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ABSTRACT

We determine the absolute dimensions of the eclipsing binary V578 Mon, a detached system of two early B-
type stars (B0V + B1V, P = 2.40848 days) in the star-forming region NGC 2244 of the Rosette Nebula.
From the light curve analysis of 40 yr of photometry and the analysis of hermes spectra, we find radii of
5.41 ± 0.04 R� and 4.29 ± 0.05 R�, and temperatures of 30,000 ± 500 K and 25,750 ± 435 K, respectively. We
find that our disentangled component spectra for V578 Mon agree well with previous spectral disentangling
from the literature. We also reconfirm the previous spectroscopic orbit of V578 Mon finding that masses of
14.54 ± 0.08 M� and 10.29 ± 0.06 M� are fully compatible with the new analysis. We compare the absolute
dimensions to the rotating models of the Geneva and Utrecht groups and the models of the Granada group. We find
that all three sets of models marginally reproduce the absolute dimensions of both stars with a common age within
the uncertainty for gravity-effective temperature isochrones. However, there are some apparent age discrepancies
for the corresponding mass–radius isochrones. Models with larger convective overshoot, >0.35, worked best.
Combined with our previously determined apsidal motion of 0.07089+0.00021

−0.00013 deg cycle−1, we compute the internal
structure constants (tidal Love number) for the Newtonian and general relativistic contribution to the apsidal motion
as log k2 = −1.975 ± 0.017 and log k2 = −3.412 ± 0.018, respectively. We find the relativistic contribution to
the apsidal motion to be small, <4%. We find that the prediction of log k2,theo = −2.005 ± 0.025 of the Granada
models fully agrees with our observed log k2.
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1. INTRODUCTION

Detached eclipsing binary stars (dEBs) provide accurate ob-
served stellar masses, radii, effective temperatures, and rota-
tional velocities. See a recent review by Torres et al. (2010) for
a discussion of 94 dEBs with accurate masses and radii used
to test stellar evolution models. There are only 9 total massive
dEBs, or equivalently, 18 stars whose physical parameters have
been determined with an accuracy of better than 3%, making
V578 Mon 1 of only 9 EBs with M1 � M2 > 10 M� and with
sufficient accuracy to be included in the Torres et al. (2010)
compilation of benchmark-grade EBs. Figure 1 demonstrates
the upper main sequence (MS) of all dEBs with M1 � M2 >
10 M� and masses and radii determined to 3% (adapted from
Torres et al. 2010). V578 Mon is therefore a benchmark system
for testing stellar evolution models of newly formed massive
stars. The accurate absolute dimensions of eclipsing binary stars
provide a unique opportunity to test stellar evolution models in
two ways: using the isochrone test and using the apsidal motion
test.

The isochrone test of stellar evolution models requires that
the ages of both components of a dEB predicted from separate
stellar evolution tracks be the same within the uncertainty of the
absolute dimensions (M,R, Teff, vrot). For the isochrone test,
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we assume that both components of the dEB formed together in
the same initial gas cloud. Therefore, both components of a dEB
are assumed to arrive at the zero age main sequence (ZAMS)
at nearly the same time. Furthermore, their initial chemical
compositions must be the same. Finally, we assume that each
component of the binary evolves in isolation, where the effects
of the companion star on the evolution is small or negligible.

The isochrone test is strongest for eclipsing binaries with
low mass ratios q = (M2/M1) < 1. For dEBs where com-
ponent masses M1 ≈ M2, both stars will evolve on the same
evolutionary track. This does not allow for strict tests of stellar
evolution models unless the chemical composition or effective
temperature of the stars is known. Stellar evolution models will
predict that two stars of the same mass and composition will
have the same age. Conversely, the larger the difference in ini-
tial mass between the components of the binary star, the larger
the difference in MS lifetimes of the two stars. Therefore, stel-
lar models must have accurate input physics to correctly predict
how quickly stars of different masses evolve relative to each
other. The correct input physics in turn yield correct predictions
of the observed absolute dimensions of the detached eclipsing
binary.

dEBs with apsidal motion (precession of the argument of
periastron) also allow for the apsidal motion test of the stellar
internal structure (Claret & Giménez 2010). Physically, the
observed apsidal motion rate in an eclipsing binary is a result
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Figure 1. Massive (>10 M�) detached eclipsing binaries with accurate masses
and radii better than 2% are scarce. There are only nine such systems (black
triangles) including V578 Mon (green circles). This list of eclipsing binaries
is adapted from Torres et al. (2010). The error bars on the mass and radii
are smaller than the plotted symbols. Of these eclipsing binaries, V578 Mon
is simultaneously one of the youngest and has one of the lowest mass ratios
q = M2/M1.

(A color version of this figure is available in the online journal.)

of the tidal forces of each star on the other. In turn, this tidal
force is linked to the internal structure of each star, the star’s
separation, their mass ratio q, and their radii R1 and R2. The
internal structure is quantified by the constant log k2, which is
the logarithm of twice the tidal Love number (Kramm et al.
2011). The apsidal motion test compares the theoretical internal
structure constant log k2,theo to the observed internal structure
constant log k2,obs. The observed internal structure constant is a
function of the observed absolute dimensions and apsidal motion
of the eclipsing binary. The observed internal structure constant
is very sensitive to the radii (k2,obs ∝ R5); therefore, this test
can only be performed with accurate stellar radii. However,
including this study of massive dEB V578 Mon, there are only
five massive, eccentric eclipsing binaries available for these tests
of internal structure (Claret & Giménez 2010).

Here we combine the previous determination of ω̇ and e
from Garcia et al. (2011) with a re-analysis of 40 yr worth
of photometry to re-determine the fundamental properties of
V578 Mon. We also include the photometry used in the previous
light curve analysis (Hensberge et al. 2000). We compare the
masses, temperatures, and radii of V578 Mon with rotating high
mass stellar evolution models by the Granada (Claret 2004,
2006), Geneva (Georgy et al. 2013; Ekström et al. 2012), and
Utrecht (Brott et al. 2011) groups. We also compare the observed
internal structure constant log k2,obs with theoretical log k2,theo
using the methods of Claret & Giménez (2010).

2. THE ECLIPSING BINARY V578 MON IN NGC 2244

The photometric variability of the bright (V = 8.5), 2.408 day
period, eccentric, massive dEB V578 Mon (HDE 259135,
BD+4◦1299), comprising a B1V-type primary star and a B2V-
type secondary star was first identified in the study by Heiser
(1977) of NGC 2244 within the Rosette Nebula (NGC 2237,
NGC 2246). The identifications, locations, and photometric
parameters for V578 Mon are listed in Table 1. The absolute
dimensions of V578 Mon have been determined from three
seasons of Strömgren uvby photometry and one season of radial-
velocity data by Hensberge et al. (2000). An analysis of the
metallicity and evolutionary status of V578 Mon was undertaken

Table 1
Identifications, Location, and Combined Photometric Parameters

for Eclipsing Binary V578 Mon

V578 Mon Reference
Henry Draper number HD 259135 Cannon & Pickering (1923)
Bonner Durchmusterung BD +04◦1299 Argelander (1903)
Hoag number NGC 2244 200 Hog et al. (1998)

α2000 06 32 00.6098 Hog et al. (1998)
δ2000 +04 52 40.902 Hog et al. (1998)
Spectral type B0V + B1V Hensberge et al. (2000)

V 8.542 Ogura & Ishida (1981)
V − I 0.262 Wang et al. (2008)
B − V +0.165 Ogura & Ishida (1981)
U − B − 0.727 Wolff et al. (2007)
V − R +0.452 Wang et al. (2008)

by Pavlovski & Hensberge (2005) and Hensberge et al. (2000).
The masses and radii of V578 Mon determined from these data
are 14.54 ± 0.08 M� and 10.29 ± 0.06 M�, and 5.23 ± 0.06 R�
and 4.32 ± 0.07 R� for the primary and secondary, respectively
(Hensberge et al. 2000). V578 Mon was included in the list of 94
detached eclipsing binaries with masses and radii accurate to 2%
by Torres et al. (2010). The radii for V578 Mon listed in Torres
et al. (2010) were found to be incorrect by Garcia et al. (2013)
given the system’s eccentric orbit and asynchronous rotation.
The apsidal motion ω̇ and a new eccentricity e were determined
in Garcia et al. (2011). V578 Mon was observed by MOST
(Pribulla et al. 2010).

Given the inclination of V578 Mon, its eclipses are partial,
meaning that neither star is fully out of view of Earth. Par-
tial eclipses can translate into a degeneracy between the radii,
preventing the component radii R1 and R2 from being indi-
vidually measured. However, V578 Mon also has an eccentric
orbit, meaning that the eclipse durations are not equal, which
helps break this degeneracy and allows the radii to be deter-
mined separately. V578 Mon is observed to have not yet tidally
locked. The system has a low mass ratio q = 0.7078 compared
with similar systems with well-determined absolute parame-
ters such as V1034 Sco, V478 Cyg, AH Cep, V453 Cyg, and
CW Cep (Bouzid et al. 2005; Popper & Etzel 1981; Popper &
Hill 1991; Bell et al. 1986; Holmgren et al. 1990; Southworth
et al. 2004; Popper 1974; Stickland et al. 1992). Of all of these
systems, V578 Mon is also the youngest, making this system
a benchmark case for testing stellar evolution models at the
youngest ages.

3. DATA

3.1. Johnson UBV and Strömgren uvby Photometry

The available time series photometry of V578 Mon covers
nearly 40 yr and more than one full apsidal motion period. A
summary of the various light curve epochs, including filters and
observing facilities used, is presented in Table 2. Photometry
from Heiser (2010) includes multi-band light curves spanning
1967–2006 from the 16 inch telescope at Kitt Peak National
Observatory (KPNO) and from the Tennessee State University
(TSU)–Vanderbilt 16 inch Automatic Photoelectric Telescope
(APT) at Fairborn Observatory. The KPNO Johnson UBV light
curves comprise 725 data points spanning 1967–1984 with
average uncertainties per data point of 0.004 mag computed
by Heiser (2010). The APT Johnson BV light curves span
1994–2006 and consist of 1783 data points with average
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Table 2
V578 Mon Light Curves

Observatory Year Filter σ0 σ N
(mag) (mag)

KPNOa 1967–1984 Johnson U 0.004 0.016 251
Johnson B 0.004 0.012 256
Johnson V 0.004 0.013 217

SATb 1991–1994 Strömgren u 0.0029 0.0067 248
Strömgren b 0.0023 0.0046 248
Strömgren v 0.0023 0.0054 248
Strömgren y 0.0030 0.0053 248

APTc 1994–1995 Johnson V 0.0037 0.0022 260
Johnson B 0.001 0.0040 254

APT 1995–1996 Johnson V 0.002 0.0035 95
Johnson B 0.001 0.0037 96

APT 1999–2000 Johnson V 0.002 0.0058 259
Johnson B 0.001 0.0078 246

APT 2005–2006 Johnson V 0.002 0.0036 284
Johnson B 0.001 0.0044 283

Notes.
a 16 inch telescope at Kitt Peak (KPNO).
b 0.5 m telescope at La Silla (SAT).
c TSU–Vanderbilt 16 inch telescope at Fairborn University (APT).

uncertainties per data point of 0.001 mag for B and 0.002 mag for
V (Heiser 2010). Light curves from Hensberge et al. (2000) span
1991–1994 from the 0.5-m Strömgren Automatic Telescope
(SAT) at La Silla, with 248 data points in each of the uvby
filters and average uncertainty per data point of 0.003 mag
(Hensberge et al. 2000). We begin our light curve analysis
with the observational errors originally estimated by Heiser
(2010) and Hensberge et al. (2000). Table 2 lists these average
uncertainties, σ0, as reported by the original authors. However,
from our light curve fits (see below) we found that these
uncertainties were in most cases underestimated. Thus, we also
report as σ in Table 2 the uncertainties that we ultimately
adopted for each light curve.

3.2. hermes Spectroscopy

A new series of high-resolution echelle spectra were se-
cured in 2011 December (36 exposures) and 2012 February
(8 exposures) with hermes, the fiber-fed high-resolution spec-
trograph on the Mercator telescope located at the Observatorio
del Roque de los Muchachos, La Palma, Canary Islands. her-
mes samples the entire optical wavelength range (3800–9000
Å) with a resolution of R = 85,000 (Raskin et al. 2011). The
observations listed in Table 3 cover the orbital cycle uniformly.
Groups of two concatenated exposures allow us to obtain a ro-
bust estimation of random noise as a function of wavelength and
a check on cosmic-ray events surviving the detection algorithm
in the data reduction. In total, 44 exposures were obtained at
19 epochs, 16 of which are out of eclipse. One series of six
exposures starts near the primary mid-eclipse. One series of two
concatenated exposures taken around secondary mid-eclipse has
a significantly lower exposure level, but another one consisting
of four concatenated exposures starting around secondary mid-
eclipse is available.

Exposure times close to 2100 s were used for most spectra,
but in case of one out-of-eclipse epoch, the exposure time was
significantly shorter, 1200 s. The signal-to-noise ratio of the
spectra is 50–100 at 4000 Å, rapidly increasing to 120 to 200 at
5000 Å, and remaining close to this level at longer wavelengths.
The numbers apply to the sum of two concatenated exposures.

Table 3
Hermes Observations

Phase BJD−2,450,000.000 Exp Time (s)

0.9957 5904.586 2100
0.0060 5904.611 2100
0.0168 5904.637 2100
0.0272 5904.662 2100
0.0376 5904.687 1980
0.0476 5904.711 1980
0.0613 5909.561 1500
0.0692 5909.580 1500
0.1128 5914.502 2100
0.1231 5914.527 2100
0.1530 5914.599 2100
0.1634 5914.624 2100
0.2259 5907.549 2100
0.2363 5907.574 2100
0.2803 5912.497 2100
0.2907 5912.522 2100
0.3434 5912.649 2100
0.3534 5912.673 2100
0.4432 5905.664 2100
0.4449 5910.485 2300
0.4536 5905.689 2100
0.4565 5910.513 2300
0.4673 5910.539 2100
0.4777 5910.564 2100
0.5010 5910.620 2100
0.5113 5910.645 2100
0.6427 5908.553 2200
0.6535 5908.579 2200
0.7187 5913.553 2100
0.7291 5913.578 2100
0.7945 5906.510 2100
0.8049 5906.535 2100
0.9278 5911.648 2200
0.9390 5911.675 2200

Notes. Time series Hermes spectroscopy of V578 Mon. Each
exposure is less than 0.01 of the orbital period for V578 Mon of
2.4084822 days. The time series spectra were obtained to cover the
out-of-eclipse, primary eclipse, and secondary eclipse phases.

The reduction of the spectra has been performed using the heres
pipeline software package. The spectra resampled directly in
constant-size velocity bins (ln λ), which are very nearly the
size of the detector pixels, were used. Normalization to the
continuum is done separately.

The hermes spectra outnumber the caspec spectra used by
Hensberge et al. (2000), but fall short with regard to signal-
to-noise ratio. However, they cover a much larger wavelength
region, include epochs in both eclipses, and cover the orbit more
homogeneously. In the wavelength region covered by both sets,
the reconstruction has better signal-to-noise ratio in the caspec
set, but the risk of bias due to phase gaps might be higher with
the caspec data. Both data sets were obtained in different parts
of the apsidal motion cycle.

4. ANALYSIS

4.1. Spectral Disentangling and Light Ratio

In the V578 Mon binary system, the eclipses are partial, which
causes degeneracy in the light curve solution for the radii of the
components. It was checked whether a spectroscopic light ratio
has sufficient precision to reduce the degeneracy. This light ratio
might be constrained either by the changing line dilution during

3
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Table 4
Radial Velocity Solutions

q K1 K2 e
(km s−1) (km s−1)

Hensberge et al. (2000) (LC+spectroscopy) 0.7078 ± 0.0002 259.8 183.9 0.0867
Hensberge et al. (2000) RV only 0.705 ± 0.004 259.8 ± 0.8 184.4 0.0836 ± 0.0008
HERMES spectra, e fixed 0.710 259.8 184.5 0.07755
HERMES spectra, e and ω fixed 0.709 259.4 184.0 0.07755

the eclipse, and/or by constrained fitting of the reconstructed
component spectra by theoretical spectra, simultaneously de-
riving the light ratio as well as the photospheric parameters
(Tamajo et al. 2011). In the latter implementation, the light ra-
tio is assumed identical in all observed spectra, hence eclipse
spectra are not used.

With partial eclipses of roughly 0.1 mag depth and less for
the secondary eclipse at the epoch of the spectroscopy, the line
depth in the composite spectrum is affected at the level of 0.5%
of the continuum only when the two components have in their
intrinsic spectra a line differing by 7% of the continuum depth.
The similarity of the components and the rotational broadening
in the spectra imply that no metal line approaches this level.
Hence, using the changing line dilution to measure the light
ratio precisely is challenging. Exceedingly large signal-to-noise
ratios would be required to be able to use single or few lines.
Including many lines, i.e., large stretches of spectrum offers the
opportunity to reduce the requirements on the signal-to-noise
ratio. However, bias in tracing the continuum is expected to put
an upper limit on the precision with which the light ratio can be
measured in a system with components with similar spectra and
substantial rotation.

Therefore, we explored the alternative option of constrained
fitting, although it is model-sensitive. Spectral disentangling
(Hadrava 1995), further referred to as spd is performed in a
spectral range of about 100–150 Å (of the order of 4000 bins) in
the wavelength range 3900–5000 Å, centered on prominent lines
of He i, He ii, and stronger metal lines. The apsidal motion study
(Garcia et al. 2011) permitted us to fix the eccentricity e, the
longitude of the periastron, ω, for the epoch of the spectra, and
the time of periastron passage. The spd code used is FDBinary9

(Ilijic et al. 2004).
spd was applied to selected spectral regions of the hermes

spectra, well distributed over the full range of Doppler shifts
in the orbit (see orbital phases in Table 3), leads to radial
velocity amplitudes K1 and K2 compatible with Hensberge
et al. (2000) within better than 1 km s−1. Thus, the spectra
are reconstructed using the mean orbital elements (Table 4),
now also including regions around Hγ and Hδ (Hβ has a broad
interstellar band centered on its red wing). For the constrained
fitting, optimization was done for hydrogen and helium lines
only, and for combinations of them. The reconstructed spectra
for both out-of-eclipse and in-eclipse phases are shown in
Figures 2 and 3.

The component spectra for different dilution factors can be
obtained from a single disentangling computation, followed by
an adequate re-normalization. As a starting point for the pho-
tospheric parameters, Teff,1 = 30,000 K and Teff,2 = 26,400 K
are used based on the extensive study of Hensberge et al. (2000)
and Pavlovski & Hensberge (2005). The surface gravities of the
components are fixed to log g1 = 4.133 ± 0.018 and log g2 =

9 http://sail.zpf.fer.hr/fdbinary/

Figure 2. Fits (red) to the hermes spectra (blue) obtained during the primary and
secondary eclipse of V578 Mon. The disentangled component spectra obtained
from time series of observed spectra out of eclipse are shown above in black.
The light ratio from the light curve analysis agrees to within the uncertainty
with the light ratio derived from the in-eclipse spectra. The light contribution of
each component in the phases of the eclipses was calculated from the final light
curve solution.

(A color version of this figure is available in the online journal.)

4.185 ± 0.021 as derived in this paper. This suppresses the de-
generacy of line profiles of hot stars in the (temperature, gravity)
plane. Calculations for a small grid in log g have shown that the
effect of fixing log g might produce deviations of about a few
tenths of the percentage in determining the light dilution factors.

Optimization of relative light factors includes a search
through a grid of theoretical spectra, using a genetic algorithm.
A grid of synthetic spectra was calculated assuming non-LTE
line formation. The calculations are based on the so-called hy-
brid approach of Nieva & Przybilla (2007) in which model
atmospheres are calculated in LTE approximation and non-
LTE spectral synthesis with detailed statistical balance. Model
atmospheres are constructed with atlas9 for solar metallic-
ity, [M/H] = 0, and helium abundance by number density,
NHe/Ntot = 0.089 (Castelli et al. 1997). Non-LTE level popula-
tions and model spectra were computed with recent versions of
detail and surface (Butler & Giddings 1985). Further details
on the method, grid, and calculations can be found in Tamajo
et al. (2011) and Pavlovski et al. (2009).

Depending on the line(s) included, the primary is found to
contribute 68%–72% of the total light, with hydrogen lines
supporting the larger fractions. Hydrogen suggests a few percent

4
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(a) He 4388 (b) He 4471

(c) He 4541 (d) He 4686

Figure 3. Optimal fitting for the four helium lines, He i 4388 Å, He i 4471 Å, He ii 4541 Å, and He ii 4686 Å, for the out-of-eclipse HERMES spectra. In each
panel, helium line profiles for both components are shown (blue solid line). Optimal fitting was performed on all four lines simultaneously (red solid line). These are
reconstructed helium profiles from disentangled spectra using the light ratio and surface gravities fixed to the final solution.

(A color version of this figure is available in the online journal.)

lower temperature for the primary, compared to the starting
values. This is compatible with the tendency seen in Figure 7 of
Hensberge et al. (2000), that H and He lines for the primary only
marginally agree in effective temperature (taking the minimum
χ2 at the relevant gravity, a 1000 K difference in temperature
estimation occurs).

The inconsistency between different indicators underlines
the importance of developing a more consistent atmosphere
model for these stars. One way, following Nieva & Przybilla
(2012), is to include more ionization equilibria by analyzing
the full wavelength range covered by the new spectra. This
work-intensive analysis is out of the scope of the present paper,
but probably indispensable to better constrain the degeneracy
in the determination of the radii. Its success might be limited
by the rotational broadening in the spectra. Another point
of attention is the need to take into account temperature
and gravity variations over the surface, due to the slightly

non-spherical shape of the stars. Our work shows that the purely
photometrically estimated light factors (Table 5) lie within the
broader range of light factors (primary to total light) derived
from the hermes spectra, 0.68–0.72. However, one should be
mindful that further improvement is needed—the spectroscopic
estimates may be biased as different indicators are not yet fully
compatible.

4.2. Light Curve Analysis

We use EB modeling software phoebe (Prša & Zwitter 2005)
based on the Wilson–Devinney code (Wilson & Devinney 1971;
Wilson 1979) for our light curve analysis. We fit light curves
spanning 40 yr, covering one full apsidal motion cycle, in
Johnson UBV and Strömgren uvby photometry.

Figures 4–7 are the residuals (data model) for our global
best-fit model to the light curves for every light curve epoch

5
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Table 5
Light Fraction Comparison

Method Wavelength λ Light Fraction (l1/l1 + l2)
(nm)

Light curve analysis (this work) Johnson U, 365 0.706 ± 0.008
Johnson B, 445 0.689 ± 0.007
Johnson V, 551 0.683 ± 0.007

Stromgren u, 365 0.710 ± 0.007
Stromgren v, 411 0.690 ± 0.008
Stromgren b, 467 0.685 ± 0.007
Stromgren y, 547 0.683 ± 0.007

Hensberge et al. (2000) Stromgren v, 411 0.675 ± 0.006
Stromgren b, 467 0.683 ± 0.006
Stromgren y, 547 0.692 ± 0.006

HERMES spectroscopy 400–500 0.700 ± 0.02

and filter in Table 2. Overall, the residuals are small—typically
≈0.005 mag. The residuals are significantly larger for light curve
epochs 1970–1984 since error bars on the photometry data
points measured using photometric plates are larger. We explore
ranges for our light curve parameters as listed in Table 6. Our
global best-fit matches observations well—the final light curve
parameters Ω1, Ω2, i, and (T2/T1) are listed in Table 7.

4.2.1. Setup

For our global best-fit light curve model, we adopt a square
root limb darkening (LD) law (Claret 2000), a B1V spectral type
for the primary star implying T1 = 30,000 K (Hensberge et al.
2000), no light reflection, and no third light.

We have four light curve parameters of interest—the primary
potential Ω1, the secondary potential Ω2, the inclination i and the
temperature ratio T2/T1. A parameter of interest is defined as a
parameter that is varied to compute our confidence intervals. We
determine these parameters and their uncertainties by mapping
χ2 space. The potential Ω is a modified Kopal potential for
asynchronous, eccentric orbits (Wilson 1979). This potential
(Ω ∝ R−1) takes into account contributions from the star itself,
its companion, the star’s rotation about its axis, and the star’s
rotation in its orbit.

Our fixed parameters are the argument of periastron w0,
eccentricity e, apsidal motion ω̇, semi-major axis a, mass ratio
q, period P, ephemeris HJD0, systemic velocity γ , gravity
brightening coefficients g1 and g2, primary and secondary
synchronicity parameters F1 and F2, and albedos A1 and A2.
We fix the argument of periastron w0, eccentricity e, and
apsidal motion ω̇ to values determined by a multi-epoch light
curve analysis from Garcia et al. (2011). We fix the mass ratio
q ≡ (M2/M1), semi-major axis a, orbital period P, time of
minima HJD0, and systemic velocity γ to values from the
Hensberge et al. (2000) analysis of the spectroscopic orbit.
As mentioned previously, our hermes spectral analysis derives
radial velocity amplitudes K1 and K2 in agreement with the
Hensberge et al. (2000) spectroscopic orbit (see Table 4).
We adopt gravity brightening coefficients (g1, g2) and surface
albedos (A1, A2) of 1.0 as appropriate for stars with radiative
envelopes. The gravity brightening coefficient g1 = g2 = 1.0
for stars with radiative envelopes was first found by von Zeipel
(1924). We fixed rotational synchronicity parameters F1 = 1.13
and F2 = 1.11 to values from Hensberge et al. (2000). Our limb
darkening coefficients follow the square root law for hot stars
(Claret 2000) and are listed in Table 8.

Figure 4. Representative fits to light curves from 2005–2006, 1999–2000,
1995–1996, and 1994–1995 in the Johnson B passband from global fits to
all light curve data, offset for clarity. The residuals to the fits (O −C) are shown
above.

(Supplemental data for this figure are available in the online journal.)

4.2.2. Fitting Method

Our fitting method is adapted from Y. Gómez Maqueo
Chew et al. (2014, in preparation). We determine our best-fit
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Table 6
Light Curve Parameter Ranges Explored

Parameter Max Min Coarse Grid Spacing Fine Grid Spacing

Primary surface potential, Ω1 5.36 4.80 0.045 0.005
Secondary surface potential, Ω2 5.26 4.40 0.045 0.005
Inclination, i (deg) 73.15 70.00 0.2 0.0005
Temperature ratio, (T2/T1) 0.875 0.843 0.0012 0.03

Table 7
Light Curve Analysis Results and Comparison

Light Curve Parameters This Work & Garcia H2000
et al. (2011)

Primary surface potential, Ω1 4.88 ± 0.03 5.02 ± 0.05
Secondary surface potential, Ω2 4.89 ± 0.04 4.87 ± 0.06
Temperature ratio, (T2/T1) 0.858 ± 0.002 0.88 ± 0.02
Inclination, i (deg) 72.09 ± 0.06 72.58 ± 0.3
Eccentricity, e 0.07755+0.00018

−0.00026 0.0867 ± 0.0006
Angle of periastron, w (deg) 159.8 ± 0.33 153.3 ± 0.6
Ephemeris, HJD0 (days) 2449360.6250 2449360.6250
Total apsidal motion, 0.07089+0.00021

−0.00013
ω̇tot (deg cycle−1)

Light curve filters Strömgren uvby, Strömgren uvby
Light curve filters Johnson UBV
Total light curve points 3489 992

Notes. The uncertainties on light curve parameters Ω1, Ω2, i, and T2/T1 are
determined from confidence intervals in Figure 8. Light curve parameters e,
w, and ω̇tot are taken from Garcia et al. (2011). This work utilizes photometry
that span one full apsidal motion period (U = 33.48+0.10

−0.06 yr). In contrast to the
Hensberge et al. (2000) analysis, this work incorporates apsidal motion in the
light curve model. Finally, the temperature ratio from Hensberge et al. (2000)
is measured from spectral disentangling.

global light curve solution by finding a unique set of light
curve parameters Ω1, Ω2, T2/T1, and i, that correspond to
the minimum chi square, χ2

min, in a well mapped grid of
parameter space. The chi square is a function of the light curve
parameters, χ2 = χ2(Ω1, Ω2, (T2/T1), i). We map parameter
space by computing χ2 for a grid of >105 unique sets of these
light curve parameters. We use our map of parameter space
to compute the uncertainties on our light curve parameters
using confidence intervals. Plots of Δχ2 versus stellar radii R1,
R2, temperature ratio T2/T1, and inclination i with confidence
intervals are shown in Figure 8.

The step-by-step procedure is as follows.
1. We sample a coarse grid of 104 points defined by a range of

potential Ω1, potential Ω2, inclination i, and temperature ratio
T2/T1. The parameter ranges and spacings are given in Table 6.

For each grid point, we fit only for the “light levels” in phoebe
which is equivalent to the total light contribution from each
star in the photometric bandpass. We avoid using the WD2003
differential corrections (DC) fitting algorithm within phoebe to
fit our light curve parameters. The DC algorithm can fall into
local minima when fitting for many parameters. We compute
the total chi square χ2

k for each light curve fit as the sum of the
chi square χ2

p at each passband and epoch:

χ2
k

(
Ω1k, Ω2k,

T2k

T1
, ik

)
=

15∑
p

χ2
p

σ 2
p

, (1)

Table 8
Limb Darkening Coefficients

Filter x1 x2 y1 y2

Square root law (adopted)

Strömgren u −0.096 −0.073 0.631 0.606
Strömgren b −0.132 −0.115 0.672 0.659
Strömgren v −0.129 −0.106 0.607 0.581
Strömgren y −0.073 −0.044 0.612 0.581
Johnson U −0.131 −0.115 0.685 0.675
Johnson B −0.131 −0.110 0.654 0.638
Johnson V −0.126 −0.105 0.602 0.578
Linear law

Strömgren u 0.282 0.291 0.000 0.000
Strömgren b 0.272 0.281 0.000 0.000
Strömgren v 0.235 0.243 0.000 0.000
Strömgren y 0.293 0.304 0.000 0.000
Johnson U 0.280 0.291 0.000 0.000
Johnson B 0.262 0.273 0.000 0.000
Johnson V 0.235 0.242 0.000 0.000
Logarithmic law

Strömgren u 0.450 0.452 0.252 0.242
Strömgren b 0.450 0.457 0.268 0.264
Strömgren v 0.397 0.398 0.242 0.233
Strömgren y 0.456 0.459 0.244 0.232
Johnson U 0.462 0.471 0.274 0.270
Johnson B 0.436 0.444 0.261 0.256
Johnson V 0.395 0.396 0.241 0.231

Notes. Our best-fit model uses the square root limb darkening law.
Fits with the linear cosine or logarithmic limb darkening law had
little effect on our final light curve solution.

where index k corresponds to a unique point in parameter space
(Ω1k , Ω2k , T2k/T1, ik). χ2

k is the total chi square over all light
curves at a unique point k. Index p corresponds to a unique light
curve passband epoch as specified in Table 2. The chi square at
the specific passband χ2

p is computed as

χ2
p =

N∑
i

(f − fm)2

σ 2
i

, (2)

where N = Nd − Np = 3485 is the number of photometry data
points Nd minus the number of parameters of interest Np over all
light curve epochs. Each data point has an error bar σi . Each light
curve at a specific epoch and filter has a multiplicative factor
σp which takes into account the systematic error. Multiplicative
factor σp is used to normalize the χ2 such that χ2

min = N or
reduced χ2

min,red = 1.0. f is the total flux of the binary at an HJD,
and flux fm is the corresponding model. From our coarse grid,
we find the minimum total chi square χ2 = χ2

min in parameter
space.

2. We adjust the error bars of the individual photometry data
points for all light curves to take into account any systematic
error. For the minimum χ2

min solution, the passband σp is

7
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Figure 5. Same as Figure 4, but showing Johnson V-band light curves and fits.

(Supplemental data for this figure are available in the online journal.)

computed for each separate light curve epoch and filter using
the following equation:

σp =
√

N

χ2
min

, (3)

Figure 6. Same as Figure 4, but showing Strömgren uvby light curves and fits.

(Supplemental data for this figure are available in the online journal.)

where N = 3486 as in step 1, and χ2
min is the minimum total

χ2 of the coarse grid. We choose to compute the multiplicative
factor σp to weight each light curve such that the minimum
reduced chi squared χ2

min,red = 1.0 for our global best-fit
solution. We then rescale the χ2 of all other light curve fits
using the passband σp:

8
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Figure 7. Same as Figure 4, but showing 1973–1977 Johnson UBV light curves
and fits.

(Supplemental data for this figure are available in the online journal.)

χ2
k =

15∑
p

χ2

σ 2
p

, (4)

where χ2 is un-scaled and χ2
k is the scaled chi square at a unique

point in parameter space k.

3. We perform steps 1 and 2 for a fine grid of >105 points in
parameter space around the location of the minimum χ2

min. In
this way, we carefully map out parameter space at the location of
the χ2

min. We use multiple fine grids to precisely find our global
best-fit minimum. The average grid spacings are 0.005, 0.005,
0.03, and 0.0005, respectively, for Ω1, Ω2, i, and T2/T1.

We find that the location of the minimum χ2 moves slightly,
and we recompute the multiplicative factor σp for each light
curve to account for this, again making χ2

min,red = 1.0. Finally,
we have a global best-fit solution within a finely sampled
parameter space. Our global best-fit solution listed in Table 7
corresponds to the point in parameter space where chi square is
scaled by σp such that χ2

min,red = 1.0.

4.2.3. A Comparison of Light Curve Models

In order to ensure that our light curve solution is robust and
thus our light curve parameters are accurate, we compare our
best-fit light curve model described above with several other
models. As shown in Table 9, we find little effect on our
best-fit light curve parameters from using different light curve
models. All other models are not as favorable due to larger
χ2 or temperatures that do not agree with the analysis of the
component spectra of V578 Mon from spectral disentangling of
Hensberge et al. (2000).

For all the tests described below, we start at our best-
fit solution, then fit all light curves in phoebe for primary
potential Ω1, secondary potential Ω2, temperature ratio T2/T1,
and inclination i. Our global best-fit uses a fixed primary
temperature T1 = 30,000 K, no light reflection, and no third
light. Furthermore, our global best-fit uses fixed square root law
limb darkening coefficients, which are found to work best for
hot (Teff > 9000 K) stars (Diaz-Cordoves & Gimenez 1992; van
Hamme 1993). We discuss the different light curve models in
the order in which they appear in our summary in Table 9.

1. Fitting for Limb Darkening Coefficients. We test the effect
of fitting for square root law limb darkening coefficients,
finding a lower chi square due to a larger number of free
parameters. We find little effect on Ω1, Ω2, or i. However,
we do find a much lower T2 = 25,049. We reject this light
curve model since T2 = 25,049 is significantly outside
of the acceptable range for T2 = 26,400 ± 400 from
the spectral disentangling of Hensberge et al. (2000). We
therefore perform another test: we keep T2/T1 fixed to our
best-fit value, and fit for the limb darkening parameters, Ω1,
Ω2, and i. We again find little effect on Ω1, Ω2, or i.

2. Using a Different Limb Darkening Law. We test the linear
cosine and logarithmic limb darkening laws, finding little
effect on our light curve parameters. The linear cosine law
has a lower χ2 = 3480.01 than our best-fit model χ2 =
3489.00. The light curve model with logarithmic limb
darkening has a larger χ2 = 3503.96-, and we therefore
reject this model. See Table 8 for a list of the theoretical
limb darkening coefficients for each light curve model that
we test.

3. Changing the Assumed Primary Star Temperature. We test
the effect of changing our adopted primary star effective
temperature T1. Our adopted primary temperature for our
best-fit solution is T1 = 30,000 ± 500 K. Once again, we
find little effect on Ω1, Ω2, i, or T2/T1.
We start with our best-fit global solution, but set T1 =
31,500 K and T1 = 28,500 K, 3σ above and below our
adopted primary star effective temperature. Fits with lower

9
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Figure 8. Degeneracies for our best-fit light curve solution. The blue squares, red triangles, and black diamonds correspond to differences in chi square from the
global best-fit solution Δχ2 = 4.72, 9.70, and 16.3, respectively. For four parameters of interest, these Δχ2 correspond to 1σ , 2σ , and 3σ , respectively. There is a
small degeneracy between the sum of the radii R1 + R2 and i. This degeneracy is typical for detached eclipsing binaries with circular or near circular orbits. Similarly,
there is a small degeneracy between the primary and secondary radii R1 and R2. The global best-fit solution is marked with an X. There is no degeneracy between the
temperature ratio T2/T1 and inclination i or sum of the radii R1 + R2.

(A color version of this figure is available in the online journal.)

Table 9
A Comparison of Light Curve Models

Model Ω1 Ω2 i (T2/T1) χ2

(deg)

Best-fit 4.88 ± 0.03 4.89 ± 0.04 72.09 ± 0.06 0.858 ± 0.002 3489.00
Fitting for LD coefficients 4.92 4.89 72.18 0.835 3299.11
Linear law 4.92 4.89 72.15 0.860 3480.01
Logarithmic law 4.91 4.88 72.14 0.858 3503.96
Fix T1 = 28,500 4.94 4.87 72.17 0.857 3460.16
Fix T1 = 31,500 4.92 4.89 72.15 0.867 3488.01
Light reflection 4.90 4.92 72.20 0.856 3522.57
Third light 4.94 4.87 72.24 0.855 3414.93

Notes. The best-fit model uses the square root limb darkening law, a fixed T1 = 30,000 K, no light reflection, and no third light.

primary temperature T1 result in a better χ2, however,
T1 < 29,000 K does not agree with the spectral disen-
tangling analysis from Hensberge et al. (2000). This may
be due to the fact that the phoebe light curve analysis con-
strains the temperature ratio and not the individual tem-
peratures themselves. Further light curve tests at lower
preferred temperatures T1 and T2 confirmed that chang-
ing effective temperatures has little effect on the geometric
parameters, Ω1, Ω2, and i.

4. Light Reflection. We fit our light curve model with one light
reflection. We find an inclination i larger by 2σ . However,
the χ2 = 3522.57 is higher than our best-fit χ2 = 3489.00.
We reject this model on this basis.

5. Third Light. We test the possibility of third light and its
effect on our best-fit parameters. We fit for a third light

parameter starting from our best-fit light curve solution.
The third light model has a lower χ2 due to a larger number
of free parameters. We find Ω1 and i to be larger by 2σ and
2.5σ , respectively, from our best-fit model.
However, the third light parameter L3 varies on the order of
an apsidal period of the system. As shown in Table 10, we
find at max a small contribution of third light (L3/Ltot) ≈
0.045 for the Johnson B filter of light curve epochs
1967–1984 and 2005–2006. This is likely due to phoebe
using the L3 parameter to minimize the small systematic
error of 0.005 mag in the residuals of the 1967–1984 and
2005–2006 light curve epochs. Furthermore, the systemic
velocity measured with the hermes spectra and the caspec
spectra in Hensberge et al. (2000) does not give any
evidence for a large third body in the system that would

10
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Table 10
Third Light

Observatory Year Filter L3/Ltot

APT 2005–2006 Johnson B 0.0441
Johnson V 0.0218

APT 1999–2000 Johnson B 0.0158
Johnson V 0.0080

APT 1995–1996 Johnson B −0.0037
Johnson V 0.0104

APT 1994–1995 Johnson B 0.0059
Johnson V 0.0046

SAT 1991–1994 Strömgren u −0.0116
Strömgren v −0.0004
Strömgren b 0.0013
Strömgren y −0.0045

KPNO 1967–1984 Johnson U 0.0163
Johnson B 0.0467
Johnson V −0.0100

Notes. Our best-fit light curve model includes no third light. The
small amount of third light varies as a function of epoch.

contribute significantly to the light. This is consistent with
the third light tests performed here.

4.2.4. Uncertainties on Light Curve Parameters

We compute uncertainties on each parameter of interest using
confidence intervals as shown in Figure 8. From Press et al.
(1988), for four parameters of interest, we find that 1σ , 2σ ,
and 3σ uncertainties correspond to solutions with confidence
intervals of Δχ2 = χ2 − χ2

min,red = 4.72, 9.70, and 16.3,
respectively. Here, χ2

min is the minimum χ2 of our global best-fit
solution.

From Figure 8 we see small degeneracies between the
geometric parameters, radii R1, R2, and inclination i. However,
as expected, we do not see degeneracies between the geometric
light curve parameters and the temperature ratio T2/T1.

Since T2/T1 is not strongly degenerate with these other param-
eters, we could potentially decrease the number of parameters
of interest and in turn decrease the formal parameter uncer-
tainties. Therefore, the uncertainties presented here are possibly
conservative, given that we assume all degrees of freedom are
parameters of interest (Avni 1976).

The small degeneracies in our parameters lead to uncertainties
on potentials Ω1 and Ω2 of less than <1.5% error; this error
already takes into account any systematic error in fitting the light
curves, as detailed in Section 4.2.2. Similarly, the uncertainty
on the temperature ratio (T2/T1) and inclination are also <1%.

A source of systematic uncertainty unaccounted for from
the confidence intervals and fitting procedure in Section 4.2.2
is from the comparison of light curve models detailed in
Section 4.2.3 and Table 9. As shown in Table 9, all other
light curve models assessed in Section 4.2.3, with the exception
of using linear cosine LD parameters, are not as favorable as
our best-fit model. The linear cosine model has a lower χ2.
Nevertheless, the inclination i, temperature ratio (T2/T1), and
secondary potential Ω2 are all within 1σ of our best-fit model.
However, the primary potential for the linear cosine model
Ω1 = 4.92 with our best-fit Ω1 = 4.88 ± 0.03. Therefore our
uncertainty on Ω1 from our best-fit model could be slightly
underestimated from these model comparisons.

4.2.5. Consistency of Light Fractions

As mentioned by Torres et al. (2010), an important consis-
tency check of our light curve solution is that the light fractions
lf,1 = (l1/l1 + l2) determined from spectroscopy and photom-
etry agree. Given the small degeneracy between R1 and R2 as
seen in Figure 8, we compare our photometrically determined
light fraction with the light fraction from the HERMES spectral
disentangling and a previous combined light curve and spec-
tral disentangling analysis from Hensberge et al. (2000). We
find that all three light fractions agree with each other to within
1.2σ . A comparison of light fractions is shown in Table 5.

For each of the ≈105 light curve fits to our 40 yr of photometry
data, we compute the light fraction at each of the passbands,
Johnson UBV, and Strömgren uvby photometry, lf,1(λ) =
(l1(λ)/l1(λ) + l2(λ)), where l1(λ) and l2(λ) are the contribution
of the primary and secondary star to the total light at a specific
passband out of eclipse. The distribution of light fractions lf,1
for light curve models with confidence intervals of 1σ and 2σ
are shown in Figures 9 and 10.

4.3. Comparison with Hensberge et al. (2000)

Hensberge et al. (2000) uses an iterative, combined light curve
and spectral disentangling analysis using the Wilson–Devinney
light curve modeling program to compute their light curve
parameters. We find that R1 = 5.23 ± 0.06 R� from Hensberge
et al. (2000) is 2.5σ discrepant from our best-fit R1 = 5.41 ±
0.04 R�. We find that our inclination i = 72.09 ± 0.06 deg is
1.6σ discrepant from i = 72.58 ± 0.30 deg from Hensberge
et al. (2000). These discrepancies are likely due to the addition
of apsidal motion and an updated eccentricity determined in
Garcia et al. (2011). Apsidal motion and eccentricity can affect
the potentials Ω1 and Ω2, and hence the determination of the
radii at a low level. The potential Ω for a non-circular orbit is a
function of eccentricity (see Wilson 1979). The addition of more
light curve epochs may also play a role. Hensberge et al. (2000)
only use the 1991–1994 light curve epoch with Strömgren uvby
photometry. As a check, we also recover the Hensberge et al.
(2000) light curve solution when we fit only the 1991–1994 light
curve epoch. Finally, simply the addition of more photometry
data points may play a role. We use 3489 photometry data points
in our light curve solution, whereas Hensberge et al. (2000) use
992. Our best-fit secondary radius R2 = 4.29 ± 0.05 R� is in
agreement with 4.32 ± 0.07 R� from Hensberge et al. (2000).
Our best-fit temperature ratio (T2/T1) = 0.858 ± 0.002 is in
agreement with the temperature ratio of 0.88 ± 0.020 from an
analysis of the disentangled component spectra (Hensberge et al.
2000).

5. RESULTS: ABSOLUTE DIMENSIONS AND APSIDAL
MOTION OF V578 MON

The absolute dimensions and other fundamental properties of
V578 Mon are compiled in Table 11. Here we detail how each
fundamental parameter for V578 Mon is computed in the order
in which they appear in Table 11.

1. Orbital Period. We adopt an orbital period of P =
2.4084822 days from Hensberge et al. (2000).

2. Masses. The component masses M1 = 14.54 ± 0.08 M�
and M2 = 10.29 ± 0.06 M� are determined from the spec-
troscopic orbit analysis from Hensberge et al. (2000). We
do not use radial velocities from our hermes spectroscopy
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Figure 9. Light fractions lf,1 = (l1(λ)/l1(λ) + l2(λ)) for light curve fits within 1σ (below the blue line) and 2σ (below the red line) uncertainty for the Stromgren uvby
photometry. Our light fractions are consistent with the light fractions computed from Hensberge et al. (2000).

(A color version of this figure is available in the online journal.)

Figure 10. Same as Figure 9 except for the Johnson UBV photometry.

(A color version of this figure is available in the online journal.)
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Table 11
V578 Mon Absolute Dimensions

Parameter Primary Secondary

Orbital period, P (days) 2.4084822
Mass, M (M�) 14.54 ± 0.08 10.29 ± 0.06
Radius, R (R�) 5.41 ± 0.04 4.29 ± 0.05
Effective temperature, Teff (K) 30{,}000 ± 500 25{,}750 ± 435
Surface gravity, log g (cm s−2) 4.133 ± 0.018 4.185 ± 0.021
Surface velocity, vrot (km s−1) 123 ± 5 99 ± 3
Luminosity, log L

L� 4.33 ± 0.03 3.86 ± 0.03
Synchronicity parameter, F = w

worb
1.08 ± 0.04 1.10 ± 0.03

Apsidal period, U (yr) 33.48+0.10
−0.06

Observed Newtonian internal −1.975 ± 0.017
structure constant, log k2,newt

because the caspec spectra have higher signal-to-noise ra-
tios, however, our analysis of the hermes spectroscopy
re-confirms the spectroscopic orbit.

3. Radii. We find precise uncertainties of <1.5% for the
primary radius R1 = 5.41 ± 0.04 R� and secondary radius
R2 = 4.29 ± 0.05 R� from our confidence intervals in
Figure 8.

4. Temperatures. We find a 0.3% error on our temperature ratio
(T2/T1) = 0.858 ± 0.002 from our confidence intervals.
Combined with the adopted temperature of the primary
star, T1 = 30,000 ± 500 K (Hensberge et al. 2000), our
temperature ratio of T2/T1 yields a secondary temperature
of T2 = 25,750 ± 435 K via propagation of errors.

5. Rotational Velocities. We compute surface rotational veloc-
ities of v1,rot = 123 ± 5 km s−1 and v2,rot = 99 ± 3 km s−1

using the observed projected surface velocities v1 sin i =
117 ± 4 km s−1 and v2 sin i = 94 ± 2 km s−1 from Hens-
berge et al. (2000) and our inclination of i = 72.09 ± 0.06.
The uncertainty on rotational velocities is computed from
propagating the error on the inclination i and the observed
vsin i.

6. Surface Gravities. We compute the surface gravity log g
from our masses and radii, finding log g1 = 4.133 ±
0.018 cm s−2 and log g2 = 4.185 ± 0.021 cm s−2. We
compute the uncertainty on log g via error propagation:

σlog g =
√( σM

M ln 10

)2
+

(
2σR

R ln 10

)2

, (5)

where σM is the uncertainty on the mass and σR is the
uncertainty on the radius.

7. Luminosities. From our radii and temperatures, we com-
pute luminosities for the primary and secondary star of
log(L1/L�) = 4.33±0.03 and log(L2/L�) = 3.86±0.03.
We compute the uncertainty on the luminosity using a sim-
ilar error propagation as above, using errors from the tem-
perature and radii, σT and σR .

8. Synchronicity Parameters. We find the components of
V578 Mon to be close but not exactly tidally locked, with
F1 = 1.08±0.04 and F2 = 1.10±0.03. The synchronicity
parameter F = w/worb, where w is the rotational velocity
at the surface vrot and worb = 2πR/P is the synchronous
velocity. We compute the uncertainty via propagation of
error from σR , error on inclination σi , and error on projected
rotational velocities σv sin i .

9. Internal Structure Constant. One of us (Dr. Claret) com-
puted the Newtonian and general relativistic contributions

to the observed internal structure constant, log k2,newt =
−1.975 ± 0.017 and log k2,GR = −3.412 ± 0.018.

6. THE STELLAR EVOLUTION MODELS AND TESTS

We compare the absolute dimensions of V578 Mon to the
stellar evolution models of three separate groups: (1) Geneva
models of Georgy et al. (2013) and Ekström et al. (2012), here-
after Geneva13; (2) Utrecht models of Brott et al. (2011), here-
after Utrecht1110; (3) Granada models of Claret (2004, 2006),
hereafter Granada04. We assume that both stars have the same
initial chemical composition and age, as expected for tight bi-
nary systems. We perform two tests: (1) the isochrone test, which
tests the ability of stellar evolution models to produce stars with
different masses, radii, temperatures, rotational velocities, and
surface compositions at the same age, and (2) the apsidal mo-
tion test, which tests the ability of the stellar evolution models
to reproduce the observed internal structure constant log k2 as
determined from the observed apsidal motion.

A comparison of the basic input physics of the models is
given in Table 12. The models use the same opacity tables of
Iglesias & Rogers (1996). The mixing length αMLT ≡ l/Hp for
all three sets of models differs by only 0.18 at maximum. The
stellar evolution models use similar mass loss treatment from the
prescription by Vink et al. (2001). Given the probable young age
of V578 Mon due to its location in the open cluster NGC 2244
of the Rosette Nebula, the components of V578 Mon are not
expected to have undergone significant mass loss (Vink et al.
2001).

However, all three sets of models differ on the choice of
the convective core overshoot parameter αov. For the H and
He burning phases of the convective core, the convective core
size of the star is enlarged by Rcc = Rcc(1 + dover/Hp), where
αov ≡ dover/Hp in units of pressure scale height. The overshoot
parameter is designed to account for the non-zero velocity of
the material moving from the convective core to the radiative
zone of the star. Observationally, a larger overshoot parameter
means longer MS lifetimes for a given star, and thus older ages.
The Geneva13 models use a small convective core overshoot of
αov = 0.1 calibrated on the width of the MS for stars with masses
M = 1.35–9.0 M�, which is characterized by the redmost point
on the B − V, MV H-R diagram (see Figure 8 of Ekström et al.
2012). The width of the MS is defined theoretically by the
end of the hydrogen burning phase. The Utrecht11 models
use a high convective core overshoot of αov = 0.335 which
is calibrated using the observed width of the MS from the Very
Large Telescope-FLAMES survey of B stars (Evans et al. 2005;
Hunter et al. 2007). The convective core overshoot parameter
αov = 0.335 is chosen such that a 16 M� star ends its MS
lifetime when log g = 3.2. This log g coincides with the drop
in B star rotation rates in a log g–v sin i diagram, which is
interpreted as an estimate of the width of the MS for B stars. See
Brott et al. (2011) for an in depth discussion. The Granada04
models utilize a moderate convective core overshoot αov = 0.2,
though we performed several tests varying αov.

Rotationally driven mixing can bring more H and He from the
envelope to the core, thus extending the MS lifetime of the star.
Likewise, a larger overshoot parameter extends the size of the
core, leading to a longer MS lifetime. The Granada04 models
do not incorporate rotational mixing, while the Geneva13
and Utrecht11 models do. However, all three sets of models
include rotation. All three sets of models use similar metallicity

10 The Utrecht Stellar Evolution group is now located in Bonn, Germany.
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Table 12
Stellar Evolution Model Comparison

Physical Input Geneva13 Utrecht11 Granada04

Composition [Z,Y,X] [0.014, 0.266, 0.720] [0.0122, 0.2486, 0.7392] [0.014, 0.271, 0.715]
Overshoot, αov 0.10 0.355 0.6 pri, 0.2 s
Mixing length, αMLT 1.60 1.5 1.68
Rotation Yes Yes Yes
Rotational mixing Yes Yes No
Opacities Iglesias & Rogers (1996) Iglesias & Rogers (1996) Iglesias & Rogers (1996)
Mass loss Vink et al. (2001) Vink et al. (2001) Vink et al. (2001)

compositions of near solar. The initial bulk composition for
V578 Mon is expected to be close to solar given that Mg surface
abundance is within the error of the solar surface abundance
despite the fact that several atmospheric abundances such as
C, N, and O are somewhat metal poor compared with the Sun
(Pavlovski & Hensberge 2005). This is because Mg abundance
is not expected to be altered from the initial abundance in a star,
where as C, N, and O atmospheric abundances could vary in
V578 Mon due to rotational mixing (Lyubimkov et al. 2005).
However, given that the C, N, and O atmospheric abundances of
V578 Mon may be lower than solar, the metallicity of V578 Mon
still remains as a source of systematic error in comparing the
evolution models to the observations.

The Granada04 models also compute the internal structure
constants log k2, log k3, and log k4 allowing for a test of the
internal structure of V578 Mon via apsidal motion. Here we
consider only the k2 constant, given that k3 and k4 are very small.
For V578 Mon, the tidal Love numbers quantify the deformation
for each star’s gravity field due to the companion.

6.1. Isochrone Test for V578 Mon

In Figure 11, we place the primary and secondary star on
mass–radius and log g− log Teff isochrones for each set of mod-
els. For the stellar evolution models to pass the isochrone test,
the models should predict a common age for both components
of V578 Mon within the uncertainty. Given how different the
masses of the primary and secondary stars of V578 Mon are,
the isochrone test provides a stringent test of stellar evolution
models. We also match all evolution models to the rotational
velocities of the primary and secondary star.

We find several Geneva13, Utrecht11, and Granada04 models
predict masses, radii, and temperatures for the components of
V578 Mon that fall within the 1σ uncertainty of the measured
absolute dimensions. Therefore, we estimate an age range for
each star as shown in Table 12. The age difference for the
Geneva13, Utrecht11, and Granada04 models is given as the
smallest possible difference between the ages of the two stars
given the age range of each star.

For the Geneva models, we use isochrones with initial
rotational velocities of (vi/vcrit) = 0.30 and (vi/vcrit) = 0.35,
which allow us to match the observed rotational velocities for
each star. We interpolate the model evolution tracks for the
primary and secondary star using the online interactive tool
provided by the Geneva group.11 Attempts to match the observed
rotational velocities of V578 Mon with lower ((vi/vcrit) < 0.30)
or higher ((vi/vcrit) > 0.40) initial velocities for either star
were unsuccessful. Attempts to find a single initial rotational
velocity to reproduce the current observed rotational velocities

11 http://obswww.unige.ch/Recherche/evol/-Database-

for both stars with reasonable predicted radii and masses were
also unsuccessful. However, given that V578 Mon is very near
synchronization with the orbital period (F1 = 1.08 ± 0.04,
F2 = 1.10 ± 0.03), the rotational history of V578 Mon could
be different from the best matched vi/vcrit found here. If the
initial velocities of the components of V578 Mon were larger at
the ZAMS than the orbital velocity, the stars could spin down
to synchronize with the orbital velocity. Conversely, if vi/vcrit
was smaller than the orbital velocities, then the components of
V578 Mon could spin up (Song et al. 2013). From Table 13, we
find an age difference of 1.6 Myr for mass–radius isochrones and
an age difference of only 0.1 Myr for log g− log Teff isochrones.
It is easier to find consistency for the latter isochrones given our
uncertainty in the effective temperatures of the two stars. We
find that a primary radius of R1 = 5.50 R� and a secondary star
radius of R2 = 5.20 R� yields common ages for the Geneva13
models. However, these radii are 3σ larger and 3σ smaller than
our best-fit model, respectively.

For the Utrecht11 models, we use isochrones that match the
observed surface velocities of the components of V578 Mon,
v1,rot = 123±5 km s−1 and v2,rot = 99±3 km s−1. The Utrecht11
models are computed at very small steps of mass and initial
rotational velocity, such that interpolating between model tracks
is unnecessary. From Table 13, we see a marginally common
age (age difference 0.4 Myr) for mass–radius isochrones, and a
common age of 3.5 ± 1.5 Myr for log g − log Teff isochrones.
The models were computed at solar metallicity by Dr. I. Brott
(2014, private communication).

We compute the Granada04 models at the masses of the
primary and secondary stars and chose rotational velocities to
match the observed rotational velocities of V578 Mon. We
attempt to match the absolute dimensions of V578 Mon to
log g − log Teff or, alternatively, mass–radius isochrones for
V578 Mon. We find an age gap of 1.5 Myr for mass–radius
isochrones and a marginally common age for log g − log Teff
isochrones when both stars have an overshoot of αov = 0.2.
Again, finding a match on the log g−log Teff isochrones is easier
given the greater uncertainty in the effective temperatures.

In an attempt to match the ages of the two stars on a
mass–radius isochrone, we also compute Granada04 models
for αov = 0.4 and αov = 0.6. Figure 12 demonstrates the time
evolution of the radii for V578 Mon for these different models.
We find a near match on a single mass–radius isochrone with an
age difference of only 0.2 Myr if we assume that the primary star
has a convective overshoot of αov = 0.6 and the secondary star
has a convective overshoot of αov = 0.2. We also find a common
age of 5.5±1.0 Myr for the log g− log Teff isochrone. This does
not mean that an αov = 0.6 for the primary star is correct for
V578 Mon, merely that a higher convective overshoot allows

14
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Figure 11. Best matches to observations: the Utrecht11 and Granada04 models. Both models use a larger than conventional overshoot of αov = 0.2; see Table 13 for
details. Isochrones are in steps of 1 Myr for the Geneva13, Utrecht11, and Granada04 models. The green point is the primary star, and the red point is the secondary
star. All models have rotational velocities that match the observed velocities of V578 Mon v1,rot = 123 ± 5 km s−1 and v2,rot = 99 ± 3 km s−1.

(A color version of this figure is available in the online journal.)

Table 13
Ages from Stellar Evolution Models

Model Primary Age Secondary Age Age Diff (lower limit) αov

(Myr) (Myr) (Myr) (Scale Height)

Mass−radius−vrot isochrones

Geneva13 4.3–4.6 6.2–7.1 1.6 0.1
Utrecht11 3.0–3.2 3.6–4.4 0.4 0.355
Granada04 5.0–5.3 5.5–6.3 0.2 0.6 pri, 0.2 s

log g–log Teff–vrot isochrones

Geneva13 3.9–5.1 5.2–7.5 0.1 0.1
Utrecht11 2.6–3.8 2.4–5.2 Common age 3.5 ± 1.5 0.355
Granada04 4.7–5.5 4.9–6.8 Common age 5.5 ± 1.0 0.6 pri, 0.2 s

Notes. The ages for the primary and secondary stars are computed from evolutionary tracks at the masses of either star and solar metallicity.
The Granada04 models were computed for a high convective overshoot of αov = 0.6 pressure scale heights for the primary star, which
allowed the models to match the observations. It is easier to find a common age for the log g − log Teff isochrone given the larger uncertainty
on the effective temperatures of the stars.

for compatible ages between the two stars. High convective
overshoot has been found to work in matching other EBs on a
single isochrone (Claret 2007).

In general, we find younger ages by ≈1 Myr for the Utrecht11
models of V578 Mon and similar ages for the Geneva13

and Granada04 models. This can be attributed to the larger
convective overshoot of αov = 0.355 included in Utrecht11
models compared with Geneva13 models (αov = 0.2). While
the primary star for the Granada04 models does have an even
higher convective overshoot of αov = 0.6, the models do not
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Figure 12. Time evolution of the radii for V578 Mon from Granada04 models
computed for the masses of the V578 Mon primary and secondary. Dot-dashed,
dashed, and solid lines are evolutionary models at a convective overshoot of αov
of 0.2, 0.4, and 0.6 pressure scale heights, respectively. Horizontal lines are the
upper and lower limits of the uncertainty on the primary star and secondary star
radii, respectively. The models predict a common age of 5.5 Myr if we use a
high convective overshoot of αov = 0.6 evolution model for the primary star
and αov = 0.2 for the secondary star.

include rotational mixing, which also extends the MS lifetime
of the stars.

6.2. Apsidal Motion Test for V578 Mon

Measurement of apsidal motion in eccentric binary systems
allows for a stringent test of the internal structure constant k2,theo
predicted from stellar evolution models (e.g., Claret & Giménez
2010). It is not possible to separate out each individual star’s
contribution to the apsidal period U from Newtonian apsidal
motion.

The apsidal motion for V578 Mon was measured by Garcia
et al. (2011). The observed apsidal motion of V578 Mon,
ω̇tot = 0.07089+0.00021

−0.00013 deg cycle−1, has contributions from
both Newtonian and general relativity components (Claret &
Giménez 2010):

ω̇obs = ω̇newt + ω̇GR, (6)

where ω̇GR is given by

ω̇GR = 0.002286
M1 + M2

a(1 − e2)
. (7)

We find that ω̇GR = 0.002589 ± 0.000015 which is only 4%
of the Newtonian apsidal motion ω̇newt = 0.06830 ± 0.00017.

Both the Newtonian and general relativistic observed apsidal
motions ω̇newt and ω̇GR have associated observed internal struc-
ture constants k2,obs. The internal structure constant is twice the
tidal Love number (Kramm et al. 2011), and is related to the
density profiles, degree of sphericity, orbital parameters, masses,
and rotation rates of both components of a binary star. Specif-
ically, the internal structure constant is related to the solution
of the Radau differential equation as in Equation (3) of Claret
& Giménez (2010). Importantly, constant k2,obs is one the few
ways to directly constrain the internal structure of stars.

From the precise observed apsidal motion, we com-
pute the observed internal structure constant, k2,obs =
k2,obs(M1,M2, R1, R2, P ,U, F1, F2, e), where U is the ap-
sidal period, given by the equations (adopted from

Claret & Giménez 2010)

k2,obs = 1

c21 + c22

P

U
(8)

c2i =
[

(Fi)
2

(
1 +

M3−i

Mi

)
f (e) + 15

M3−i

Mi

g(e)

](
Ri

a

)5

(9)

f (e) = (1 − e2)−2 (10)

g(e) = (8 + 12e2 + e4)f (e)2.5

8
. (11)

We compute the internal structure constant due to the New-
tonian apsidal motion, log k2,newt = −1.975 ± 0.017, and due
to general relativity, log k2,GR = −3.412 ± 0.018. The Newto-
nian apsidal motion is much larger than the general relativistic
component, and therefore the internal structure constant is also
much larger.

We compute the theoretical internal structure constant, k2,theo
using the methods of Claret & Giménez (2010). The theoretical
k2 constant was corrected for by rotation (Claret 1999) and
dynamical tides (Willems & Claret 2002). The theoretical
internal structure constant is a combination of the internal
structure constants for both stars, such that

k2,theo = c21k21 + c22k22

c21 + c22
(12)

which can then be compared to observations.
We find the predicted Newtonian apsidal motion to be ω̇theo =

0.06883 ± 0.00017 and consequently the predicted Newtonian
internal structure constant to be log k2,theo = −2.005 ± 0.025.
This is in very good agreement with the observed log k2,obs =
−1.975 ± 0.017. From Equation (9), the parameter c12 is about
67% larger than c22. Therefore, the weighted contribution of the
primary dominates the theoretical apsidal motion. V578 Mon
is a relatively young system; therefore, log k2,theo is almost
constant during the early phases of stellar evolution. The apsidal
motion test is therefore complementary to the isochrone test.
Claret & Giménez (2010) compile a list of eclipsing binaries
with apsidal motion, demonstrating good agreement between
observed and predicted apsidal motions. V578 Mon continues
this trend of agreement between theoretical and observational
internal structure constants. For this relatively young system,
matching the radii, temperatures, and masses of isochrones is
key given that we have so few young massive EBs with non-
equal mass ratios.

7. CONCLUSION

We have determined the absolute dimensions of the massive,
detached eclipsing binary V578 Mon, which is a member of the
young star-forming region NGC 2244 in the Rosette Nebula.
We confirm that the previously published spectroscopic orbit of
Hensberge et al. (2000) agrees with our current spectroscopic
orbit of V578 Mon. From our hermes spectra, we find that
our photometric light ratio from the light curve analysis is
fully compatible with the disentangled component spectra of
V578 Mon.

From 40 yr of Johnson UBV and Strömgren uvby photometry
we determine updated radii and measure the temperature ratio
and light ratio for the components of V578 Mon. We determine
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the radii to better than 1.5% accuracy and carefully map out
parameter space in order to reveal any possible degeneracies. We
also compare our global best-fit light curve model with models
that include different limb darkening parameters, a different
assumed temperature for the primary star, and light reflection or
third light, finding little effect on our global model. We do not
unambiguously rule out light reflection or a third body, but we
confirm that these additional complications to the light curve
model will not affect our final solution.

We have compared our observed masses, radii, temperatures,
and rotational velocities to stellar evolution models of the
Geneva, Utrecht, and Granada groups. We find no common
match in predicted ages for mass–radius isochrones of the
Geneva13 models. We find an age difference of only 0.1 Myr
in predicted ages for the Geneva13 models for log g − log Teff
isochrones. For the Utrecht11 models, we find a marginally
common predicted age with an age difference of only 0.4 Myr for
the mass–radius isochrones. For the log g − log Teff isochrones,
we find common ages of 3.5±1.5 Myr for the Utrecht11 models.
For the Granada04 models, we find a small age gap of only 0.2
for the mass–radius isochrone when the primary star has a quite
large convective overshoot of αov = 0.6. We do not find common
ages for the mass–radius isochrone for the Granada04 models
when the convective overshoot for both stars is a more moderate
αov = 0.2.

This work suggests that models with larger convective over-
shoot predict a closer common age for the components of
V578 Mon than models with a more conventional overshoot
of αov = 0.2 pressure scale heights. Evolutionary models with
larger convective overshoot extend the size of the convective
core for massive stars, thus extending the MS lifetime and al-
lowing for isochrones to predict a common age for V578 Mon.
However, rotational mixing can also prolong the MS lifetime,
making the two effects some what degenerate. The radii may
in be slightly dependent upon effective temperatures, which are
based on imperfect atmosphere models. Furthermore, there are
small systematic residuals of 0.005 mag in the light curve fits
which may slightly affect the radii. Finally, effects of binarity,
while likely small, are not taken into account: the side of each
star facing the other may be heated and the addition to the po-
tential Ω from the companion is not taken into account in the
models. The binarity of V578 Mon may cause single star models
explored here to not be applicable.

Given the short apsidal period of V578 Mon of 33.48+0.10
−0.06 yr,

our photometry covers one full apsidal motion period. Combined
with our precise measurement of the radii of V578 Mon we
compute the internal structure constant log k2 finding that our
observed log k2,obs = −1.975 ± 0.017 in agreement with the
theoretical internal structure constant log k2,theo = −2.005 ±
0.025.

V578 Mon is a particularly important system for testing stellar
evolution models its given young age and the difference of
≈30% in the masses of the primary and secondary component
star. B-type detached eclipsing binaries such as V1388 Ori
and V1034 Sco have similar differences in mass of 40% and
50%, respectively, meaning these systems are also of particular
importance to providing constraints on stellar evolution models.
However, V578 Mon is unique among such systems by virtue
of its young age, thus providing the strongest constraints on the
models at the earliest stages of massive stellar evolution.

Future work may include comparing the carefully vet-
ted sample of high mass EBs in the Torres et al. (2010)
sample to evolutionary models, or may include more recent

massive EBs such as V 380 Cyg (Tkachenko et al. 2014),
LMC 172231, and ST2-28 (Massey et al. 2012), to see if larger
convective overshoot parameters allow for common predictions
of age.

This work was based on observations obtained with the
HERMES spectrograph, which is supported by the Fund for
Scientific Research of Flanders (FWO), Belgium, the Re-
search Council of K.U. Leuven, Belgium, the Fonds National
Recherches Scientific (FNRS), Belgium, the Royal Observatory
of Belgium, the Observatoire de Genève, Switzerland, and the
Thringer Landessternwarte, Tautenburg, Germany. This work
was also conducted in part using the resources of the Advanced
Computing Center for Research and Education (ACCRE) at
Vanderbilt University, Nashville, TN. The authors acknowledge
helpful comments from the referee that improved the paper.
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2011, AJ, 142, 27
Garcia, E. V., Stassun, K. G., & Torres, G. 2013, ApJ, 769, 114
Georgy, C., Ekström, S., Granada, A., et al. 2013, A&A, 553, A24
Hadrava, P. 1995, A&AS, 114, 393
Heiser, A. M. 1977, AJ, 82, 973
Heiser, A. M. 2010, JAVSO, 38, 93
Hensberge, H., Pavlovski, K., & Verschueren, W. 2000, A&A, 358, 553
Hog, E., Kuzmin, A., Bastian, U., et al. 1998, A&A, 335, L65
Holmgren, D. E., Hill, G., & Fisher, W. 1990, A&A, 236, 409
Hunter, I., Dufton, P. L., Smartt, S. J., et al. 2007, A&A, 466, 277
Iglesias, C. A., & Rogers, F. J. 1996, ApJ, 464, 943
Ilijic, S., Hensberge, H., Pavlovski, K., & Freyhammer, L. M. 2004, in ASP

Conf. Ser. 318, Spectroscopically and Spatially Resolving the Components
of the Close Binary Stars, ed. R. W. Hilditch, H. Hensberge, & K. Pavlovski
(San Francisco, CA: ASP), 111

Kramm, U., Nettelmann, N., Redmer, R., & Stevenson, D. J. 2011, A&A,
528, A18

Lyubimkov, L. S., Rostopchin, S. I., Rachkovskaya, T. M., Poklad, D. B., &
Lambert, D. L. 2005, MNRAS, 358, 193

Massey, P., Morrell, N. I., Neugent, K. F., et al. 2012, ApJ, 748, 96
Nieva, M. F., & Przybilla, N. 2007, A&A, 467, 295
Nieva, M.-F., & Przybilla, N. 2012, A&A, 539, A143
Ogura, K., & Ishida, K. 1981, PASJ, 33, 149
Pavlovski, K., & Hensberge, H. 2005, A&A, 439, 309
Pavlovski, K., Tamajo, E., Koubský, P., et al. 2009, MNRAS, 400, 791
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van Hamme, W. 1993, AJ, 106, 2096
Vink, J. S., de Koter, A., & Lamers, H. J. G. L. M. 2001, A&A, 369, 574
von Zeipel, H. 1924, MNRAS, 84, 665
Wang, J., Townsley, L. K., Feigelson, E. D., et al. 2008, ApJ, 675, 464
Willems, B., & Claret, A. 2002, A&A, 382, 1009
Wilson, R. E. 1979, ApJ, 234, 1054
Wilson, R. E., & Devinney, E. J. 1971, ApJ, 166, 605
Wolff, S. C., Strom, S. E., Dror, D., & Venn, K. 2007, AJ, 133, 1092

18

http://dx.doi.org/10.1002/asna.201011351
http://adsabs.harvard.edu/abs/2010AN....331..397P
http://adsabs.harvard.edu/abs/2010AN....331..397P
http://dx.doi.org/10.1086/430591
http://adsabs.harvard.edu/abs/2005ApJ...628..426P
http://adsabs.harvard.edu/abs/2005ApJ...628..426P
http://dx.doi.org/10.1051/0004-6361/201015435
http://adsabs.harvard.edu/abs/2011A&A...526A..69R
http://adsabs.harvard.edu/abs/2011A&A...526A..69R
http://dx.doi.org/10.1051/0004-6361/201321870
http://adsabs.harvard.edu/abs/2013A&A...556A.100S
http://adsabs.harvard.edu/abs/2013A&A...556A.100S
http://dx.doi.org/10.1111/j.1365-2966.2004.07871.x
http://adsabs.harvard.edu/abs/2004MNRAS.351.1277S
http://adsabs.harvard.edu/abs/2004MNRAS.351.1277S
http://adsabs.harvard.edu/abs/1992Obs...112..277S
http://adsabs.harvard.edu/abs/1992Obs...112..277S
http://dx.doi.org/10.1051/0004-6361/201015913
http://adsabs.harvard.edu/abs/2011A&A...526A..76T
http://adsabs.harvard.edu/abs/2011A&A...526A..76T
http://dx.doi.org/10.1093/mnras/stt2421
http://adsabs.harvard.edu/abs/2014MNRAS.438.3093T
http://adsabs.harvard.edu/abs/2014MNRAS.438.3093T
http://dx.doi.org/10.1007/s00159-009-0025-1
http://adsabs.harvard.edu/abs/2010A&ARv..18...67T
http://adsabs.harvard.edu/abs/2010A&ARv..18...67T
http://dx.doi.org/10.1086/116788
http://adsabs.harvard.edu/abs/1993AJ....106.2096V
http://adsabs.harvard.edu/abs/1993AJ....106.2096V
http://dx.doi.org/10.1051/0004-6361:20010127
http://adsabs.harvard.edu/abs/2001A&A...369..574V
http://adsabs.harvard.edu/abs/2001A&A...369..574V
http://adsabs.harvard.edu/abs/1924MNRAS..84..665V
http://adsabs.harvard.edu/abs/1924MNRAS..84..665V
http://dx.doi.org/10.1086/526406
http://adsabs.harvard.edu/abs/2008ApJ...675..464W
http://adsabs.harvard.edu/abs/2008ApJ...675..464W
http://dx.doi.org/10.1051/0004-6361:20011669
http://adsabs.harvard.edu/abs/2002A&A...382.1009W
http://adsabs.harvard.edu/abs/2002A&A...382.1009W
http://dx.doi.org/10.1086/157588
http://adsabs.harvard.edu/abs/1979ApJ...234.1054W
http://adsabs.harvard.edu/abs/1979ApJ...234.1054W
http://dx.doi.org/10.1086/150986
http://adsabs.harvard.edu/abs/1971ApJ...166..605W
http://adsabs.harvard.edu/abs/1971ApJ...166..605W
http://dx.doi.org/10.1086/511002
http://adsabs.harvard.edu/abs/2007AJ....133.1092W
http://adsabs.harvard.edu/abs/2007AJ....133.1092W

	1. INTRODUCTION
	2. THE ECLIPSING BINARY V578 MON IN NGC2244
	3. DATA
	3.1. Johnson
	3.2. hermes Spectroscopy

	4. ANALYSIS
	4.1. Spectral Disentangling and Light Ratio
	4.2. Light Curve Analysis
	4.3. Comparison with Hensberge etal. (2000)

	5. RESULTS: ABSOLUTE DIMENSIONS AND APSIDAL MOTION OF V578 MON
	6. THE STELLAR EVOLUTION MODELS AND TESTS
	6.1. Isochrone Test for V578Mon
	6.2. Apsidal Motion Test for V578Mon

	7. CONCLUSION
	REFERENCES

