality can be considered a superposition of several
identically distributed independent sources the number of
which is proportional to Npart [8]. For the cumulants, this
means a linear increase with hNparti as the system volume
increases. This reflects that the cumulants are extensive
quantities that are proportional to system volume. The lines
in Fig. 2 are linear fits to the cumulants, which provide a
reasonable description of the centrality dependence. This
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FIG. 1 (color online). ΔNp multiplicity distributions in Auþ
Au collisions at various

ffiffiffiffiffiffiffiffi
sNN

p
for 0%–5%, 30%–40%, and

70%–80% collision centralities at midrapidity. The statistical
errors are small and within the symbol size. The lines are the
corresponding Skellam distributions. The distributions are not
corrected for the finite centrality width effect and NpðNp̄Þ
reconstruction efficiency.
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indicates that the volume effect dominates the measured
cumulant values. The χ2=ndf (number of degrees of free-
dom) between the linear fit and data are smaller than 3.2 for
all cumulants presented. The slight deviation of some
cumulants in most central collisions from the fit line are
due to the corresponding proton distributions.
In order to cancel the volume effect to first order and

to understand the collision dynamics, we present the ratios
of the cumulants C3=C2 (¼ Sσ) and C4=C2 (¼ κσ2) as a
function of hNparti for all collision energies, in Fig. 3.
The Sσ are normalized to the corresponding Skellam
expectations. Results with correction for the pðp̄Þ
reconstruction efficiency are presented. The correction
for a finite track reconstruction efficiency is done by
assuming a binomial distribution for the probability to
reconstruct n particles out of N produced [20,27]. These
observables are related to the ratio of baryon number
susceptibilities (χB) at a given temperature (T) computed
in QCD motivated models as Sσ ¼ ðχð3ÞB =TÞ=ðχð2ÞB =T2Þ and
κσ2 ¼ ðχð4ÞB Þ=ðχð2ÞB =T2Þ [16,17]. Close to the CP, QCD-
based calculations predict the net-baryon number distribu-
tions to be non-Gaussian and susceptibilities to diverge,
causing Sσ and κσ2 to have nonmonotonic variations with
hNparti and/or ffiffiffiffiffiffiffiffi

sNN
p

[6,12].
We observe in Fig. 3 that the κσ2 and the Sσ normalized to

Skellam expectations are below unity for all of the Auþ Au
collision data sets presented. The deviations below unity of
the order of 1%–3% [28] as seen for the central collisions for
energies above 27GeVare expected fromquantumstatistical
effects. The measured Sσ and κσ2 are compared to expect-
ations in which the cumulants of ΔNp distributions are
constructed by considering independent production of
protons and antiprotons. For independent production, the
various order (n ¼ 1, 2, 3, and 4) net-proton cumulants
are given as CnðΔNpÞ ¼ CnðNpÞ þ ð−1ÞnCnðNp̄Þ, where

CnðNpÞ and CnðNp̄Þ are cumulants of the measured dis-
tributions ofNp andNp̄, respectively. This approach breaks
intraevent correlations betweenNp andNp̄. The results from
independent production are found to be in good agreement
with the data. However, for

ffiffiffiffiffiffiffiffi
sNN

p
< 39 GeV, the Cn of net

protons are dominated by the corresponding values from the
proton distributions. The assumption that Np and Np̄ have
independent binomial distributions [29] also leads to a good
description of the measurements (similar to independent
production, but not plotted in Fig. 3).
Systematic errors are estimated by varying the following

requirements for pðp̄Þ tracks: distance of closest approach,
track quality reflected by the number of fit points used in
track reconstruction, and the dE=dx selection criteria for
pðp̄Þ identification. The typical systematic errors are of the
order of 4% for M and σ, 5% for S, and 12% for κ. A 5%
uncertainty in reconstruction efficiency estimation is also
considered. The statistical and systematic (caps) errors are
presented separately in the figures.
Figure 4 shows the energy dependence of Sσ and κσ2

for ΔNp for Auþ Au collisions for two collision central-
ities (0%–5% and 70%–80%), corrected for (pðp̄Þ)
reconstruction efficiency. The Sσ values normalized to
the corresponding Skellam expectations are shown in the
bottom panel of Fig. 4. The Skellam expectations reflect a
system of totally uncorrelated, statistically random particle
production. The corresponding results from pþ p colli-
sions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 62.4 and 200 GeV are also shown and
found to be similar to peripheral Auþ Au collisions within
the statistical errors. For

ffiffiffiffiffiffiffiffi
sNN

p
below 39 GeV, differences

are observed between the 0%–5% central Auþ Au colli-
sions and the peripheral collisions. The results are closer to
unity for

ffiffiffiffiffiffiffiffi
sNN

p ¼ 7.7 GeV. The significance of deviations
of 0%–5% Auþ Au data from Skellam expectations,
(ðjdata − SkellamjÞ= ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

errstat2 þ errsys2
q

), are found to be greatest

(a) 7.7 GeV

(e) 39 GeV

(b) 11.5 GeV

(f) 62.4 GeV

(c) 19.6 GeV

(g) 200 GeV

(d) 27 GeV

Au+Au Collisions
Net proton
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2σκ
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FIG. 3 (color online). Centrality dependence of Sσ=Skellam and κσ2 forΔNp in Auþ Au collisions at
ffiffiffiffiffiffiffiffi
sNN

p ¼ 7.7, 11.5, 19.6, 27, 39,
62.4, and 200 GeV. The results are corrected for the pðp̄Þ reconstruction efficiency. The error bars are statistical and caps are systematic
errors. The shaded bands are expectations assuming the approach of independent proton and antiproton production, as described in the
text. The width of the bands represents statistical uncertainty.
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for 19.6 and 27 GeV, with values of 3.2 and 3.4 for κσ2 and
4.5 and 5.6 for Sσ, respectively. The significance of
deviations for 5%–10% Auþ Au data are smaller for
κσ2 with values of 2.0 and 0.6 and are 5.0 and 5.4 for
Sσ, for 19.6 and 27 GeV, respectively. Higher statistics data
for

ffiffiffiffiffiffiffiffi
sNN

p
< 19.6 GeV will help in quantitatively under-

standing the energy dependence of κσ2 and Sσ. A reason-
able description of the measurements is obtained from
the independent production approach. The data also show
deviations from the hadron resonance gas model [30,31],
which predict κσ2 and Sσ=Skellam to be unity. The effect
of decay is less than 2% as per the hadron resonance gas
model (HRG) calculations in Ref. [31]. To understand the
effects of baryon number conservation [32] and experi-
mental acceptance, UrQMDmodel calculations (a transport
model which does not include a CP) [22] for 0%–5% Auþ
Au collisions are shown in the middle and bottom panels of
Fig. 4. The UrQMDmodel shows a monotonic decreasewith
decreasing beam energy [23]. The centrality dependence of

the κσ2 and Sσ from UrQMD [23] (not shown in the figures)
closely follows the data at the lower beam energies of 7.7
and 11.5 GeV. Their values are, in general, larger compared
to data for the higher beam energies.
The current data provide the most relevant measurements

over the widest range in μB (20–450 MeV) to date for the
CP search, and for comparison with the baryon number
susceptibilities computed from QCD to understand the
various features of the QCD phase structure [6,16,17]. The
deviations of Sσ and κσ2 below the Skellam expectation
are qualitatively consistent with a QCD-based model which
includes a CP [33]. However, the UrQMD model which
does not include a CP also shows deviations from the
Skellam expectation. Hence, conclusions on the existence
of CP can be made only after comparison to QCD
calculations with CP behavior which include the dynamics
associated with heavy-ion collisions, such as finite corre-
lation length and freeze-out effects.
In summary, measurements of the higher moments and

their products (Sσ and κσ2) of the net-proton distributions
at midrapidity (jyj < 0.5) within 0.4 < pT < 0.8 GeV=c in
Auþ Au collisions over a wide range of

ffiffiffiffiffiffiffiffi
sNN

p
and μB have

been presented to search for a possible CP and signals of a
phase transition in the collisions. These observables show a
centrality and energy dependence, which are not repro-
duced by either non-CP transport model calculations or by
a hadron resonance gas model. For

ffiffiffiffiffiffiffiffi
sNN

p
> 39 GeV, Sσ

and κσ2 values are similar for central, peripheral Auþ Au
collisions, and pþ p collisions. Deviations for both κσ2

and Sσ from HRG and Skellam expectations are observed
for

ffiffiffiffiffiffiffiffi
sNN

p ≤ 27 GeV. The measurements are reasonably
described by assuming independent production of Np and
Np̄, indicating that there are no apparent correlations
between the protons and antiprotons for the observable
presented. However, at the lower beam energies, the
net-proton distributions are dominated by the shape of
the proton distributions only. The data presented here also
provide information to extract freeze-out conditions in
heavy-ion collisions using QCD-based approaches [34,35].
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FIG. 4 (color online). Collision energy and centrality depende-
nce of the net proton Sσ and κσ2 from Auþ Au and pþ p
collisions at RHIC. Crosses, open squares, and filled circles
are for the efficiency corrected results of pþ p, 70%–80%, and
0%–5% Auþ Au collisions, respectively. Skellam distributions
for corresponding collision centralities are shown in the top
panel. Shaded hatched bands are the results from UrQMD [22].
In the middle and lower panels, the shaded solid bands are the
expectations assuming independent proton and antiproton pro-
duction. The width of the bands represents statistical uncertain-
ties. The HRG values for κσ2 and Sσ=Skellam are unity [30,31].
The error bars are statistical and caps are systematic errors. For
clarity, pþ p and 70%–80% Auþ Au results are slightly
displaced horizontally.
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