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Rapidity-odd directed flow (v1) measurements for charged pions, protons, and antiprotons near
midrapidity (y ¼ 0) are reported in

ffiffiffiffiffiffiffiffi

sNN
p ¼ 7.7, 11.5, 19.6, 27, 39, 62.4, and 200 GeVAu+Au collisions

as recorded by the STAR detector at the Relativistic Heavy Ion Collider. At intermediate impact parameters,
the proton and net-proton slope parameter dv1=dyjy¼0 shows a minimum between 11.5 and 19.6 GeV.
In addition, the net-proton dv1=dyjy¼0 changes sign twice between 7.7 and 39 GeV. The proton and
net-proton results qualitatively resemble predictions of a hydrodynamic model with a first-order phase
transition from hadronic matter to deconfined matter, and differ from hadronic transport calculations.

DOI: 10.1103/PhysRevLett.112.162301 PACS numbers: 25.75.Ld, 25.75.Dw

Lattice QCD calculations indicate that the transition
from hadronic matter to a quark gluon plasma [1] phase in
gold ion collisions at the full energy of the Relativistic
Heavy Ion Collider (RHIC) (

ffiffiffiffiffiffiffiffi

sNN
p ∼ 200 GeV) is a

smooth crossover [2], whereas at progressively lower beam
energies, there is an increasing possibility to explore a first-
order transition between these phases [3,4]. At even lower
beam energies (how low remains unknown), the excited
nuclear matter is expected to remain in a hadronic phase
throughout the interaction [1]. In the scenario of nuclear
collisions at the optimum beam energy for a first-order
phase transition, various models have predicted character-
istic azimuthal anisotropy signals [5–8].
The first harmonic coefficient of the Fourier expansion

of the final-state momentum-space azimuthal distribution
relative to the reaction plane [9] is called directed flow v1.
The rapidity-even component veven1 ðyÞ, attributed to event-
by-event fluctuations in the initial state of the collisions, is
unrelated to the reaction plane [10]. The vodd1 ðyÞ component
is the traditional definition of v1 as used for more than two
decades [9,11], and is attributed to collective sidewards
deflection of the particles. Both hydrodynamic [12] and
nuclear transport [13] models indicate that v1ðyÞ in the
midrapidity region offers sensitivity to details of the expan-
sion of the participantmatter during the early collision stages
[14,15]. Hydrodynamic models predict a minimum in
directed flow (e.g., a minimum in dv1=dy) near midrapidity
as a function of collision energy [5,8]. A three-fluid hydro-
dynamic calculation, with a first-order phase transition
between hadronic matter and a quark gluon plasma, predicts
a prominentminimum in directed flow of net baryons [16] at
a center-of-mass energy of about

ffiffiffiffiffiffiffiffi

sNN
p ¼ 4 GeV, and this

minimum has been termed the “softest point collapse” [8].
The established convention assigns a positive sign to v1

for nucleons detected near beam rapidity on whichever
side of midrapidity has been arbitrarily defined as positive
rapidity [17–20]. Predictions of hydrodynamic and trans-
port models include dv1=dy with a negative sign near
midrapidity (where pions dominate), and such phenomena
have been given names like “antiflow” [7], “third flow
component” [6] and “wiggle” [8,21,22]. It has been argued
that these are possible phase transition signatures, espe-
cially if observed for baryons [8]. However, it is also
possible to explain some qualitative features of a single sign
reversal in dv1=dy in a purely hadronic picture [21,23].

These alternative explanations imply that emission from
a tilted disk-shaped source is similar for both pions and
protons; both should show directed flow in the same
direction close to midrapidity, and in the opposite direction
in the region where spectator matter breaks up [24].
We report measurements of directed flow in Au+Au

collisions in the range
ffiffiffiffiffiffiffiffi

sNN
p ¼ 7.7 to 200 GeV, based

on data from STAR [25], recorded in 2010 and 2011. The
STAR time projection chamber (TPC) [26] performed
charged particle tracking at midrapidity. The centrality
was determined from the number of charged particles in the
pseudorapidity region jηj < 0.5. Two beam-beam counters
(BBCs) [27,28] covering 3.3 < jηj < 5.0 were used to
reconstruct the first-harmonic event plane, as explained
in Ref. [29]. The BBC event-plane resolution is inadequate
above 39 GeV, and therefore the STAR ZDC-SMD
detectors were used at 62.4 and 200 GeV [19,20,30,31].
The analyzed data sets at 7.7, 11.5, 19.6, 27, 39, 62.4,

and 200 GeV contain 3.8, 10.6, 19, 39, 96, 50, and
250 million minimum-bias-trigger events, respectively.
We require the primary vertex position of each event along
the beam direction, Vz, to lie within 30 cm of the center of
the detector for beam energies 39, 62.4, and 200 GeV,
40 cm for 27 and 19.6 GeV, 50 cm for 11.5 GeV, and 70 cm
for 7.7 GeV. Use of the same narrow or wide jVzj cut at
all energies negligibly changes v1, but a wider cut reduces
statistical errors at the two lowest energies. Tracks were
required to have transverse momenta pT > 0.2 GeV=c,
have a distance of closest approach to the primary vertex of
less than 3 cm, have at least 15 space points in the main
TPC acceptance (jηj < 1.0), and have a ratio of the number
of measured space points to the maximum possible number
of space points greater than 0.52. This last requirement
prevents track splitting from causing a single particle to be
counted twice. Protons and antiprotons with pT between
0.4 and 2.0 GeV=c and π� with pT > 0.2 GeV=c and p up
to 1.6 GeV=c were identified based on energy loss in the
TPC, and time-of-flight information from the TOF detector
[32]. Intermediate-centrality proton and antiproton results
presented in this study have been weighted, within the
indicated acceptance, to correct for pT-dependent ineffi-
ciency; these corrections are small, and are comparable to
statistical uncertainties. For other particles, the presented
results are uncorrected.
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Possible systematic uncertainties arising from nonflow,
i.e., azimuthal correlations not related to the reaction
plane orientation (arising from resonances, jets, strings,
quantum statistics, and final-state interactions like
Coulomb effects) are reduced due to the relatively large
pseudorapidity gap between the STAR TPC and the BBC
detectors [9,29]. Directed flow measurements based on
the BBC event plane, where the BBC east and west
detectors ensure symmetry in rapidity acceptance, cancel
biases from conservation of momentum in the basic
correlation measurement, because the difference in v1
between the rapidity hemispheres is used [33]. However,
momentum conservation effects [33] do contribute to
systematic uncertainty in the event-plane resolution,
and thereby in the resolution-corrected signal, at the level
of less than 2% [34]. A correction for weak decay
feeddown is unnecessary for the particle species consid-
ered here and is neglected [31]. The systematic uncer-
tainty arising from particle misidentification and detector
inefficiency is estimated by varying event and track cuts,
and is ∼5%. Simulations based on the ultrarelativistic
quantum molecular dynamics (UrQMD) transport model
[13] indicate that possible systematic effects due to the
rapidity coverage of the event plane detectors are well
within the total systematic uncertainty. The measured v1
should be antisymmetric about midpseudorapidity within
statistical uncertainties; previous studies suggest that the
maximum forward-backward difference is a useful esti-
mator of the systematic uncertainty [37]. Overall, total
systematic uncertainties on dv1=dy are typically within
12% in regions where this slope is not close to zero, and
decrease slightly with increasing beam energy up to
39 GeV. Specific point-by-point systematic errors are
presented in the final two figures.
In Fig. 1, v1ðyÞ for protons and π− is presented for three

centralities at 7.7–39 GeV. Directed flow from STAR at
62.4 and 200 GeV has already been published [30,31].
A new analysis of later experimental runs with improved
statistics is included in Figs. 2 through 4, and is consistent
with the earlier measurements. All data points in Fig. 1 are
antisymmetric about midrapidity, verifying cancellation of
the momentum conservation effect discussed earlier [33].
In intermediate and peripheral collisions, slopes of v1ðyÞ
near midrapidity for pions and protons are negative for
all energies, except for protons at 7.7 GeV. The NA49
Collaboration [18] likewise has reported negative slopes at
midrapidity for pions and protons at 17.3 GeV, with larger
errors. Furthermore, STAR has previously reported neg-
ative slopes at midrapidity for pions and protons at higher
beam energies [30,31].
These results cannot be explained by a baryon stopping

picture [21], which predicts a small slope for pions and an
opposite slope for protons, contrary to the present obser-
vation of a large pion v1ðyÞ slope that is not opposite to the
proton v1ðyÞ slope, except at 7.7 GeV. Both protons and

pions above 11.5 GeV have negative dv1=dy near mid-
rapidity, which is consistent with predictions based on
emission from a tilted source [24]. Spectator shadowing
also leads to negative dv1=dy for protons, with the most
pronounced effect in peripheral collisions; however, its
beam energy dependence has not been reported [38].
In Fig. 2, v1ðyÞ for protons, antiprotons, and π� are

presented for 10%–40% centrality Au+Au collisions at all
of the studied beam energies. We observe a large percent-
age difference between proton and antiproton v1 at all
seven energies. v1ðyÞ is close for πþ and π− at the higher
energies, with minor differences at 11.5 and 7.7 GeV.
Figure 3 presents v1ðyÞ slope near midrapidity for

protons, antiprotons, and π� versus beam energy. The slope
is the linear termF in a cubic fit, where v1ðyÞ ¼ Fyþ F3y3.
Figure 4(a) duplicates the antiproton data, and Fig. 4(b)
shows the proton data in more detail; in both cases, UrQMD
hadronic transport model [13,39] predictions are overlaid.
The fitted F values are stable when binning and the y range
are varied (plotted slopes at and below 39 GeV are based
on −0.5 < y < 0.5), and the systematic errors plotted in
Figs. 3 and 4 include uncertainties arising from the choice
of fitting criteria. At 62.4 and 200 GeV, a linear-only fit
over −1 < y < 1 was used, but the systematic error covers
the range of slopes from a cubic fit.
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FIG. 1 (color online). Directed flow for protons and π−
versus rapidity for central (0%–10%), intermediate-centrality
(10%–40%), and peripheral (40%–80%) Au+Au collisions at
ffiffiffiffiffiffiffiffi

sNN
p ¼ 39, 27, 19.6, 11.5, and 7.7 GeV. The plotted errors are
statistical only, and systematic uncertainties are explained in
the text.
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For intermediate-centrality collisions, the proton slope
decreases with increasing energy and changes sign from
positive to negative between 7.7 and 11.5 GeV, shows a
minimum between 11.5 and 19.6 GeV, and remains small
and negative up to 200 GeV, while the pion and antiproton
slopes are negative at all measured energies. In contrast,
there is no hint of the observed nonmonotonic behavior for
protons in the well-tested UrQMD model. Isse et al., in a
transportmodel study incorporating amomentum-dependent
mean field, report qualitative reproduction [40] of proton
directed flow fromE895 [17] and NA49 [18] (see Fig. 3), but
this model yields a positive dv1=dy at all beam energies
studied (

ffiffiffiffiffiffiffiffi

sNN
p ¼ 17.2, 8.8 GeV and below).

The energy dependence of proton dv1=dy involves an
interplay between the directed flow of protons associated
with baryon number transported from the initial beam
rapidity to the vicinity of midrapidity, and the directed flow
of protons from particle-antiparticle pairs produced near
midrapidity. The importance of the second mechanism
increases strongly with beam energy. A means to distin-
guish between the two mechanisms would thus be

informative. We define the slope Fnet-p based on expressing
the rapidity dependence of directed flow for all protons as
½v1ðyÞ�p¼ rðyÞ½v1ðyÞ�p̄þ½1−rðyÞ�½v1ðyÞ�net-p, where rðyÞ
is the observed rapidity dependence of the ratio of
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FIG. 2 (color online). Proton and antiproton v1ðyÞ (left panels)
and π� v1ðyÞ (right panels) for intermediate-centrality
(10%–40%) Au+Au collisions at 200, 62.4, 39, 27, 19.6, 11.5,
and 7.7 GeV. The plotted errors are statistical only.
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are reported, along with measurements by prior experiments
[17,18] with comparable but not identical cuts. Statistical errors
(bars) and systematic errors (shaded) are shown separately.
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FIG. 4 (color online). Directed flow slope (dv1=dy) near
midrapidity versus beam energy for intermediate-centrality
Au+Au. Panels (a), (b) and (c) report measurement for anti-
protons, protons, and net protons, respectively, along with
UrQMD calculations subject to the same cuts and fit conditions.
Systematic uncertainties are shown as shaded bars. Dashed
curves are a smooth fit to guide the eye.
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antiprotons to protons at each beam energy. Corrections of
rðyÞ for reconstruction inefficiency and backgrounds have a
negligible effect on Fnet-p and have not been applied. An
interpretation of Fnet-p is suggested by our observation that
v1ðyÞ is very similar for πþ and π− (see Fig. 2) and for Kþ
and K− [41]. Thus, we propose the use of antiproton
directed flow as a proxy for the directed flow of produced
protons, and propose that the net-proton slope Fnet-p brings
usa stepcloser to isolating thecontributions fromtransported
initial-state baryonic matter, as well as closer to the net-
baryon hydrodynamic calculation [8,16]. Other final-state
interaction effects, such as annihilation [42] and hadronic
potentials [43], complicate the simplified picture above.
Figure 4(c) reveals that the v1ðyÞ slope for net protons is

negligibly different from protons at 11.5 and 7.7 GeV, but
then crosses zero between 27 and 39 GeV, and remains
positive up to 200 GeV. The UrQMD model [13] again
shows a monotonic trend, with a positive slope at all
energies. The observed beam energy of the minimum in
v1ðyÞ slope for both protons and net protons is higher than
the energy of the minimum in the hydrodynamic prediction
[44]. Recent hydrodynamic calculations confirm this pre-
diction, but yield larger v1 magnitudes than observed [45].
A recent hybrid calculation, featuring Boltzmann transport
with an intermediate hydrodynamic stage [46], does not
show a minimum or a sign change in dv1=dy [45].
The beam energy region where we observe the minimum

in v1ðyÞ slope for all protons and net protons coincides
with a high degree of stopping [47]. It is not far above the
AGS E895 Collaboration energy region (lab energies of
2 − 8 GeV) where the spectator matter separates from
the participants quickly enough so that its influence on
the flow in the midrapidity zone decreases steeply as the
energy is increased further [23,48]. Nuclear transport
models like the UrQMD model ought to clarify whether
or not purely hadronic physics could account for the
observed minimum, and for the double sign change in
the case of net protons. Further work towards a more
complete theoretical understanding of the present obser-
vations is needed. To better understand the possible role
and relevance of stopping, measurements as a function of
centrality would be helpful, but available event samples are
too small for this purpose. We note that the observations
in Figs. 4(b) and 4(c) qualitatively resemble predicted
signatures of a first-order phase transition between had-
ronic and deconfined matter [5–8,22,24].
In summary, we report directed flow for charged

pions, protons, and antiprotons in
ffiffiffiffiffiffiffiffi

sNN
p ¼ 7.7 − 200 GeV

Au+Au collisions in the STAR detector at RHIC. At
intermediate centralities, dv1=dy near midrapidity for pions
and antiprotons is negative at all measured energies, while
the proton slope changes sign from positive to negative
between 7.7 and 11.5 GeV, shows a minimum between
11.5 and 19.6 GeV, and remains small but negative up to
200 GeV. In the same centrality region, the net-proton v1ðyÞ

slope also shows a minimum between 11.5 and 19.6 GeV,
and changes sign twice between 7.7 and 39 GeV. These
findings are qualitatively different from the predictions of
the UrQMD transport model, which exhibits a monotonic
trend in the range

ffiffiffiffiffiffiffiffi

sNN
p ¼ 7.7 − 200 GeV. The observed

minimum for protons and net protons resembles the
predicted softest point collapse of flow and is a possible
signature of a first-order phase transition between hadronic
matter and a deconfined phase.
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