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Summary

The theory of point processes constitutes an important part of modern stochastic
process theory and is widely recognized as a useful and elegant tool for modelling.
Point processes are well understood models and have applications in a wide range of
applied probability areas, especially in risk theory which is important for understand-
ing non-life insurance mathematics. It deals with the modelling of claims and gives
answers on premium amount. Elegant mathematical analysis of the classical Cramér -
Lundberg risk model has an important place in non-life insurance theory. The theory
yields precise or approximate computations of the ruin probabilities, appropriate
reserves, distribution of the total claim amount and other properties of an idealized
insurance portfolio. In recent years, some special models have been proposed to
account for the possibility of clustering of some events, for instance the Hawkes
processes. We study asymptotic distribution of the total claim amount in the setting
where Cramer - Lundberg risk model is augmented with a marked Poisson cluster
structure. Marked Hawkes processes are then a special case and have an important
role as the key example in our analysis. To make this more precise, we model arrival
of claims in an insurance portfolio by a marked point process, say

N =
∞

∑
k=1

δτk,Ak

where τk’s are non-negative random variables representing arrival times with some
degree of clustering and Ak’s represent corresponding marks in a rather general
metric space M. For each marked event, the claim size can be calculated using a
measurable mapping of marks to non-negative real numbers, f : M→ R≥0 say. So
that the total claim amount in the time interval [0, t] can be calculated as

S(t) = ∑
τk≤t

f (Ak).

We determine the effect of the clustering on the quantity S(t), as t→ ∞, even in the
case when the distribution of the individual claims does not satisfy assumptions
of the classical central limit theorem. Besides new results regarding the case when
second moments do not exist, we use different approach based on the limit theory
for two dimensional random walks which stems from the classical Anscombe’s
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theorem and not on martingale central limit theorem which was commonly used.
We present the central limit theorem for the total claim amount S(t) in our setting
under appropriate second moment conditions and prove a functional limit theorem
concerning the sums of regularly varying non-negative random variables when
subordinated to an independent renewal process. Based on this, we prove the limit
theorem for the total claim amount S(t) in cases when individual claims have infinite
variance. Moreover, we apply these results to three special models. In particular,
we give a detailed analysis of the marked Hawkes processes which are extensively
studied in recent years. In the last chapter we move our attention to the maximal
claim size and present our results regarding limiting behaviour of maximum when
claims belong to the maximum domain of attraction of one of the three extreme value
distributions (Fréchet, Weibull and Gumbel). We also apply those results to three
special models which we studied in previous chapter. Besides that, we try to clarify
the notion of stochastic intensity which can be described in several different ways.
The understanding of the stochastic intensity is important because of it’s usage in the
implicit definition of Hawkes processes.

Key words

Point process, Poisson cluster processes, limit theorems, Hawkes process, total claim
amount, maximal claim size
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Sažetak

Teorija točkovnih procesa utemeljuje važan dio moderne teorije stohastičkih procesa
i široko je prepoznata kao koristan i elegantan alat za modeliranje. Točkovni procesi
su model koji se dobro razumije i koriste u mnogim područjima primijenjene vjero-
jatnosti, posebno u teoriji rizika (matematika neživotnih osiguranja). Teorija rizika
se bavi modeliranjem zahtjeva za isplatom u svrhu odred̄ivanja visine premije. Ele-
gantna matematička analiza Cramér-Lundbergovog modela rizika ima važnu ulogu u
teoriji neživotnih osiguranja. Spomenuta teorija nam daje precizne ili aproksimativne
izračune vjerojatnosti propasti, odgovarajućih rezervi, distribuciju sume zahtjeva za
isplatama i druga svojstva idealiziranog portfelja osiguravatelja. Posljednjih godina
predloženi su neki specijalni modeli koji uključuju mogućnost klasteriranja dogad̄aja,
na primjer Hawkesovi procesi.

Proučavamo asimptotske distribucije ukupnog iznosa zahtjeva za isplatom u označe-
nim Poissonovim procesima s klasterima u kojima oznake odred̄uju visinu, ali i druge
karakteristike pojedinih zahtjeva te potencijalno utječu na stopu dolazaka budućih
zahtjeva. Označeni Hawkesovi procesi u tom slučaju postaju specijani slučaj općeni-
tog modela označenih Poissonovih procesa s klasterima. Malo preciznije, dolaske
zahtjeva za isplatom u promatranom portfelju modeliramo označenim točkovnim
procesom, npr. oblika

N =
∞

∑
k=1

δτk,Ak ,

pri čemu su τk nenegativne slučajne varijable koje predstavljaju vremena dolazaka s
nekim stupnjem klasteriranja, a Ak pripadne oznake u nekom metričkom prostoru
M. Visina zahtjeva za isplatom u svakom označenom dogad̄aju može se izračunati
upotrebom izmjerivog preslikavanja f (Ak) iz prostora oznaka u nenegativne realne
brojeve. Tada se suma zahtjeva za isplatom u intervalu [0, t] može izraziti kao

S(t) = ∑
τk≤t

f (Ak).

Promatramo učinak klasteriranja na S(t), kada t → ∞ čak i u slučaju kada dis-
tribucija individualnih zahtjeva ne zadovoljava pretpostavke klasičnog centralnog
graničnog teorema. Osim novih rezultata u slučaju kada drugi moment nije konačan,
u izračunima koristimo drugačiji pristup koji se temelji na graničnim teoremima
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za zaustavljene dvodimenzionalne slučajne šetnje (koji proizlaze iz Anscombeovog
teorema), a ne na martingalnom centralnom graničnom teoremu koji je često korišten.
Prezentirat ćemo dovoljne uvjete uz koje ukupan iznos zahtjeva zadovoljava cen-
tralni granični teorem ili alternativno teži po distribuciji stabilnoj slučajnoj varijabli s
beskonačnom varijancom. Diskutirat ćemo nekoliko Poissonnovih modela s klaster-
ima, pri čemu će označeni Hawkesovi procesi biti naš ključni primjer. U posljednjem
poglavlju fokus prebacujemo na maksimalan iznos zahtjeva za isplatom u intervalu
[0, t]. Prezentirat ćemo rezultate vezane uz granično ponašanje maksimuma u slučaju
kada pojedinačni zahtjevi za isplatama pripadaju Fréchetovoj, Weibullovoj ili Gum-
belovoj maksimalnoj domeni privlačnosti. Ponovo primjenjujemo dobivene rezultate
na tri specijalna modela (s posebnim naglaskom na Hawkesove procese). Osim
graničnog ponašanja suma i maksimuma, pokušali smo razjasniti pojam stohastičkog
intenziteta, posebno jer se u literaturi može pronaći nekoliko različitih definicija
spomenutog stohastičkog intenziteta. Razumijevanje stohastičkog intenziteta nam je
važno jer se koristi prilikom definiranja Hawkesovih procesa.

Ključne riječi

Točkovni procesi, Poissonovi procesi s klasterima, granični teoremi, Hawkesovi
procesi, suma zahtjeva za isplatom, maksimalan zahtjev za isplatom
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1
Introduction

1.1 Motivation

The point process theory is very useful and is applied in order to understand and
sometimes solve many problems coming from different areas, for example insur-
ance, finance, biology, meteorology, genetics, seismology, epidemiology, geography,
stochastic geometry and many others. We can conclude that the point processes rep-
resent significant part of the stochastic theory. The main idea behind them is counting
points. As Mikosch says in [34], counting is bread and butter in non-life insurance.
The modelling of claim numbers, claim amounts and calculating appropriate reserves
are some of the most important tasks of the actuaries.

The most applied point processes are surely Poisson processes. They can be viewed
as the building block or link to the almost every point process one can encounter
in the literature. For example, in the Cramér–Lundberg model the claim number
process (N(t)) (i.e. stochastic process representing the number of points which have
appeared up until time t) is a homogenous Poisson process. For this model elegant
mathematical analysis exists and takes acclaimed place in non-life insurance theory,
see for instance [2] or [34].

We are interested in some special point process models which take into account
the possibility of clustering of insurance events. So, we want to substitute Cramér–
Lundberg model with model which can "capture" clusters. The leading role in our
applications have linear marked Hawkes processes. Hawkes processes are one of the
most important representatives of the so-called self-exciting processes. They were
introduced in 1971. by Allan G. Hawkes ([22], [23]). The self-excitation property
means that the potential of the future events depends on the whole past of the process
which makes them non–Markovian. Hawkes processes are cluster processes and
are rather popular, so one can find numerous examples of their application in many
diverse areas such as finance (see [3], [10]), neuroscience (see [37]), criminology (see
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OUTLINE

[15]), seismology (see [36] ), genetics (see [40]), and so on. Regardless of their diverse
and rich application, theoretical results can be gathered in a relatively short list. For
instance, some results on ruin probabilities can be found in [42] and [44]. Stability
results can be found in [8] and in [9]. As to the limit theorems, Bacry [3] proved the
central limit theorem for linear Hawkes process. Zhu [28] proved the functional limit
theorem for non-linear Hawkes processes and the central limit theorem for linear but
marked Hawkes processes.

We find this limiting behaviour especially interesting because if one has the informa-
tion about the asymptotic behaviour of the total claim amount, one can recommend
how much premium should be charged in order to avoid insolvency of the company.
Also, we noticed that there are not so many results available in the literature for
Hawkes processes in the cases when we do not have finiteness of second moments (in
that case, central limit theorem–type result is not possible). We explore the possible
limits even in that case, but in more general setting. Namely, we analyse marked
Poisson cluster processes where the process of cluster centres is a homogenous
Poisson process, and every cluster is also a point process generated in every point
belonging to the ground process (intuitively, point process representing the cluster is
superimposed on the each arriving point coming from the ground process).

1.2 Outline

In the next chapter we clarify the notion of the stochastic intensity which is important
for understanding the Hawkes process and present the Poisson cluster representation
of linear marked Hawkes processes. We give some existing definitions and results
from Morariu–Patrichi and Pakkanen [35] and Massoulié [33] which will be used
throughout the thesis.

Chapter 3 is dedicated to the study of asymptotic distribution of the total claim
amount in the marked Poisson cluster model even in the case when the distribution
of the individual claims does not satisfy assumptions of the classical central limit
theorem. We apply our results to the three special models with marked Hawkes
processes as the most significant example.

The last chapter is dedicated to limiting behaviour of the maximal claim size in
the same model. We prove that under certain conditions on claim sizes and on
the number of items in the so–called leftover effect, the maximal claim size, when
properly normalized, converges weakly to an extreme value distribution. Again, we
apply this result to the three special marked Poisson cluster models.

2 |



2
On stohastic intensity for linear
marked Hawkes process

It is important to emphasize that the set up (with some adjustments) we used in
this chapter can be found in Morariu–Patrichi and Pakkanen [35]. The aim of this
chapter is to explain the stochastic intensity and there is no significant contribution
to knowledge coming from the material in it, rather a collection of existing results
which can be seen as preliminaries for Chapter 3 and 4.

2.1 Hawkes processes and stochastic intensity - in-
tuition

Hawkes point processes are the key example in our analysis. In order to understand
them, it is useful to present them intuitively. On the other hand, we need to defined
them rigorously. The stochastic intensity which appears in the definition of the
Hawkes process turns out to be the key notion for understanding Hawkes processes.
To do so, our first step is to clarify several different approaches present in the literature
when defining stochastic intensity. The largest part of the remaining of this section is
based on the work of Morariu–Patrichi and Pakkanen [35] and Massoulié [33]. Other
important references are [8], [12] and [9].

Intuitively, Hawkes processes are a random set of points which come in clusters. Little
more precisely: a random measure on R (or [0, ∞)) which can be described through
its stochastic intensity. Hawkes process N is a counting process, meaning that N(t)
represents the number of events that have occurred until time t. Intensity process (or
stochastic intensity) is a notion describing the dynamics of N. Heuristically, when it
exists, the intensity λ(t) of N at time t is random and such that

E
[

N(t + dt)− N(t)|FN
t

]
≈ λ(t)dt,

| 3



HAWKES PROCESSES AND STOCHASTIC INTENSITY - INTUITION

or

P
(

dN(t) = 1|FN
t−

)
= P

(
N(t)− N(t− dt) = 1|FN

t−

)
≈ λ(t)dt,

where FN = (FN
t )t≥0 is the natural filtration (which corresponds to the internal

history of N) and FN
t− = σ(∪s<tFN

s ). Intuitively, λ(t)dt is the expected number of
events in the infinitesimal time window 〈t− dt, t〉 , given what has happen so far.
Besides describing counting process, intensity process can be used to specify them
implicitly. A key example where the intensity process is used in this way is the class
of linear Hawkes processes [23] which are defined through the intensity

λ(t) = ν +
∫
[0,t〉

h(t− s)N(ds), t ≥ 0

where ν > 0 is fixed and h : [0, ∞〉 → [0, ∞〉 is an integrable function (usually called
kernel, fertility or exciting function) such that κ =

∫ ∞
0 h(s)ds < 1.

Because of the fact that this type of processes depend on the whole past, it is common
to name them as the main example of self-exciting point process: events (points)
trigger new events later in time. We intent to study one possible generalization of
Hawkes processes. Namely, marked linear Hawkes processes where marks As are
i.i.d, independent of previous arrival times and live on some complete separabile
metric space (M,B(M)). Intuitvely, they can represent some additional information.
In this case the intensity depends on both past events and marks, so it has the
following form:

λ(t) = ν +
∫
[0,t〉

∫
M

h(t− s, a)N(ds, da), t ≥ 0,

where the fertility function now depends on the marks (As) as well. Due to the
implicit definition of the marked Hawkes processes via stochastic intensity which in
turn depends on the history of the process we intend to define, we need to justify
their existence and uniqueness.

2.1.1 Remark. It is known that a marked point process with intensity λ expressed in terms
of an intensity functional ψ can be formulated as a solution to a Poisson driven stochastic
differential equation (SDE for short). This was done by [9], [33]. In there, the intensity
functional has to satisfy some Lipschitz-type condition. Morariu–Patrichi and Pakkanen [35]
show that under certain integrability or decay condition it is enough for ψ to be dominated
by either a Hawkes functional (i.e. functional bellonging to some Hawkes process) or an
increasing function of the total number of past events in order to obtain the existence of a
strong solution to the Poisson driven SDE.

4 |



ON STOHASTIC INTENSITY FOR LINEAR MARKED HAWKES PROCESS

2.2 Framework

2.2.1 A framework for general point processes

Let U, M be a complete separable metric spaces and B(U), B(M) their Borel
σ−algebras respectively. While M represents the mark space, U is usually R×M or
R≥0 ×M.

Spaces of integer valued measures

Let ξ be a Borel measure on R×M. If ξ(A) < ∞, for all bounded Borel set A ∈
B(R×M) then ξ is boundedly finite. Let N∞

R×M be the space of Borel measures on
R×M with values in N ∪ {∞} . Let N #

R×M be the set of all ξ ∈ N∞
R×M such that ξ

is boundedly finite. Let N #g
R×M be the set of all ξ ∈ N #

R×M such that their ground
measure ξg(·) := ξ(· ×M) satisfies:

• ξg ∈ N #
R and

• ξg({t}) = 0 or 1, ∀t ∈ R.

The second condition means that the ground measure is simple, i.e. there can be at
most one event at each time. It is a consequence of the first condition, ξg ∈ N #

R that
not all point processes on product spaces are marked point processes. For example,
the bivariate Poisson process on R×R with parameter measure µdxdy cannot be
represented as an marked point process on R×R because such a Poisson process
has N(A×R) = ∞ a.s. for Borel sets A of positive Lebesgue measure [12].

2.2.1 Remark. Set N∞
R×M contains realisations of potentially explosive point process and

set N #
R×M of non-explosive point process. Notice that N #

R×M contains potentially explosive
marked point process so we take ξ ∈ N #g

R×M to represent a realization of a non-explosive
marked point process. Observe: N #g

R×M ⊂ N #
R×M ⊂ N∞

R×M.

2.2.2 Remark. When ξ ∈ N #g
R×M and ξ({(t, a)}) = 1 for some t ∈ R and a ∈ M, this

means that an event is happening at time t with mark a.

The so-called w#-distance ("vague hash") makes N #
R×M a complete separable metric

space (Theorem A2.6 III in [12], [4]). B(N #
R×M) corresponds to the σ-algebra gener-

ated by all mappings ξ 7→ ξ(A), ξ ∈ N #
R×M, A ∈ B(R×M). Proposition A2.6 II in

[12] characterises convergence in this topology (w#-topology). Lemma A.1.1 in [35]
shows that N #g

R×M is a Borel set of N #
R×M which is not completely trivial fact.

| 5



FRAMEWORK

Non-explosive marked point processes

Let (Ω,F , P) be a probability space. The trace of A ∈ S on σ-algebra S is defined as
A ∩ S := {A ∩ S : S ∈ S}.

2.2.1 Definition. A non-explosive point process on U is a measurable mapping from
(Ω,F ) to (N #

U,B(N #
U)).

2.2.2 Definition. A non-explosive marked point process N on R×M is a non-explosive
point process N on R×M such that N(ω) ∈ N #g

R×M, ∀ω ∈ Ω.

Lemma 1.6. in [27] implies that B(N #g
R×M) = B(N #

R×M) ∩N #g
R×M, where N #g

R×M is

also equipped with w#. So, B(N #g
R×M) is actually the trace of N #g

R×M on B(N #
R×M).

Hence, Definition 2.2.2 is equivalent to saying that a non-explosive marked point
process N on R×M is a measurable mapping from (Ω,F ) to (N #g

R×M,B(N #g
R×M)).

2.2.3 Definition. Let N be a non-explosive point process on U. We define induced proba-
bility measure PN on the measurable space (N #

U,B(N #
U)) by the relation

PN(A) := P
(

N−1(A)
)
= P ({ω ∈ Ω : N(ω) ∈ A}) , A ∈ B(N #

U).

Enumeration representation

It is common to define a marked point process on R≥0×M as a sequence (Tn, An)n∈N

of random variables in 〈0, ∞]×M such that (Tn)n∈N is a non-decreasing and Tn < ∞
implies Tn < Tn+1. This sequence is usually called enumeration. Tn represents
the time when the nth event occurs with mark An. Tn < ∞ with Tn+1 = ∞ means
that there are no more events after time Tn. To avoid an explosion (in the sense
that limn→∞ Tn < ∞ is possible) we assume that limn→∞ Tn = ∞ a.s.. Morariu–
Patrichi and Pakkanen [35] show that there is one to one correspondence between
non-explosive marked point processes on R≥0 ×M and non-explosive enumeration.

Poisson process

Let ν be a boundedly finite measure on (U,B(U)). We say that a non-explosive
point process N on U is a Poisson point process or a Poisson random measure with
parameter (or mean) measure ν (we write PRM(ν)) if N(A1), N(A2), . . . N(An) are
mutually independent for all disjoint sets A1, A2, . . . , An ∈ B(U), n ∈N and N(A)
is a Poisson random variable with parameter ν(A), ∀A ∈ B(U), A bounded set.

6 |



ON STOHASTIC INTENSITY FOR LINEAR MARKED HAWKES PROCESS

Pathwise integration

Let N be a non-explosive point process on U. Let H : Ω ×U → R≥0 be an F ⊗
B(U)−measurable mapping (H is an R≥− valued stochastic process on U). The
integral of H against N is

I(ω) :=
∫

U
H(ω, u)N(ω, du), ω ∈ Ω.

By the monotone class theorem ω 7→ I(ω) is F−measurable. When N is a non-
explosive marked point process on R≥0 ×M, the integral can be written as∫ ∫

R≥0×M
H(t, a)N(dt, da) = ∑

n∈N

H(Tn, An)11{Tn<∞} a.s.

where (Tn, An) is the enumeration representation of N.

Shifts, restrictions, histories and predictability

2.2.4 Definition. We define the shift operator for all t ∈ R as Θt : N #
R×M → N #

R×M by
Θtξ(A) := ξ(A+ t), A ∈ B(R×M) where A+ t := {(s + t, a) ∈ R×M : (s, a) ∈ A} .

Then, for any non-explosive point process N on R×M define ΘtN as (ΘtN)(ω) :=
Θt(N(ω)), ω ∈ Ω.

Lemma A.2.1. in [35] shows that Θtξ is jointly continuous in t and ξ.

Let ξ<0 be the restriction to the negative real line of any realisation ξ ∈ N #
R×M which

is defined by ξ<0(A) := ξ(A ∩R<0 ×M), A ∈ B(R×M). The restriction of any
non-explosive point process N on R×M is simply defined by N<0(ω) := (N(ω))<0,
ω ∈ Ω. In the same way we define:

ξ≤0(A) := ξ(A ∩R≤0 ×M) and N≤0(ω) := (N(ω))≤0,

ξ≥0(A) := ξ(A ∩R≥0 ×M) and N≥0(ω) := (N(ω))≥0,

ξ>0(A) := ξ(A ∩R>0 ×M) and N>0(ω) := (N(ω))>0.

2.2.3 Remark. This notations will help to refer to the internal history of N. For example, for
all t ∈ R (ΘtN)<0 contains the history of the process up to time t, excluding t.

Also, we will use Θtξ
<0 := (Θtξ)

<0.

2.2.4 Remark. Lemma A.2.2. and A.2.3. in [35] prove that these restrictions are measurable
mappings and that Θtξ

<0 is left continuous as a function of t ∈ R.
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2.2.5 Definition. Let N be a non-explosive marked point process on R×M. We can define
the filtration FN = (FN

t )t∈R that corresponds to the internal history of N by

FN
t := σ {N(B× A) : B ∈ B(R), B ⊂ 〈−∞, t] , A ∈ B(M)} , ∀t ∈ R.

2.2.5 Remark. Using Lemma 1.4 in [27] and the characterisation of B(N #
R×M) given in

Theorem A2.6. III in [12] one can check that FN
t = σ(ΘtN≤0).

2.2.6 Definition. History is any filtration that contains the internal history of N, that is
any F = (Ft)t∈R such that FN

t ⊂ Ft, t ∈ R. One says that N is F−adapted.

2.2.7 Definition. The σ-algebra F p is the predictable σ−algebra on Ω×R×M corre-
sponding to a history F if it is generated by all the sets of the form

B× 〈s, t]× A, s, t ∈ R, s < t, A ∈ B(M), B ∈ Fs.

2.2.8 Definition. Any mapping H : Ω × R ×M → R that is F p−measurable is
called an F− predictable process. Any mapping H : Ω × R>0 ×M → R that is
(Ω×R>0 ×M) ∩ F p−measurable is also called an F− predictable process.

2.2.9 Definition. Given an F−stopping time τ, the strict past Fτ− is defined as the
σ−algebra generated by all the classes {t < τ} ∩ Ft, t ∈ R.

Stochastic intensity for non-marked processes

2.2.10 Definition. Let N be a point process on R and F = (Ft)t∈R a history. Let λ :
Ω × R≥0 → R≥0 be a non-negative F−predictable process. We say that λ is the F

intensity or stochastic intensity of N if for every non-negative, F−predictable process
H : Ω×R≥0 ×M→ R≥0,

E

[∫ ∞

0
H(t)N(dt)

]
= E

[∫ ∞

0
H(t)λ(t)dt

]
(2.1)

In the sequel of this subsection 2.2.1 two theorems from Brémaud [8] will be stated to
show that in the unmarked case, the stochastic intensity process has a characterisation
through a local martingale property.

2.2.11 Definition. Let (Xt)t∈R be a real-valued stochastic process adapted to a history F

and let (Tn)n≥1 be an increasing family of F−stopping times such that limn→∞ Tn = ∞
and for each n ≥ 1, Xt∧Tn is a F−martingale. Then (Xt) is called an F−local martingale.

2.2.1 Theorem (Theorem 8 (a) in [8]). Let N be a non-explosive point process adapted to
F. If N admits the F-intensity λ (where for every t ≥ 0,

∫ t
0 λ(s)ds < ∞, a.s), then

M(t) = N(t)−
∫ t

0
λ(s)ds

is an F-local martingale.
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2.2.12 Definition. Let N be a non-explosive point process on R>0 adapted to F. N is
F−progressive process if for each t ≥, the map

[0, t]×Ω→ R

(s, ω) 7→ Xs(ω)

is B([0, t])⊗Ft–measurable.

2.2.2 Theorem (Theorem 9 in [8]). Let N be a non-explosive point process adapted to F

and suppose that for some non-negative F−progressive process λ and for all n ≥ 1

N(t ∧ Tn)−
∫ t∧Tn

0
λ(s)ds (2.2)

is an F-martingale, where (Tn) represents the enumeration of N. Then λ is the F-intensity
of N.

In the literature one can find several different definitions of stochastic intensity
process for non-marked processes. Namely, some other definitions one can find are:

• Zhu [44] and Brémaud and Massoulié [9] define the F−intensity as an F−
progressively measurable process λ with

E
[

N〈a, b]
∣∣FN

a

]
= E

[∫ b

a
λ(s)ds

∣∣FN
a

]
(2.3)

a.s., for all intervals 〈a, b].

• Brémaud [8] defines the F-intensity as an F−progressively measurable process
λ by Equation (2.1) for every non-negative, F−predictable process H : Ω×
R≥0 ×M→ R≥0.

• Daley and Vere Jones [12] define the F−intensity as any F−adapted process λ
such that a.s. for all t,

A(t) =
∫ t

0
λ(s)da,

where A represents the F compensator of N (which means that A is a non-
decreasing right–continuous predictable process such that (2.2) is satisfied).

• Kirchner [30] and Laub et al. [31] simply define intensity as a limit (when it
exists)

λ(t) := lim
δ→0

E(N(t + δ)− N(t)|Ft)

δ
.
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Let us now clarify their connection using Theorem 2.2.1 and Theorem 2.2.2.

Firstly, Theorem T13 in [8] says that when the progressive intensity exists, then we
can always find an F-intensity λ′(t) which is F−predictable. By Theorem T12 in [8]
this predictable version is almost everywhere unique. So, if we put the requirement
on stochastic intensity to be a progressive process, uniqueness is omitted.

Assume (2.1). Then, using Theorem (2.2.1) we have

E[Mt∧Tn

∣∣Fs] = Ms∧Tn

E[Mt∧Tn

∣∣Fs]−E[Ms∧Tn

∣∣Fs] = 0

E[Nt∧Tn − Ns∧Tn

∣∣Fs] = E

[∫ t∧Tn

s∧Tn
λ(u)du

∣∣Fs

]
.

Letting n→ ∞,

E[N(t)− N(s)
∣∣Fs] = E

[∫ t

s
λ(u)du

∣∣Fs

]
,

E[N〈s, t]
∣∣Fs] = E

[∫ t

s
λ(u)du

∣∣Fs

]
which is the formula appearing in [28] and [9]. Assume now (2.3). Substituting in (2.3)
s with s ∧ Tn and t with t ∧ Tn we get (similarly as above) that Nt∧Tn −

∫ t∧Tn
0 λ(u)du

is a martingale. Using Theorem (2.2.2) we can conclude that λ is the F−intensity
of N. If λ is right-continuous and bounded, it follows from (2.3), by application of
the Lebesgue averaging theorem and the Lebesgue dominated convergence theorem
successively, that a.s.

lim
b→a

E[(N(b)− N(a))|Fa]

b− a
= λ(a)

which is the expression one can find in [30].

Stochastic intensity for marked point processes

2.2.13 Definition. Let (A)n be i.i.d random variables in M representing the marks. Let
Q(da) be the distribution of the marks, i.e. a probability measure on (M,B(M)) defined
by Q(C) = P(An ∈ C), C ∈ B(M). Let N be a marked point process on R×M and
F = (Ft)t∈R a history. Let λ : Ω×R≥0 → R≥0 be a non-negative F−predictable process.
We say that λ is the F intensity or stochastic intensity of N if for every non-negative,
F−predictable process H : Ω×R≥0 ×M→ R≥0,

E

[∫ ∞

0

∫
M

H(ω, t, a)N(ω, dt, da)
]
= E

[∫ ∞

0

∫
M

H(ω, t, a)λ(ω, t)Q(da)dt
]

. (2.4)
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2.2.6 Remark. If an intensity process exists, it is then unique up to P(dω)Q(da)dt-null
sets thanks to the predictability requirement ([8], Section II.4, [12], p. 391).

Intensity can be expressed in terms of a functional applied to the point process.

2.2.14 Definition. Let Ψ : N #
R×M → R≥0 ∪ {∞} be a measurable functional. We say

that a non-explosive marked point process N : Ω → N #g
R×M admits Ψ as its intensity

functional if N admits an F-intensity λ : Ω×R≥0 → R≥0 such that

λ(ω, t) = Ψ(θtN(ω)<0), P(dω)Q(da)dt− a.e.

Recall, almost everywhere convergence is a weakened version of point-wise con-
vergence hypothesis which states that, for X a measure space, fn(x)→ f (x) for all
x ∈ Y, where Y is a measurable subset of X such that µ(X\Y) = 0.

Examples

1. ([12], p.358) Consider a one-point process consisting of a single point whose lo-
cation is defined by a positive, continuous random variable X with distribution
function F (and density f ). The associated counting process is defined by

N(t, ω) = δ〈0,t〉(X({ω})), t > 0, ω ∈ Ω.

N is non-decreasing, right-continuous, and uniformly bounded so there is no
problem about the existence of moments. Next, because N(t, ω) = 1 implies
N(t′, ω) = 1 for all t′ ≥ t. On the other hand, if N(t, ω) = 0, then we know
that X(ω) > t, so the stochastic intensity is

λ(t) =
f (t)

1− F(t)
11N[0,t〉=0.

2. Let N be a Poisson point process such that N〈a, b] ∼ Poisson
(∫ b

a l(s)ds
)

for
some deterministic, locally integrable function l : [0, ∞〉 → [0, ∞〉. The Poisson
process exist, see for example Theorem 9.2.X in [12], Example 9.2(b). (Stochastic)
intensity is λ(t) = l(t) because of the so-called Partial result in [8], page 24 (re-
versal of Watanabe’s theorem which says that if Nt −

∫ t
0 λ(s)ds is a martingale,

then point process N is Poisson point process).

Intensity of (linear marked) Hawkes processes

2.2.15 Definition. We call a non-explosive point process N : Ω→ N #
R a linear (unmarked)

Hawkes process if it admits a stochastic intensity λ : Ω×R≥0 → R≥0 of the form

λ(ω, t) = ν +
∫ t

0
h(t− s)N(ω, ds),

| 11
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where ν > 0 is fixed and h : R≥0 → R≥0 measurable function such that
∫ ∞

0 h(s)ds < 1.

Some possible generalizations are:

• non-linear Hawkes processes (where intensity is not represented as a linear
function), see [28],

• Hawkes processes defined on the whole real line (intensity is then called the
complete intensity process), see [12],

• marked Hawkes processes, see [28], [5],

• multi-type Hawkes processes, see [3] and [35] and

• graph (and skeleton) Hawkes processes, see [30].

Stability results (convergence towards stationary version of the process) can be found
in [12], [23], [9], [8], [33], strong law of large numbers for Nt

t in [12] and central limit
theorem in [3] and [28].

We are interested in linear marked Hawkes processes, so we have to include marks
in their intensity. Namely,

2.2.16 Definition. We say that a non-explosive point process N : Ω→ N #g
R×M is a linear

marked Hawkes process if it admits a stochastic intensity λ : Ω×R>0 → R≥0 of the
form

λ(ω, t) = ν +
∫ t

0

∫
M

h(t− s, a)N(ω, ds, da), (2.5)

where ν > 0 is fixed and h : R≥0 ×M→ R≥0 a measurable function such that∫ ∞
0

∫
M

h(s, a)Q(da)ds < 1.

2.2.7 Remark. Notice that we can express intensity (because of the enumeration representa-
tion) in terms of sum; namely

λ(ω, t) = ν +
∫ t

0

∫
M

h(t− s, a)N(ω, ds, da)

= ν + ∑
Ti(ω)≤t

h(t− Ti(ω), Ai(ω))

Initial condition

Let (Ω,F , P) be a given probability space endowed with a right-continuous filtration
(F d

t ) that will correspond to the driving Poisson process in the SDE (see bellow). Let
N≤0 be a given marked point process on R×M such that N≤0(ω)≤0 = N≤0(ω), for
all ω ∈ Ω (there are no events on R>0). We reserve the notation N≤0 to refer to the
initial condition.
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2.2.17 Definition. Let N : Ω → N #g
R×M be a non-explosive marked point process on

R×M. We say that N satisfies a strong initial condition N≤0 if N(ω)≤0 = N≤0(ω)
a.s., where ω ∈ Ω.

2.2.18 Definition. Let (Ω
′
,F ′ , P

′
) be another probability space potentially different from

(Ω,F , P). Let N
′

: Ω
′ → N #g

R×M be a non-explosive marked point process on R×M.

We say that N
′

satisfies a weak initial condition N≤0 if the induced probability PN
′≤0

coincides with PN≤0 .

2.2.2 Existence and uniqueness of linear marked Hawkes pro-
cesses

Existence and uniqueness problem

The linear marked Hawkes process is defined implicitly via its intensity process,
which, in turn, depends on the history of the process. Clearly, it is not clear that
such a point process exists. More generally, given an initial condition N≤0 and an
F- intensity (λ(t)) (or measurable intensity functional Ψ : N #

R×M → R≥0 ∪ {∞}),
one can ask if there exists a unique non-explosive marked point process N that
satisfies the initial condition N≤0 on R≤0 and admits λ as its stochastic intensity (or,
equivalently, Ψ as its intensity functional) on R>0. [33] deals with this problem by
reformulating the existence problem as a Poisson driven SDE, extending the work of
[9].

In those papers strong existence and uniqueness are obtained by imposing a Lipschitz
type condition on the intensity functional Ψ. To be more precise, they assume that
there exists a function h : R≥0 ×M→ R≥0 such that the (Lipschitz type) condition

∣∣Ψ(ζ)−Ψ(ζ ′)
∣∣ ≤ ∫

〈−∞,0〉

∫
M

h(−s, a)|ζ − ζ ′|(ds, da), a ∈M, ζ, ζ ′ ∈ N #
R×M (2.6)

holds. In the work of [35] one of the goals was to construct strong solution to a Poisson
driven SDE without imposing the Lipschitz condition on the intensity functional
Ψ. They did that for the so called hybrid marked point processes by imposing a
weaker sub-linearity condition on Ψ. Namely, they demand for Ψ to be bounded by
an intensity functional coming from Hawkes process. For linear marked Hawkes
processes the Lipschitz condition (2.6) is trivially satisfied so we will present a version
of the existence and uniqueness result coming from [33].
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The Poisson-driven SDE

Let (Ω,F , P) be given and let M : Ω→ N #
R×M×R be a Poisson process on R×M×R

with a mean measure dt×Q(da)× dz. Denote by (FM
t )t∈R

the internal history of M
on Ω.

2.2.19 Definition. Let M be a Poisson process on R×M×R and F = (Ft)t∈R be a
filtration. We say that M is Poisson relative to F (or F−Poisson process) if for all t ∈ R,
the point process θtM≤0 is Ft−measurable and σ(θtM>0) is independent of Ft.

Naturally, M is Poisson relative to (FM
t )t∈R

.

Let F = (Ft)t∈R be the filtration on Ω such that, for all t ∈ R, Ft is the P−completion
of FN≤0

t ⊗FM
t in F . The filtration F is complete ([27], p. 123). Morariu-Patrichi and

Pakkanen [35] proved that M is Poisson relative to F. We want to solve the following
Poisson-driven SDE.

2.2.20 Definition. Let Ψ : N #
R×M → R≥0 ∪ {∞} be a given measurable functional and M

a Poisson process on R×M×R relative to F. By a solution to the Poisson–driven SDE
we mean an F-adapted non-explosive marked point process N : Ω→ N #g

R×M, which admits
λ as its stochastic intensity process, that solves

N(dt, da) = M(dt, da, [0, λ(t)]), t ∈ R>0, a.s.,
λ(ω, t) = Ψ(θtN(ω)<0), t ∈ R>0, ω ∈ Ω,
N≤0(ω) = N≤0(ω), ω ∈ Ω, a.s.,

where N≤0 is a given initial condition.

We will need the notion of point processes stochastic intensity kernel ([8], [12]).

2.2.21 Definition. Let µ(ω, t, da) be a non-negative measure on (M,B(M)) indexed by
(ω, t) ∈ Ω×R. {µ(ω, t, .)} is an F−(stochastic) intensity kernel of N if for all B ∈ B(M)
{µ(ω, t, B)} is an F-intensity of the process NB (NB(A) = N(A× B), A ∈ B(R)).

For any non-negative function h(ω, t, a),F p−measurable, whereF p is the F−predictable
σ-algebra on Ω×R×M, the following integration formula then holds [8]:

E

∫
R×M

h(ω, t, a)N(dt, da) = E

∫
R×M

h(ω, t, a)dtµ(ω, t, da). (2.7)

The next lemma is actually an easy extension of the method proposed by Lewis and
Shedler [32] for the simulation of non-homogeneous Poisson processes.
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2.2.1 Lemma. Let M be an F−Poisson process on R×M×R≥0, with intensity measure
dt×Q(da)× ds. Let f and g be two non-negativeF p−measurable functions on Ω×R×M.
Define the point process N on R×M by

N(dt, da) = M(dt, da, [ f (t, a) ∧ g(t, a), f (t, a) ∨ g(t, a)]), t ∈ R, a ∈M. (2.8)

Then N admits an Ft−intensity kernel {| f (t, a)− g(t, a)|Q(da)}.

By Lemma 2.2.1, if N is a solution to the Poisson–driven SDE defined in 2.2.20, it
admits the Ft-intensity kernel {Ψ(θtN<0)Q(da)}.
2.2.3 Theorem. Assume that there exists a function h : R≥0 ×M → R≥0 such that the
Lipschitz condition (2.6) holds. Assume further that

κ :=
∫ ∞

0

∫
M

h(t, a)dtQ(da) < 1 (2.9)

and
α := Ψ(0) < ∞ (2.10)

hold. Consider a strong initial condition N≤0 as given in the Definition 2.2.17 which satisfies

sup
t>0

ε(t) < ∞ and lim
t→∞

ε(t) = 0 (2.11)

where
ε(t) = E

∫
R≤0×M

h(t− s, a)N≤0(ds, da). (2.12)

Then there exists a solution N to the Poisson–driven SDE defined in 2.2.20.

Proof. We use Picard’s method for solving differential equation. We construct recur-
sively point processes Nn and functions λn(t) on R≥0 by letting every Nn coincide
with N≤0 on R≤0 ×M and

λn+1(t) = Ψ(θtNn<0), t > 0,

Nn(dt, da) = M(dt, da, [0, λn(t)]), t > 0, a ∈M,

the procedure being initialized by taking λ0(t) ≡ 0 and N0 ≡ N≤0. It can be shown
by induction that the Nn are F d

t −adapted and that (t, ω)→ λn(t) is F p-measurable.
For detailed proof, see Proposition 4.13. in [35]. Next we will show that the sequence
Nn converges. By (2.6) and Lemma 2.2.1, one obtains for all n > 0

sup
t≥0

E

∣∣∣λn+1(t)− λn(t)
∣∣∣ = sup

t≥0
E

∣∣∣Ψ (θtNn<0
)
−Ψ

(
θtNn−1<0

)∣∣∣
≤ sup

t≥0
E

∫
〈−∞,0〉

∫
M

h(−s, a)
∣∣∣θtNn<0 − θtNn−1<0

∣∣∣ (ds, da)

= sup
t≥0

E

∫ t

0

∫
M

h(t− s, a)
∣∣∣λn(s)− λn−1(s)

∣∣∣ dsQ(da)

≤ κ sup
s≥0

E

∣∣∣λn(s)− λn−1(s)
∣∣∣
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where the last inequality follows from (2.9). So, we have

sup
t≥0

E

∣∣∣λn+1(t)− λn(t)
∣∣∣ ≤ κn sup

s≥0
E

∣∣∣λ1(s)
∣∣∣ . (2.13)

Hence

∀ε > 0,
∞

∑
n=1

P
(∣∣λn+1(t)− λn(t)

∣∣ > ε
)

converges because the associated sequence of partial sums is bounded by (2.13)
(κ < 1). Now we can apply Borel-Cantelli’s lemma [14] and conclude that

P
(∣∣λn+1(t)− λn(t)

∣∣ > ε i.o.
)
= 0,

i.e. that (λn(t)) converges almost surely to some limit λ(t). So, for every t ≥ 0 we
have

λn(t) as−→ λ(t), n→ ∞. (2.14)

Moreover, we have the estimate

sup
t≥0

Eλ(t) ≤ 1
1− κ

sup
t≥0

Eλ1(t)

=
1

1− κ
sup
t≥0

EΨ
(

θtN0<0
)

≤ 1
1− κ

sup
t≥0

E [ε(t) + Ψ(0)]

< +∞

where ε(t) is defined in (2.12). The above expression is finite because of (2.11) and
(2.10). Moreover, in view of the calculations

∑
n≥0

P
(∣∣∣Nn+1 − Nn

∣∣∣ (〈0, T]×M) 6= 0
)

≤ ∑
n≥0

E

∣∣∣Nn+1 − Nn
∣∣∣ (〈0, T]×M)

= ∑
n≥0

∫
〈0,T]×M

E

∣∣∣λn+1(t)− λn(t)
∣∣∣ dtQ(da)

≤ T ∑
n≥0

sup
t≥0

E

∣∣∣λn+1(t)− λn(t)
∣∣∣

< +∞,

for all T > 0. Using Borel-Cantelli lemma again we can conclude that the processes Nn

are constant on 〈0, T]×M for large n. In this sense, they converge to a limiting point
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process N as n→ ∞. The limiting process N is, as the limit of the Nn, Ft−adapted
(see [35], page 27). Next, we have to see that N satisfies

N(dt, da) = M(dt, da, [0, λ(t)]).

Indeed, by Fatou’s lemma and Lemma (2.2.1)

E

∫
〈0,T]×M

|N(dt, da)−M(dt, da, [0, λ(t)])|

≤ lim inf
n→∞

E

∫
〈0,T]×D

|Nn(dt, da)−M(dt, da, [0, λ(t)])|

= lim inf
n→∞

E

∫
〈0,T]×D

|M(dt, da, [0, λn(t)])−M(dt, da, [0, λ(t)])|

≤ T lim inf
n→∞

sup
t≥0

E |λn(t)− λ(t)| = 0.

The last equality is due to (2.14). Let us check that

λ(t) = Ψ
(

θtN<0
)

.

This will enable us to conclude that N is a solution to the Poisson–driven SDE defined
in 2.2.20.

E

∣∣∣λ(t)−Ψ
(

θtN<0
)∣∣∣

≤ E |λ(t)− λn(t)|+ E

∫
〈0,t]×M

h(t− s, a)|N − Nn−1|(ds, da)

≤ E |λ(t)− λn(t)|+
∫
〈0,t]×M

h(s, a)dsQ(da)E|λ(s)− λn−1(s)|.

The right-hand side of this inequality goes to 0 uniformly in t > 0, hence N is a
solution.

Uniqueness

Since Massoulié in [33] considers point processes on R×M which are not necessarily
non-explosive marked point processes, he uses the Lipschitz condition to obtain
strong uniqueness in a space of regular point processes. Morariu–Patrichi and
Pakkanen in [35] restricted themselves to non-explosive marked point processes,
the enumeration representation allows us to prove strong uniqueness without any
specific assumptions.

2.2.4 Theorem (Theorem 2.20 in [35]). Let N : Ω → N #g
R×M and N′ : Ω → N #g

R×M be
two non-explosive marked point processes solving the Poisson driven SDE (2.2.20). Then
N = N′ a.s.
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Proof. Let Ω′ ∈ F be the almost sure event that both N and N′ solve SDE 2.2.20. Let
(Tn, An)n∈N and (T′n, A′n)n∈N be the enumerations in 〈0, ∞]×M to which N and N′

are respectively equivalent. Now fix arbitrary ω ∈ Ω′. We show by strong induction
that Tn(ω) = T′n(ω) and An(ω) = A′n(ω) for all n ∈N.
Let n ∈N and assume that Ti(ω) = T′i (ω) and Ai(ω) = A′i(ω) for all i = 1, . . . , n− 1.
By contradiction, assume that Tn(ω) 6= T′n(ω) and, without loss of generality, that
Tn(ω) < T′n(ω). This implies that

N (ω, 〈0, Tn(ω)]×M) =
∫
〈0,Tn(ω)]

∫
M

∫
〈0,λn(ω,t,a)]

M(ω, dt, da, dz) = n,

N′ (ω, 〈0, Tn(ω)]×M) =
∫
〈0,Tn(ω)]

∫
M

∫
〈0,λ′n(ω,t,a)]

M(ω, dt, da, dz) = n− 1,

where λ(ω, t, a) = Ψ(θtN(ω)<0) and λ′(ω, t, a) = Ψ(θtN′(ω)<0). But since N(ω)≤0 =
N′(ω)≤0 and also Ti(ω) = T′i (ω) and Ai(ω) = A′i(ω) for all i = 1, . . . , n − 1, we
have that θtN(ω)<0 = θtN′(ω)<0 for all t ≤ Tn(ω). Thus, λ(ω, t, a) = λ′(ω, t, a)
for all t ≤ Tn(ω), a ∈ M. This implies that n = n− 1 which is a contradiction. So,
Tn(ω) = T′n(ω).
Similarly, if we assume that An(ω) 6= A′n(ω), then this implies that

N (ω, {Tn(ω)} × {An(ω)}) =
∫
{Tn(ω)}

∫
{An(ω)}

∫
〈0,λn(ω,t,a)]

M(ω, dt, da, dz) = 1,

N′ (ω, {Tn(ω)} × {An(ω)}) =
∫
{Tn(ω)}

∫
{An(ω)}

∫
〈0,λ′n(ω,t,a)]

M(ω, dt, da, dz) = 0.

Now, since λ(ω, t, a) = λ′(ω, t, a) for all t ≤ Tn(ω), a ∈M, this leads to contradiction
1 = 0 and, thus, it follows that An(ω) = A′n(ω). The same reasoning allows us
to prove the basis of the strong induction (i.e. to show that T1(ω) = T′1(ω) and
A1(ω) = A′1(ω)).

2.2.5 Theorem (Theorem 2.21 in [35]). Let N1 and N2 be two non-explosive marked point
processes (possibly on distinct probability spaces) that admit the same intensity functional Ψ
on R>0. Assume also that both N1 and N2 satisfy the weak initial condition N≤0. Then we
have that PN1 = PN2 , i.e. the induced probabilities measures on N #

R×M coincide.

2.2.3 Hawkes processes – Poisson cluster representation

In the previous section we presented some existing results due to Morariu-Patrichi
and Pakkanen [35] and Brémaud [8] which show that under certain assumptions the
marked Hawkes process exists and is unique. Hawkes process is the key example in
our analysis and is typically introduced through its stochastic intensity (2.5). On the
other hand, the model we used throughout this thesis is the marked Poisson cluster
process and all our results presented in Chapter 3 and 4 are under this assumption.
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So, to be able to apply those results to the marked Hawkes process we need to
understand the connection between the general marked Poisson cluster process and
the marked Hawkes process (which, at this point, is not clear). It turns out that
Hawkes processes have a Poisson cluster representation which is due to [23] (for the
non-marked case). In the sequel, we will present the Poisson cluster representation
for the marked Hawkes processes.

Underlying Poisson process is homogenous with rate ν > 0 (the so-called ground
Process N0) and clusters are formed by "Poissonian cascades." Let

N0 = ∑
i≥1

δΓi,Ai .

be a Poisson point process with intensity ν×Q on the space [0, ∞)×M .

Consider the process GAi (representing a cluster of points that is superimposed on
N0 after time Γi) as a part of the mark attached to N0 at time Γi. Indeed,

∑
i≥1

δΓi,Ai,GAi

can be viewed as a marked Poisson process on [0, ∞) with marks in the space M×
N #g

[0,∞〉×M
. We can write

GAi =
Ki

∑
j=1

δTij,Aij ,

where (Tij)j≥1 is a sequence of non-negative random variables and for some N0

valued random variable Ki. If we count the original point arriving at time Γi, the
actual cluster size is Ki + 1.

For this model, the clusters GA are recursive aggregation of Cox processes, i.e. Pois-
son processes with random mean measure µ̃A ×Q where µ̃A has the following form

µ̃A(B) =
∫

B
h(s, A)ds , (2.15)

for some fertility (or self–exciting) function h, cf. Example 6.4 (c) of [12].

Now, for the ground process N0 = ∑i≥1 δΓi,Ai which is a Poisson point process with
intensity ν×Q on the space [0, ∞)×M , the cluster process corresponding to a point
(Γ, A) satisfies the following recursive relation

GA =
LA

∑
l=1

(
δτ1

l ,A1
l
+θτ1

l
GA1

l

)
, (2.16)

where, given A, NA = ∑LA
l=1 δτ1

l ,A1
l

is a Poisson processes with random mean measure

µ̃A ×Q, the sequence (GA1
l )l is i.i.d., distributed as GA, independent of NA and θ is
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the time shift operator introduced in Definition 2.2.4. Thus, at any ancestral point
(Γ, A) a cluster of points appears as a whole cascade of points to the right in time
generated recursively according to (2.16). Note that by definition LA has Poisson
distribution conditionally on A, with mean κA =

∫ ∞
0 h(s, A)ds. It corresponds to

the number of the first generation progeny (A1
l ) in the cascade. Note also that the

point processes forming the second generation are again Poisson conditionally on the
corresponding first generation mark A1

l . The cascade GA corresponds to the process
formed by the successive generations, drawn recursively as Poisson processes given
the former generation.

The marked Hawkes process is obtained by attaching to the ancestors (Γi, Ai) of the
marked Poisson process N0 = ∑i≥1 δΓi,Ai a cluster of points, denoted by Ci, which
contains point (0, Ai) and a whole cascade GAi of points to the right in time generated
recursively according to (2.16) given Ai. Under the assumption

κ = E

∫
h(s, A)ds < 1 , (2.17)

the total number of points in a cluster is generated by a subcritical branching process.
Therefore, the clusters are finite almost surely, and we denote their size by Ki+1. It is
known and not difficult to show that under the assumption that κ < 1, the clusters
always satisfy

EKi+1 =
1

1− κ
.

Observe that the individual clusters are independent by construction and can be
represented as

Ci :=
Ki

∑
j=0

δΓi+Tij,Aij , (2.18)

with Aij being i.i.d. and Ti0 = 0. We note that in the case when marks do not influence
conditional density, i.e. when h(s, a) = h(s), random variable Ki+1 has a so-called
Borel distribution with parameter κ, see [21]. Observe also that in general, marks and
arrival times of the final Hawkes process N are not independent of each other, rather,
in the terminology of [12], the marks in the process N are only unpredictable which
means that the distribution of the mark at Ti is independent of locations and marks{
(Tj, Aj)

}
for which Tj < Ti.
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3
On total claim amount for marked
Poisson cluster models

3.1 Introduction

The main goal of this chapter is to study asymptotic distribution of the total claim
amount in the setting where Cramér–Lundberg risk model is augmented with a
Poisson cluster structure. To make this more precise, we model arrival of claims in
an insurance portfolio by a marked point process, say

N =
∞

∑
k=1

δτk,Ak ,

where τk’s are nonnegative random variables representing arrival times with some
degree of clustering and Ak’s represent corresponding marks in a rather general
metric space M. Observe that we do allow for the possibility that marks influence
arrival rate of the future claims. In the language of point processes theory, we assume
that the marks are merely unpredictable and not independent of the arrival times
[12]. For each marked event, the claim size can be calculated using a measurable
mapping of marks to nonnegative real numbers, f (Ak) say. So that the total claim
amount in the time interval [0, t] can be calculated as

S(t) = ∑
τk≤t

f (Ak) =
∫
[0,t]×M

f (a)N(ds, da) .

In the sequel, we aim to determine the effect of the clustering on the quantity S(t), as
t→ ∞ even in the case when the distribution of the individual claims does not satisfy
assumptions of the classical central limit theorem. The section is organized as follows
— in the following section we rigorously introduce marked Poisson cluster model and
present some specific cluster models which have attracted attention in the related
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literature, see [17, 28, 42]. As a proposition in Section 3.3 we present the central limit
theorem for the total claim amount S(t) in our setting under appropriate second
moment conditions. In Section 3.4, we prove a functional limit theorem concerning
the sums of regularly varying non-negative random variables when subordinated
to an independent renewal process. Based on this, we prove the limit theorem for
the total claim amount S(t) in cases when individual claims have infinite variance.
Finally in Section 3.5 we apply our results to the models we introduced in Section 3.2.
In particular, we give a detailed analysis of the asymptotic behaviour of S(t) for
marked Hawkes processes which have been extensively studied in recent years.

3.2 The general marked Poisson cluster model

Consider an independently marked homogeneous Poisson point process with mean
measure (νLeb) on the state space [0, ∞) for some constant ν > 0, where Leb denotes
Lebesgue measure on [0, ∞), with marks in a completely metrizable (i.e. metrizable
with complete metric) separable space. M,

N0 = ∑
i≥1

δΓi,Ai .

Marks Ai are assumed to follow a common distribution Q on a measurable space
(M,B(M)) where B(M) denotes a corresponding Borel σ–algebra. In other words,
N0 is a Poisson point process with intensity ν×Q on the space [0, ∞)×M . For non–
life insurance modelling purposes, the marks can take values in Rd with coordinates
representing the size of claim, type of claim, severity of accident, etc.

Recall, N #g
R≥0×M is the space of boundedly finite point measures such that their

ground measure is non-explosive and simple. Assume that at each time Γi with mark
Ai another point process inN #g

R≥0×M is generated independently, we denote it by GAi .
Intuitively, point process GAi represents a cluster of points that is superimposed on
N0 after time Γi. Formally, there exists a probability kernel K, from M to N #g

R≥0×M,
such that, conditionally on N0, point processes GAi are independent, a.s. finite and
with the distribution equal to K(Ai, ·), thus the dependence between the GAi and Ai
is permitted. Based on N0 and clusters GAi we define a cluster Poisson process.

In order to keep the track of the cluster structure, we can alternatively consider the
process GAi as a part of the mark attached to N0 at time Γi. Indeed,

∑
i≥1

δΓi,Ai,GAi

can be viewed as a marked Poisson process on [0, ∞) with marks in the space M×
N #g

R≥0×M. We can write
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GAi =
Ki

∑
j=1

δTij,Aij ,

where (Tij)j≥1 is a sequence of non-negative random variables and for some N0 val-
ued random variable Ki. If we count the original point arriving at time Γi, the actual
cluster size is Ki + 1. Further, for any original arrival point Γi and corresponding
random cluster GAi , we introduce a point process

Ci = δ0,Ai + GAi .

Note that Ki may possibly depend on Ai, but we do assume throughout that

EKi < ∞ .

Finally, to describe the size and other characteristics of the claims together with their
arrival times, we use a marked point process N as a random element in N #g

R≥0×M of
the form

N =
∞

∑
i=1

Ki

∑
j=0

δΓi+Tij,Aij , (3.1)

where we set Ti0 = 0 and Ai0 = Ai. In this representation, the claims arriving at
time Γi and corresponding to the index j = 0 are called ancestral or immigrant
claims, while the claims arriving at times Γi + Tij, j ≥ 1, are referred to as progeny or
offspring. Moreover, since N is locally finite, one could also write

N =
∞

∑
k=1

δτk,Ak ,

with τk ≤ τk+1 for all k ≥ 1. Note that in this representation we ignore the information
regarding the clusters of the point process. Clearly, if the cluster processes GAi are
independently marked with the same mark distribution Q independent of Ai, then
all the marks Ak are i.i.d.

The size of claims is produced by an application of a measurable function, say
f : M→ R+, on the marks. In particular, sum of all the claims due to the arrival of
an immigrant claim at time Γi equals

Di =
∫
[0,∞)×M

f (a)Ci(dt, da) , (3.2)

while the total claim size in the period [0, t] can be calculated as

S(t) = ∑
τk≤t

f (Ak) =
∫
[0,t]×M

f (a)N(ds, da) .
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3.2.1 Remark. In all our considerations, we take into account (without any real loss of
generality) the original immigrant claims arriving at times Γi as well. In principle, one could
ignore these claims and treat Γi as times of incidents that trigger, with a possible delay, a
cluster of subsequent payments. Such a choice seems particularly useful if one aims to model
the so called incurred but not reported (IBNR) claims, when estimating appropriate reserves
in an insurance portfolio [34]. In such a case, in the definition of the process N, one would
omit the points of the original Poisson process N0 and consider

N =
∞

∑
i=1

Ki

∑
j=1

δΓi+Tij,Aij ,

instead.

3.2.1 Some special models

Several examples of Poisson cluster processes have been studied in the monograph
[12], see Example 6.3 therein for instance. Here we study marked adaptation of the
first three examples 6.3 (a)-(b) and (c) of [12].

Mixed binomial Poisson cluster process.

Assume that the clusters have the following form

GAi =
Ki

∑
j=1

δWij,Aij ,

with (Ki, (Wij)j≥1, (Aij)j≥0)i≥0 being an i.i.d. sequence. Assume moreover that
(Aij)j≥0 are i.i.d. for any fixed i = 1, 2, . . . and that (Aij)j≥1 is independent of
Ki, (Wij)j≥1 for all i ≥ 0. We allow for possible dependence between Ki, (Wij)j≥1 and
the ancestral mark Ai0, however, we assume that Ki and (Wij)j≥1 are conditionally in-
dependent given Ai0. As before we assume E[K] < ∞. Observe that we use notation
Wij instead of Tij to emphasize relatively simple structure of clusters in this model in
contrast with two other models in this section. Such a process N is a version of the
so–called Neyman–Scott process, e.g. see Example 6.3 (a) of [12].

Renewal Poisson cluster process.

Assume next that the clusters GAi have the following distribution

GAi =
Ki

∑
j=1

δTij,Aij ,
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where (Tij)j represents a renewal sequence

Tij = Wi1 + · · ·+ Wij ,

and we keep all the other assumptions from the model in subsection 3.2.1 (in par-
ticular, (Wij)j≥1 are conditionally i.i.d. and independent of Ki given Ai0). A general
unmarked model of this type is called Bartlett—Lewis model and analysed in [12], see
Example 6.3 (b). See also [17] for an application of such a point process to modelling
of teletraffic data.

These two simple cluster models were already considered by [34] in the context of
insurance applications. In particular, subsection 11.3.2 and example 11.3.5 therein
provide expressions for the first two moments of the number of claims in a given time
interval [0, t]. Both models can be criticized as overly simple, still the assumption that
claims (or delayed payouts) are separated by i.i.d. times (as in the renewal Poisson
cluster process) often appears in the risk theory (cf. Sparre Andersen model, [2]).

Marked Hawkes process.

Key motivating example in our analysis is the so called (linear) marked Hawkes
process. Hawkes processes of this type have a neat Poisson cluster representation
due to [23] which we presented in Section 2.2.3.

Recal, Hawkes processes are typically introduced through their conditional intensity.
More precisely, a point process N = ∑k δτk,Ak , represents a Hawkes process of this
type if the random marks (Ak) are i.i.d. with distribution Q on the space M, while
the arrivals (τk) have the conditional intensity of the form

λt = λ(t) = ν + ∑
τi<t

h(t− τi, Ai) ,

where ν > 0 is a constant and h : [0, ∞)×M → R+ is assumed to be integrable
in the sense that

∫ ∞
0 Eh(s, A)ds < ∞. Observe, ν is exactly the constant which

determines the intensity of the underlying Poisson process N0 due to the Poisson
cluster representation of the linear Hawkes processes, cf. [23]. Observe, λ is Ft–
predictable, where Ft stands for an internal history of N, Ft = σ{N(I × S) : I ∈
B(R), I ⊂ (−∞, t], S ∈ B(M)}. Moreover, An’s are assumed to be independent of
the past arrival times τi, i < n, see also [8]. Writing Nt = N((0, t]×M), one can
observe that (Nt) is an integer valued process with non-decreasing paths. The role of
intensity can be described heuristically by the relation

P(dNt = 1 | Ft−) ≈ λtdt .
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Stationary version.

In any of the three examples above, the point process N can be clearly made stationary
if we start the construction in (3.1) on the state space R×M with a Poisson process
∑i δΓi on the whole real line. The resulting stationary cluster process is denoted by N∗.
Still, from applied perspective, it seems more interesting to study the nonstationary
version where both the ground process N0 and the cluster process itself have arrivals
only from some point onwards, e.g. in the interval [0, ∞) as for instance in [28].

Stability of various cluster models, i.e. convergence towards a stationary distribution
in appropriate sense has been extensively studied for various point processes. For
instance, it is known that the unmarked Hawkes process on [0, ∞) converges to the
stationary version on any compact set and on the positive line under the condition
that

∫ ∞

0
sh(s)ds < ∞ , (3.3)

see [12], p. 232. Using the method of Poisson embedding, originally due to [29], [9]
(Section 3) obtained general results on stability of Hawkes processes, even in the
non–linear case.

3.3 Central limit theorem

As explained in Section 2, the total claim amount for claims, arriving before time t,
can be written as

S(t) = ∑
τk≤t

f (Ak) =
∫ t

0

∫
M

f (u)N(ds, du) .

The long term behaviour of S(t) for general marked Poisson cluster processes is the
main goal of our study. As before, by Q we denote the probability distribution of
marks on the space M.

Moreover, unless stated otherwise, we assume that the process starts from 0 at time
t = 0, that is N(−∞, 0] = 0.

In the case of the Hawkes process, the process Nt = N([0, t]×M), t ≥ 0 which only
counts the arrival of claims until time t has been studied in the literature before. It
was shown recently under appropriate moment conditions, that in the unmarked
case multi-type Hawkes processes satisfy (functional) central limit theorem, see
[3]. Karabash and Zhu [28] showed that Nt satisfies central limit theorem even in
the more general case of non-linear Hawkes process and that linear but marked
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Hawkes have the same property. In the present section we describe the asymptotic
behaviour of the total claim amount process (S(t)) for a wide class of marked Poisson
cluster processes, even in the case when the total claim process has heavy tails, and
potentially infinite variance or infinite mean.

It is useful in the sequel to introduce random variable

τ(t) = inf {n : Γn > t} , t ≥ 0 .

Recall from (3.2) the definition of Di as

Di =
∫
[0,∞)×M

f (u)Ci(ds, du) =
Ki

∑
j=0

f (Aij) =
Ki

∑
j=0

Xij ,

where Ki + 1 = Ci[0, ∞) denotes the size of the ith cluster and where we denote
Xij = f (Aij). As before, Di has an interpretation as the total claim amount coming
from the ith immigrant and its progeny. Note that Di’s form an i.i.d. sequence
because the ancestral mark in every cluster comes from an independently marked
homogeneous Poisson point process.

Observe that in the nonstationary case we can write

S(t) =
τ(t)

∑
i=1

Di − Dτ(t) − εt , t ≥ 0 , (3.4)

where the last error term represents the leftover or the residue at time t, i.e. the sum
of all the claims arriving after t which belong to the progeny of immigrants arriving
before time t, that is

εt = ∑
0≤Γi≤t,t<Γi+Tij

f (Aij) t ≥ 0 .

Clearly, in order to characterize limiting behaviour of S(t), it is useful to determine
moments and the tail behaviour of random variables Di for each individual cluster
model. To simplify the notation, for a generic member of an identically distributed
sequence or an array, say (Dn), (Aij), we write D, A etc. Under the conditions of
existence of second order moments and the behaviour of the residue term εt, it is not
difficult to derive the following proposition.

3.3.1 Proposition. Assume the marked Poisson cluster model defined in Section 2. Suppose
that ED2 < ∞ and that εt = oP(

√
t) then, for t→ ∞,

S(t)− tνµD√
tνED2

d−→ N(0, 1) , (3.5)

where µD = ED and ν > 0 is the constant which determines the intensity of the underlying
Poisson point process N0.
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Proof. Recall, εt = oP(
√

t) means that limt→∞
εt√

t
= 0.

Denote the first term on the r.h.s. of (3.4) by

SD(t) =
τ(t)

∑
i=1

Di t ≥ 0 .

An application of the central limit theorem for two-dimensional random walks, see
[19, Section 4.2, Theorem 2.3] yields

SD(t)− tνµD√
tνED2

d−→ N(0, 1) ,

as t→ ∞. Since we assumed εt/
√

t P−→ 0, it remains to show that

Dτ(t)√
t

P−→ 0 t→ ∞.

However, this follows at once from [19, Theorem 1.2.3] for instance, or from the fact
that in this setting sequences (Γn) and (Dn) are independent.

Note that Proposition 3.3.1 holds for f taking possibly negative values as well. How-
ever, when modelling insurance claims, non-negativity assumption seems completely
natural, and in the heavy tail case our proofs actually depend on it, cf. the proof of
Theorem 3.4.1. In the special case f ≡ 1, one obtains the central limit theorem for
the number of arrivals in time interval [0, t]. Related results have appeared in the
literature before, see for instance [11] or [28] . The short proof above stems from the
classical Anscombe’s theorem, as presented in Gut [19, Chapter IV] (cf. [11, Theorem
3 ii]) unlike the argument in [28] which relies on martingale central limit theorem
and seems not easily extendible, especially for heavy tailed claims we consider next.

3.3.1 Remark. It is not too difficult to find examples where the residue term is not negligible.
Consider renewal cluster model of subsection 3.2.1 with K = 1, X = 1. Let Wi1 be
i.i.d. and regularly varying with index α < 1/2. Then εt has Poisson distribution with
parameter E[WIW<t] → ∞ and thus, by Karamata’s theorem, εt/

√
t tends to infinity

in probability. Similarly, one can show that Var(εt/
√

t) = E[WIW<t]/t → 0 so that
(εt −E[WIW<t])/

√
t tends to zero in probability. Thus (3.5) does not hold any more but

instead we have

S(t)− tνµD + E[WIW<t]√
tνED2

d−→ N(0, 1) , t→ ∞ .
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3.4 Infinite variance stable limit

It is known that if the claims are sufficiently heavy tailed, properly scaled and centred
sums S(t) may converge to an infinite variance stable random variable. In the case
of random sums Sn = X1 + · · ·+ Xn of i.i.d. random variables, the corresponding
statement is true if and only if the claims are regularly varying with index α ∈ (0, 2).
For the Cramér–Lundberg model, i.e. when N = N0, with i.i.d. regularly varying
claims of index α ∈ (1, 2), corresponding limit theorem follows from Theorem 4.4.3
in [19]. A crucial step in the investigation of the heavy tailed case is to determine the
tail behaviour of the random variables of (3.2).

For regularly varying Di with index α ∈ (1, 2), limit theory for two-dimensional
random walks in Section 4.2 of [19] still applies. Note, if one can show that Di’s have
regularly varying distribution, then there exists a sequence (an) , an → ∞, such that

nP(D > an)→ 1 , n→ ∞,

and an α–stable random variable Gα such that SD
n = D1 + · · · + Dn , n → ∞,

satisfies
SD

n − nµD

an

d−→ Gα , (3.6)

where µD = EDi. It is also known that the sequence (an) is regularly varying itself
with index 1/α, see [38]. In the sequel ,we also set at = abtc for any t ≥ 1 .

3.4.1 Case α ∈ (1, 2)

In this case, the arguments of the previous section can be adopted to show.

3.4.1 Proposition. Assume the marked Poisson cluster model introduced in Section 2.
Suppose that Di’s are regularly varying with index α ∈ (1, 2) and that εt = oP(at), then
there exists an α–stable random variable Gα such that for µD = EDi

S(t)− tνµD

aνt

d−→ Gα , (3.7)

as t→ ∞ .

Proof. The proof again follows from the representation (3.4), by an application of
Theorem 4.2.6 from [19] on random walks (Γn) and (SD

n ) together with relation (3.6).

By assumption we have εt/aνt ∼ ν−1/αεt/at
P−→0. To finish the proof, we observe

that the sequences (Γn) and (Dn) are independent, hence

Dτ(t)

aνt

P−→ 0, t→ ∞.
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3.4.2 Case α ∈ (0, 1)

In this case, we were not able to find any result of Anscombe’s theorem type for
two–dimensional random walks of the type used above. Therefore, as our initial
step, we prove a theorem which we believe is new and of independent interest.
It concerns partial sums of i.i.d. nonnegative regularly varying random variables,
say (Yn), subordinated to an independent renewal process. More precisely, set
Vn = Y1 + · · ·+Yn , n ≥ 1. Suppose that the sequence (Yn) is independent of another
i.i.d. sequence of nonnegative and nontrivial random variables (Wn). Denote by

σ(t) = sup{k : W1 + · · ·+ Wk ≤ t}

the corresponding renewal process, where we set sup ∅ = 0 . Recall that for regularly
varying random variables Yi’s there exists a normalizing sequence (an) such that in

the central limit theorem Y1+···+Yn
an

d−→ Gα, where Gα is an α−stable distribution. The
limiting behaviour of the process Vσ(t) was considered by [1] in the case when W ′i s
are themselves regularly varying with index less then or equal to 1.

Since σ(t)/t as−→ ν, if 0 < EWi = 1/ν < ∞, one may expect that Vσ(t) has similar
asymptotic behaviour as Vνt for t→ ∞. It is not too difficult to make this argument
rigorous if for instance EW2

i < ∞, because then (σ(t)− tν)2/t, t > 0, is uniformly
integrable by Gut (2009), Section 2.5. The following functional limit theorem gives
precise description of the asymptotic behaviour of Vσ(t) whenever Wi have a finite
mean.

3.4.1 Theorem. Suppose that (Yn) and (Wn) are independent non-negative i.i.d. sequences
of random variables such that Yi’s are regularly varying with index α ∈ (0, 1), and such that
0 < 1/ν = EWi < ∞. Then in the space D[0, ∞) endowed with Skorohod’s J1 topology

Vσ(t·)
aνt

d−→ Gα(·) , t→ ∞, (3.8)

where (Gα(s))s≥0 is an α–stable subordinator.

Proof. Since Yi’s are regularly varying, it is known, [38, 39], that the following point
process convergence holds as n→ ∞

Z′n = ∑
i

δ i
n , Yi

an

d−→ Zα ∼ PRM(Leb× d(−y−α)) , (3.9)

with respect to the vague topology on the space of Radon point measures on [0, ∞)×
(0, ∞]. Abbreviation PRM stands for Poisson random measure indicating that the
limit is a Poisson process. Starting from (3.9), it was shown in [39, Chapter 7] for
instance, that for an α–stable subordinator Gα(·) as in the statement of the theorem

V′n(·) =
Vbn·c

an

d−→ Gα(·) , n→ ∞,
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in Skorohod’s J1 topology on the space D[0, ∞). Observe that since α ∈ (0, 1), no
centering is needed, and that one can substitute the integer index n by a continuous
index t→ ∞. Note further that we have the joint convergence

(Z′t, V′t )
d−→ (Zα, Gα), t→ ∞, (3.10)

in the product topology on the space of point measures and càdlàg functions. More-
over, it is known that the jump times and sizes of the α–stable subordinator Gα

correspond to the points of the limiting point process Zα .

The space of point measures and the space of càdlàg functions D[0, ∞) are both Polish,
in respective topologies, therefore, Skorohod’s representation theorem applies. Thus,
we can assume that convergence in (3.10) holds a.s. on a certain probability space
(Ω,F , P), and in particular there exists Ω′ ⊆ Ω, such that P(Ω′) = 1 and for all
ω ∈ Ω′, V′t → Gα in J1 and Z′t → Zα in vague topology. By Chapter VI, Theorem 2.15
in [25], for any such ω there exists a dense set B = B(ω) of points in [0, ∞) such that

V′t (s)→ Gα(s) , t→ ∞,

for every s ∈ B , where actually B is simply the set of all nonjump times in the path
of the process Gα. On the other hand, it is known that in J1 topology, on some set Ω′′

such that P(Ω′′) = 1,
σ(t·)

tν
→ id(·) , t→ ∞, (3.11)

where id stands for the identity map. This follows directly by an application of
Theorem 2.15 in Chapter VI of [25]. Moreover, by Proposition VI.1.17 in [25], the
convergence in (3.11) holds locally uniformly on D[0, ∞).

Consider now for fixed t > 0 and ω ∈ Ω′ ∩Ω′′

Vt(s) =
Vσ(ts)

aνt
, s ≥ 0 .

From (3.11) we may expect that Vt(s) ≈ V′tν(s). Indeed, for any fixed 0 < δ < 1 and
all large t, we know that btcν(1− δ)c ≤ σ(tc) ≤ btcν(1+ δ)c, which by monotonicity
of the sums implies

Vbtcν(1−δ)c
aνt

≤
Vσ(tc)

aνt
≤

Vbtcν(1+δ)c
aνt

.

Now, for c(1− δ) and c(1 + δ) in B, the left hand side and the right hand side above
converge to Gα(c(1− δ)) and Gα(c(1 + δ)). Thus, if we consider c ∈ B and let δ→ 0,
then

Vσ(tc)

aνt
→ Gα(c) , t→ ∞, (3.12)

for all ω ∈ Ω′ ∩Ω′′ and thus with probability 1.
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By Theorem 2.15 in Chapter VI in [25], to prove (3.8), it remains to show that for all
ω ∈ Ω′ ∩Ω′′ and c ∈ B, as t→ ∞

∑
0<s≤c

|∆Vt(s)|2 = ∑
i<σ(tc)

(
Yi

atν

)2

→ ∑
0<s≤c

|∆Gα(s)|2 , (3.13)

where, for an arbitrary càdlàg process X(t) at time t ≥ 0, we denote ∆X(t) =
Xt − Xt− . Observe that

Gα/2(c) := ∑
0<s≤c

|∆Gα(s)|2

defines an α/2–stable subordinator and that the squared random variables Y2
i are

again regularly varying with index α/2 with the property that nP(Y2
i > a2

n)→ 1. A
similar approximation argument as for (3.12) shows that (3.13) indeed holds, which
concludes the proof.

Assume now that P(D > x) = x−α`(x) for some slowly varying function ` and
α ∈ (0, 1). Select a sequence an → ∞ such that nP(D > an)→ 1 , as n → ∞. Under
suitable conditions on the residue term εt we obtain the following.

3.4.2 Proposition. Assume that Di’s are regularly varying with index α ∈ (0, 1) and that
εt = oP(at). Then, there exists an α–stable random variable Gα such that

S(t)
aνt

d−→ Gα , (3.14)

as t→ ∞ .

Proof. The proof follows roughly the same lines as the proof of Proposition 3.4.1, but
here we rely on an application of the previous theorem to the random walks (Γn)
and (SD

n ). Just, instead of Yi’s and Wi’s we have Di’s and an independent sequence
of i.i.d. exponential random variables with parameter ν .

3.4.1 Remark. One can consider total claim amount in the period [0, t] for the stationary
model of subsection 3.2.1, i.e.

S∗(t) =
∫ t

0

∫
M

f (u)N∗(ds, du) , t ≥ 0 .

Here again, S∗(t) has a similar representation as in (3.4) but with an additional term on the
right hand side, i.e.

S∗(t) =
τ(t)

∑
i=1

Di − Dτ(t) − εt + ε∗0,t , t ≥ 0 ,
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where
ε∗0,t = ∑

Γi≤0, 0<Γi+Tij<t
Xij.

Clearly, by stationarity

εt = ∑
0≤Γi≤t,t<Γi+Tij

Xij
d
= ε−t = ∑

−t≤Γi≤0,0<Γi+Tij

Xij. (3.15)

Hence, εt = oP(at) yields ε−t = oP(at) for any sequence (at) and therefore

ε∗0,t ≤ ε−t + ∑
Γi<−t, 0<Γi+Tij<t

Xij = ∑
Γi<−t, 0<Γi+Tij<t

Xij + oP(at) .

In particular, conclusions of propositions 3.3.1, 3.4.1 and 3.4.2 hold for random variables
S∗(t) too under the additional assumption that

ε̃t := ∑
Γi≤−t, 0<Γi+Tij<t

Xij = oP(at). (3.16)

3.5 Total claim amount for special models

As we have seen in the previous two sections, it is relatively easy to describe asymp-
totic behaviour of the total claim amount S(t) as long as we are able to determine
the moments and tail properties of the random variables Di and the residue random
variable εt in (3.4) (and also ε̃t in (3.16) for the stationary version). However, this is
typically a rather technical task, highly dependent on an individual Poisson cluster
model. In this section we revisit three models introduced in Subsection 3.2.1, charac-
terizing for each of them the limiting distribution of the total claim amount under
appropriate conditions. Note that the cluster sum D for all three models admits the
following representation

D d
=

K

∑
j=0

Xj,

for (Xj)j≥0 i.i.d. copies of f (A) and some integer valued K such that E[K] < ∞.
Throughout, we assume that the random variables K and (Xj)j≥1 are independent.
The sum ∑K

j=1 Xj has a so called compound distribution. Its first two moments exist
under the following conditions

• if E[X] < ∞ and E[K] < ∞, then µD = ED = (1 + E[K])E[X] < ∞,

• if E[X2] < ∞ and E[K2] < ∞, then ED2 = (E[K] + 1)E[X2] + (E[K2] +
E[K])E[X]2 < ∞.
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The tail behaviour of compound sums was often studied under various conditions
(see [13, 17, 24, 41]). We list below some of these conditions, which are applicable to
our setting.

(RV1) If X is regularly varying with index α > 0 and P(K > x) = o(P(X > x)), then
P(D > x) ∼ (E[K] + 1)P(X > x) as x → ∞, see [17, Proposition 4.1],

(RV2) If K is regularly varying with index α ∈ (1, 2) and P(X > x) = o(P(K > x)),
then P(D > x) ∼ P(K > x/E[X]) as x → ∞, see [41, Theorem 3.2] or [17,
Proposition 4.3],

(RV3) If X and K are both regularly varying with index α ∈ (1, 2) and tail equivalent,
see [16, Definition 3.3.3], then P(D > x) ∼ (E[K] + 1)P(X > x) + P(K >
x/E[X]) as x → ∞, [13, Theorem 7].

We will refer to the last three conditions as the sufficient conditions (RV).

3.5.1 Mixed binomial cluster model

Recall from subsection 3.2.1 that the clusters in this model have the following form

GAi =
Ki

∑
j=1

δWij,Aij .

Assume:

• (Ki, (Wij)j≥1, (Aij)j≥0)i≥0 constitutes an i.i.d. sequence ,

• (Aij)j≥0 are i.i.d. for any fixed i ,

• (Aij)j≥1 is independent of Ki, (Wij)j≥1 for all i ≥ 0 ,

• (Wij)j≥1 are conditionally i.i.d. and independent of Ki given Ai0.

Thus we do not exclude the possibility of dependence between Ki, (Wij)j≥1 and the
ancestral mark Ai0. For any γ > 0, we denote by

A, Xj, K, Wj, mA , m(γ)
A ,

generic random variables with the same distribution as Aij, Xij = f (Aij), Ki, Wij,
E[Ki | Ai0] and E[Kγ

i | Ai0] respectively. Using the cluster representation, one can
derive the asymptotic properties of S(t). Let us first consider the Gaussian CLT under
appropriate second moment assumptions. Denote by P(W ∈ · | A) the distribution
of Wij’s given Ai0.
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3.5.1 Corollary. Assume that E[X2] < ∞ and E[K2] < ∞. If

√
tE[mAP(W > t | A)]→ 0, t→ ∞, (3.17)

then the relation (3.5) holds.

Observe that (3.17) is slightly weaker than the existence of the moment E[K
√

W] < ∞.

Proof. It follows from the compound sum representation of D that ED2 < ∞ as
soon as E[X2] < ∞ and E[K2] < ∞. By Proposition 3.3.1, it remains to show that
εt = oP(

√
t). In order to do so, we use the Markov inequality

P(εt >
√

t) ≤ E[εt]√
t

=
E
[
∑0≤Γi≤t ∑Ki

j=1 It<Γi+Wij f (Aij)
]

√
t

.

We use Lemma 7.2.12 of [34] with f (s) = ∑Ki
j=1 IWij>t−s f (Aij) in order to compute the

r.h.s. term as∫ t
0 E

[
∑Ki

j=1 IWij>t−s f (Aij)
]

νds
√

t
=

νE[X]
∫ t

0 E
[
E
[

∑Ki
j=1 IWij>t−s | Ai0

]]
ds

√
t

=
νE[X]

∫ t
0 E[mAP(W > x | A)]dx

√
t

.

Notice that the last identity is obtained thanks to the independence of Ki and (Wij)j≥0
conditionally on Ai0. We conclude by the L’Hôpital’s rule that this converges to 0
under (3.17).

For regularly varying D of order 1 < α < 2, we obtain the corresponding limit
theorem under weaker assumptions on the tail of the waiting time W.

3.5.2 Corollary. Assume that one of the conditions (RV) holds for 1 < α < 2, so that D is
regularly varying. When

t1+δ−1/αE[mAP(W > t | A)]→ 0, t→ ∞, (3.18)

for some δ > 0 the relation (3.7) holds.

The condition (3.18) is slightly weaker than assuming E[mAW1+δ−1/α] < ∞. Notice
that when α → 1+ and K is independent of W, this condition boils down to the
existence of a δ’th moment of W for any strictly positive δ.
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Proof. By definition, (at) satisfies tP(D > at) → 1 as t → ∞ and (at) is regularly
varying with index 1/α. Applying the Markov inequality as in the proof of Corollary
3.5.1, we obtain

P(εt > at) ≤
E[εt]

at
=

νE[X]
∫ t

0 E[mAP(W > s | A)]ds
at

.

The claim follows now by the L’Hôpital’s rule and the relation t1/α−δ = o(at) for any
δ > 0.

3.5.1 Remark. In the context of the mixed binomial model, consider the total claim amount
of the stationary process denoted by S∗(t) which takes into account also the arrivals in
the interval (−∞, 0), see Remark 3.4.1. Assume for simplicity that Ki’s and (Wij)’s are
unconditionally independent. Then ε̃t from (3.16) is oP(at) under the same conditions as in
Corollaries 3.5.1 and 3.5.2, where we set at =

√
t in the former case. Indeed, we will show

that

Eε̃t = E

 ∑
Γi≤−t, 0<Γi+Wij<t

Xij

 = E

 ∑
−t≤Γi≤0,t<Γi+Wij

Xij

 ,

so that Eε̃t = oP(at) as well since the r.h.s. is dominated by Eε−t = o(at) , cf. (3.15).

Note first that under assumption of the last two corollaries, individual claims have finite
expectation, i.e. EX < ∞. So it suffices to show that

I1 := Eε̃t/EX = E ∑
Γi<−t

Ki

∑
j=1

I0<Γi+Wij<t = E ∑
−t<Γi<0

Ki

∑
j=1

IΓi+Wij>t =: I2 .

From I1, I2 we subtract respectively l.h.s. and r.h.s. of the equality

E ∑
−2t<Γi<−t

Ki

∑
j=1

IΓi+Wij∈(0,t)IWij∈(t,2t] = E ∑
−t<Γi<0

Ki

∑
j=1

IΓi+Wij∈(t,2t)IWij∈(t,2t] ,

where the equality follows by the stationarity of the underlying Poisson process, to obtain

J1 = E ∑
−∞<Γi<−t

Ki

∑
j=1

I0<Γi+Wij<tIWij>2t = EK
∫ −t

−∞
νds

∫ t−s

−s∨2t
dFW(u)

and

J2 = E ∑
−t<Γi<0

Ki

∑
j=1

IΓi+Wij>tIWij>2t = EK
∫ 0

−t
νds

∫ ∞

2t
dFW(u)

where FW denotes the distribution function of delays (Wij). Finally, note that

J1 = EK
∫ ∞

2t
dFW(u)

∫ t−u

−u
νds = J2 .
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Since we assumed that E[K] < ∞, the regular variation property of D with index
α ∈ (0, 1) can arise only through the claim size distribution, see Proposition 4.8 in
[17]. It turns out that in such a heavy tailed case, no additional assumption on the
waiting time W is needed.

3.5.3 Corollary. Assume that X is regularly varying of order 0 < α < 1, then the relation
(3.14) holds.

Proof. Observe that one cannot apply Markov inequality any more because ED = ∞.
Instead, we use the fact that ∑t

j=1 Xj/at converges because X and D have equivalent
regular varying tails. Recall from (3.15) that

εt = ∑
0≤Γi≤t,t<Γi+Wij

Xij.

We denote the (increasing) number of summands in the r.h.s. term by Jt = #{i, j : 0 ≤
Γi ≤ t, t < Γi + Wij}. We can apply Proposition 3.4.2 after observing that ∑Jt

j=1 Xj/aJt

is a tight family of random variables, because Jt is independent of the array (Xij).
Writing

εt

at

d
=

∑Jt
j=1 Xj

aJt

aJt

at
, (3.19)

and observing that at is regularly varying with index 1/α, we obtain the desired
result provided that Jt = oP(t). It is sufficient to show the convergence to 0 of the
ratio

E[Jt]

t
=

E[#{i, j : 0 ≤ Γi ≤ t, t < Γi + Wij}]
t

=
E
[
∑0≤Γi≤t ∑Ki

j=1 It≤Γi+Wij

]
t

.

Using similar calculation as in the proof of Corollary 3.5.1 (setting X = 1), we obtain
an explicit formula for the r.h.s. term as

ν
∫ t

0 E[mAP(W > x | A)]dx
t

→ 0, t→ ∞,

the convergence to 0 following from a Cesarò argument.
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3.5.2 Renewal cluster model

Recall from subsection 3.2.1 that the clusters of this model have the following form

GAi =
Ki

∑
j=1

δTij,Aij ,

where

• Tij = Wi1 + · · ·+ Wij ,

• while (Ki, (Wij)j≥1, (Aij)j≥0)i≥0 constitutes an i.i.d. sequence satisfying the
assumptions listed in the previous subsection 3.5.1.

The total claim amount coming from the ith immigrant and its progeny is again

D d
=

K

∑
j=0

Xj,

for (Xj) i.i.d. copies of f (A). Dealing with the waiting times Tij = Wi1 + · · ·+ Wij is
more involved than in the previous model. We obtain first

3.5.4 Corollary. Suppose EX2 < ∞, EK2 < ∞ and E[K2Wδ] < ∞ for some δ > 1/2
then the relation (3.5) holds.

Proof. The proof follows from Proposition 3.3.1. Second moment of Di’s is finite by the
moment assumptions on X and K. It remains to show that the residue term satisfies
εt = oP(

√
t). Using Lemma 7.2.12 of [34] with f (x) = ∑Ki

j=1 IWi1+···+Wij>x f (Aij)

similarly as in the proof of Corollary 3.5.1 we obtain

E[εt] =
∫ t

0
E

[
Ki

∑
j=1

IWi1+···+Wij>x f (Aij)

]
νdx

= ν
∫ t

0
E

[
E

[
Ki

∑
j=1

IWi1+···+Wij>x f (Aij) | Ki, (Wij)j≥1

]]
dx

= νE[X]
∫ t

0
E

[
Ki

∑
j=1

IWi1+···+Wij>x

]
dx

by independence between Ki, (Wij)j≥1 and ( f (Aij))j≥1. The key argument in dealing
with the renewal cluster model is the following upper bound

Ki

∑
j=1

IWi1+···+Wij>x ≤ IWi1+···+WiKi
>xKi . (3.20)
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Assume with no loss of generality that δ ≤ 1. By the Markov inequality and the
conditional independence of Ki and (Wij)j≥0 conditionally on Ai0, we obtain

E
[
IWi1+···+WiKi

>xKi | Ai0

]
≤

E[Ki(Wi1 + · · ·+ WiKi)
δ | Ai0]

xδ

≤ m(2)
Ai0

E[Wδ | Ai0]

xδ
, (3.21)

using the notation m(γ)
Ai0

= E[Kγ
i | Ai0] for any γ > 0. The last inequality follows from

the sub-linearity of the mapping x 7→ xδ for δ ≤ 1. Thus, we obtain for some constant
C > 0

E[εt] ≤ νE[X]E[m(2)
A Wδ]

∫ t

1
x−δdx + C = O(E[m(2)

A Wδ]t1−δ) = o(
√

t)

as δ > 1/2 by assumption.

Regularly varying claims can be handled with additional care as K may not be square
integrable.

3.5.5 Corollary. Assume that one of the conditions (RV) holds so that D is regularly varying
of order 1 < α < 2. Suppose further that E[K1+γ] < ∞ and E[K1+γWδ] < ∞, δ > 0,
γ > 0 and δ > (α− γ)/α. Then the relation (3.7) holds.

Observe that we obtain somewhat stronger conditions than in the mixed binomial
case, see Corollary 3.5.2 and remark following it.

Proof. With no loss of generality we assume that γ ≤ 1. We use the Markov inequality
of order γ

P(εt > at) ≤
E[εγ

t ]

aγ
t

.

Thanks to the the sub-additivity of the function x 7→ xγ we have

E[εγ
t ] = E

[(
∑

0≤Γi≤t

Ki

∑
j=1

IΓi+Wi1+···+Wij>t f (Aij)

)γ]

≤ E

[
∑

0≤Γi≤t

(
Ki

∑
j=1

IΓi+Wi1+···+Wij>t f (Aij)

)γ]

Using Lemma 7.2.12 of [34] with f (x) = ∑Ki
j=1 IWi1+···+Wij>x f (Aij) similarly as in the

proof of Corollary 3.5.1 we obtain

E[εγ
t ] ≤ ν

∫ t

0
E

[(
Ki

∑
j=1

IWi1+···+Wij>x f (Aij)

)γ]
dx. (3.22)
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We use Jensen’s inequality as follows

E

[
E

[(
Ki

∑
j=1

IWi1+···+Wij>x f (Aij)

)γ

| Ki, (Wij)j≥1

]]

≤ E

[(
E

[
Ki

∑
j=1

IWi1+···+Wij>x f (Aij) | Ki, (Wij)j≥1

])γ]
so that, using the independence between Ki, (Wij)j≥1 and ( f (Aij))j≥1, one gets

E[εγ
t ] ≤ νE[X]γ

∫ t

0
E

[(
Ki

∑
j=1

IWi1+···+Wij>x

)γ]
dx.

Using the stochastic domination (3.20), we obtain

E[εγ
t ] ≤ νE[X]γ

∫ t

0
E
[
IWi1+···+WiKi

>xKγ
i

]
dx.

With no loss of generality we assume 0 < δ < 1. Applying the Markov inequality of
order δ conditionally on Ai0 as in (3.21), we have

E[IWi1+···+WiKi
>xKγ

i | Ai0] ≤ m(1+γ)
Ai0

E[Wδ
i | Ai0]

xδ
.

Plugging in this bound in the previous inequality, we obtain for some C > 0,

E[εγ
t ] ≤ νE[X]γE

[
m(1+γ)

A Wδ
]
t1−δ + C = o(aγ

t )

as 1− δ < γ/α by assumption.

3.5.6 Corollary. If X is regularly varying of order α ∈ (0, 1) then the relation (3.14) holds.

Proof. We use the same arguments as in the proof of Corollary 3.5.3 in order to obtain
(3.19). The desired result follows if one can show that Jt = #{i, j : 0 ≤ Γi ≤ t, t <
Γi + Wi1 + · · ·+ Wij} = oP(t). Using the Markov’s inequality, it is enough to check
that E[Jt]/t = o(1). Following the same reasoning than in the proof of Corollary
3.5.5, we estimate the moment of Jt similarly as the one of εt in (3.22):

E[Jt] ≤
∫ t

0
E

[
Ki

∑
j=1

IWi1+···+Wij>x

]
νdx ≤

∫ t

0
E
[
KiIWi1+···+WiKi

>x

]
νdx.

We used again the stochastic domination (3.20) to obtain the last upper bound. From
a Cesaró argument, the result will follow if

E
[
KiIWi1+···+WiKi

>x

]
→ 0, x → ∞.

One can actually check this negligibility property because the random sequence
KiIWi1+···+WiKi

>x → 0 a.s. by finiteness of Wi1 + · · ·+ WiKi and because the sequence
is dominated by Ki that is integrable.

40 |



ON TOTAL CLAIM AMOUNT FOR MARKED POISSON CLUSTER MODELS

3.5.3 Marked Hawkes process

Recall from Section 2.2.3 that the clusters of the Hawkes model satisfy recursive
relation (2.16). In other words, the clusters GAi represent a recursive aggrega-
tion of Poisson processes with random mean measure µ̃A × Q which satisfies κ =
E
∫

h(s, A)ds < 1.

In general, it is not entirely straightforward to see when the moments of D are finite.
However, note that Di’s are i.i.d. and satisfy distributional equation

D d
= f (A) +

LA

∑
j=1

Dj , (3.23)

where LA has the Poisson distribution conditionally on A, with mean κA where
κA =

∫ ∞
0 h(s, A)ds. Recall from (2.17) that κ = EκA < 1. The Dj’s on the right hand

side are independent of κA and i.i.d. with the same distribution as D. Conditionally
on A, the waiting times are i.i.d. with common density h(t, A)/κA, t ≥ 0. Thus, one
can relate the clusters of the Hawkes process with those of a mixed binomial process
from Section 3.5.1 with K = LA. In order to obtain the asymptotic properties of S(t)
one still needs to characterize the moment and tail properties of D.

Consider the Laplace transform of D, i.e. ϕ(s) = Ee−sD, for s ≥ 0. Also, recall the
Laplace transform of a Poisson compound sum is of the form

E
[
e−s ∑M

j=1 Zj
]
= E

[
emA(Ee−sZ−1)

]
,

where M is Poiss(mA) distributed, independent of the i.i.d. sequence (Zi) of non-
negative random variables with common distribution (see, for instance, Section 7.2.2
in [34]). Note, ϕ is an infinitely differentiable function for s > 0. To simplify the
notation, denote by

X = f (A) ,

a generic claim size and observe that by (3.23), ϕ satisfies the following

ϕ(s) = E

[
E

(
e−s(X+∑

LA
j=1 Dj)

∣∣∣∣ A
)]

= E

[
e−sXE

(
e−s ∑

LA
j=1 Dj

∣∣∣∣ A
)]

= E
[
e−sXeκA(Ee−sD−1)

]
= E

[
e−sXeκA(ϕ(s)−1)

]
. (3.24)

When E[κA] = κ < 1, it is known that this functional equation has a unique solution ϕ
which further uniquely determines the distribution of D. By studying the behaviour
of the derivatives of ϕ(s) for s→ 0+, we get the following result.

3.5.1 Lemma. If EX2 < ∞ and Eκ2
A < ∞ then

ED2 =
EX2

1− κ
+

(EX)2

(1− κ)3 Eκ2
A + 2

EX
(1− κ)2 E(XκA) < ∞ .
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Notice that this expression coincides with the expression in [28], when X = f (A) ≡ 1,
i.e. in the case when one simply counts the number of claims.

Proof. Differentiating the equation (3.24) with respect to s > 0 produces

ϕ′(s) = E
[
e−sXeκA(ϕ(s)−1) (−X + κA ϕ′(s)

)]
.

As E(κA) = κ < 1 we obtain

ϕ′(s) =
−E

[
e−sXeµ(ϕ(s)−1)X

]
1−E

[
κ−sX

A eκA(ϕ(s)−1)κA

] (3.25)

As ϕ(s) ≤ 1, s ≥ 0, the integrand in the numerator is dominated by X and the one
in the denominator by κA. By the dominated convergence argument, lims→0+ ϕ′(s)
exists and is equal to

ϕ′(0) =
−EX
1− κ

.

In particular ED = EX/(1− κ). Differentiating (3.24) again produces second mo-
ment of D. Indeed, we have

ϕ′′(s) = E
[
e−sXeκA(ϕ(s)−1)

((
−X + κA ϕ′(s)

)2
+ κA ϕ′′(s)

)]
,

so that

ϕ′′(s) =
E
[
e−sXeκA(ϕ(s)−1) (−X + κA ϕ′(s))2

]
1−E[e−sXeκA(ϕ(s)−1)κA]

. (3.26)

Here again, applying the dominated convergence theorem twice, one can let s→ 0+
and obtain

ϕ′′(0) =
E (−X + κA ϕ′(0))2

1− κ
=

E (X + κAED)2

1− κ
.

Which concludes the proof since X = f (A).

The following theorem describes the behaviour of the total claim amount (S(t)) for
the marked Hawkes process under appropriate 2nd moment assumptions. Recall
from (2.15) that µ̃A(B) =

∫
B h(s, A)ds .

3.5.1 Theorem. If κ < 1, EX2 < ∞ and E[κ2
A] < ∞ then, in either stationary or nonsta-

tionary case, if
√

tE[µ̃A(t, ∞)]→ 0, t→ ∞, (3.27)

then the relation (3.5) holds.
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Proof. In order to apply Proposition 3.3.1 one has to check that εt = oP(
√

t). The
proof is based on the following domination argument on εt. Recall that one can write

N = ∑
i

∑
j

δΓi+Tij,Aij =
∞

∑
k=1

δτk,Ak ,

w.l.o.g. assuming that 0 ≤ τ1 ≤ τ2 ≤ . . .. At each time τj, a claim arrives generated
by one of the previous claims or an entirely new (immigrant) claim appears. In the
former case, if τj is a direct offspring of a claim at time τi, we will write τi → τj.
Progeny τj then creates potentially further claims. We denote by Dτj the total amount
of claims generated by the arrival at τj (counting the claim at τj itself as well). Clearly,
Dτj ’s are identically distributed as D and even independent if we consider claims
which are not offspring of one another. They are also independent of everything
happening in the past.

The process N is naturally dominated by the stationary marked Hawkes process
N∗ which is well defined on the whole real line as we assumed κ = EκA < 1, see
discussion at the end of subsection 3.2.1. For the original and stationary Hawkes
processes, N and N∗, by λ and λ∗, we denote corresponding predictable intensities.
By the construction of these two point processes, λ ≤ λ∗. Recall that τi → τj is
equivalent to τj = τi + Wik, k ≤ Li = LAi , where, by assumption, Wik are i.i.d. with
common density h(t, Ai)/κAi , t ≥ 0, and independent of Li conditionally on the mark
Ai of the claim at τi. Moreover, conditionally on Ai, the number of direct progeny of
the claim at τi, denoted by Li, has Poisson distribution with parameter µ̃Ai . Therefore,
using conditional independence and equal distribution of D

′
s we get

E[εt] = E
[

∑
Γi≤t

∑
j

IΓi+Tij>tXij

]
= E

[
∑
τi≤t

∑
τj>t

DτjIτi→τj

]

= E
[

∑
τi≤t

E
[ Li

∑
k=1

Dτi+WikIτi+Wik>t | (τi, Ai)i≥0; τi ≤ t
]]

= µDE

[∫ t

0

∫
M

µ̃a((t− s, ∞))N(ds, da)
]

,

where µ̃a((u, ∞)) =
∫ ∞

u h(s, a)ds. Observe that from projection theorem, see [8],
Chapter 8, Theorem 3, the last expression equals to

µDE

[∫ t

0

∫
M

µ̃a((t− s, ∞))Q(da)λ(s)ds
]

.
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One can further bound this estimate by

E

[∫ t

0

∫
M

µ̃a((t− s, ∞))Q(da)λ∗(s)ds
]
=
∫ t

0

∫
M

µ̃a((t− s, ∞))Q(da)E[λ∗(s)]ds

=
ν

1− κ

∫ t

0

∫
M

µ̃a((t− s, ∞))Q(da)ds.

Here we used Fubini’s theorem, and the expression E [λ∗(s)] ≡ ν/(1− κ). Observe
that this expectation is constant since N∗ is a stationary point process, to show that it
equals ν/(1− κ), note that

µ∗ = Eλ∗(s) = E

[
ν +

∫ s

−∞

∫
M

h(s− u, a)N∗(du, da)
]

= ν +
∫ s

−∞

∫
M

h(s− u, a)E(λ∗(u))duQ(da)

= ν + µ∗
∫ s

−∞
Eh(s− u, A)du

= ν + µ∗
∫ ∞

0
Eh(v, A)dv ,

see also [12], Example 6.3(c). Hence, µ∗ = ν + µ∗ · κ and µ∗ = ν/(1− κ) as we
claimed above. Now, we have

Eεt ≤
ν

1− κ

∫ t

0

∫
M

µ̃a((t− s, ∞))Q(da)ds =
ν

1− κ

∫ t

0
µD

∫ ∞

s
E[h(u, A)]duds .

(3.28)
Hence the residual term is bounded in expectation by the expression we obtained in
the mixed binomial case in Section 3.5.1. Thus, the result will follow from the proof of
Corollary 3.5.1 under the condition (3.17) which is further equivalent to (3.27) thanks
to the expression of the density of the waiting times.

Dividing the last expression by
√

t and applying L’Hôpital’s rule, proves the theorem
for the nonstationary or pure Hawkes process, see [28] where the same idea appears
in the proof of Theorem 1.3.2.

To show that the the central limit theorem holds in the stationary case, note that S(t)
now has a similar representation as in (3.4) but with an additional term on the right
hand side, i.e.

S(t) =
τ(t)

∑
i=1

Di − Dτ(t) − εt + ε0,t , t ≥ 0 , (3.29)

where
ε0,t = ∑

Γi≤0, 0<Γi+Tij<t
Xij .
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Similar computation provides

Eε0,t = E ∑
Γi≤0

∑
j

I0<Γi+Tij<tXij = E ∑
τi≤0

∑
0<τj<t

DτjIτi→τj

= E

∑
τi≤0

µDE

 ∑
0<τj<t

Iτi→τj

∣∣∣∣F0


= µDE

[
∑

τi≤0
µ̃Ai((0− τi, t− τi))

]

= µDE

[∫ 0

−∞

∫
M

µ̃a((−s, t− s))N∗(ds, da)
]

.

where we denote µ̃a(B) =
∫

B h(s, a)ds and F0 stands for the internal history of the
process up to time 0, i.e. F0 = σ{N(I × S) : I ∈ B(R), I ⊂ (−∞, 0], S ∈ B(M)}.
Again, by the projection theorem, see [8], Chapter 8, Theorem 3, the last expression
equals to

µDE

[∫ 0

−∞

∫
M

µ̃a((−s, t− s))λ∗(s)dsQ(da)
]

.

Which is further equal to

µD

∫ 0

−∞

∫
M

µ̃a((−s, t− s))E [λ∗(s)] dsQ(da)

= µD
ν

1− κ

∫ 0

−∞

∫
M

µ̃a((−s, t− s))dsQ(da)

= µD
ν

1− κ

∫ 0

−∞
Eµ̃A((−s, t− s))ds

= µD
ν

1− κ

∫ ∞

0
Eµ̃A((s, s + t))ds

= µD
ν

1− κ

∫ ∞

0
E

∫ s+t

s
h(u, A)duds

= µD
ν

1− κ

∫ ∞

0
E(t ∧ u)h(u, A)du

= µD
ν

1− κ

(∫ t

0
E[uh(u, A)]du + t

∫ ∞

t
E[h(u, A)]du

)
.

Notice that the second term in the last expression divided by
√

t tends to 0 by (3.27).
Using integration by parts for the first term, we have∫ t

0
E[uh(u, A)]du = t

∫ ∞

t
E[h(s, A)]ds +

∫ t

0

∫ ∞

u
E[h(s, A)]dsdu.

The first integral on the r.h.s. divided by
√

t tends to 0 under (3.27). The last term
divided by

√
t also tends to 0 by an application of the L’Hôpital rule as in the non-

stationary case.
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Finally, we observe that ε0,t/
√

t P−→ 0 and the result in the stationary case is proved.

Observe that (3.27) is substantially weaker than (3.3) in the unmarked case. Namely
the former condition only requires that the total residue due to the claims on the
compact interval [0, t] is of the order o(

√
t) in probability. In particular, in the

unmarked case, the central limit theorem holds for the stationary and the non-
stationary case even if (3.3) is not satisfied, i.e. even when non-stationary process is
not convergent.

As we mentioned above, there are related limit theorems in the literature concerning
only the counting process Nt, see [28], but in the contrast to their result, our proof
does not rely on the martingale central limit theorem, it stems from rather simple
relations (3.4) and (3.29).

In the following example, we consider some special cases of Hawkes processes for
which a closed form expression for the 2nd moment ED2 can be found.

3.5.1 Example. (Marked Hawkes processes with claims independent of the cluster size)
Assume that the random measure (2.15)

µ̃A(B) =
∫

B
h(s, A)ds ,

on R+ and the corresponding claim size X = f (A) are independent. In particular, this
holds if µ̃A(B) =

∫
B h(s)ds , for some integrable function h, i.e. when µ̃A is a deterministic

measure and we actually have standard Hawkes process with independent marks. In this
special case K + 1 is known to have the so–called Borel distribution, see [21].

Using the arguments from the proof of Lemma 3.5.1, one obtains µD = EDi = EX/(1− κ).
Similarly the variance of Di’s is finite as the variance of a compound sum, and equals

σ2
D =

σ2
X

1− κ
+

κ(EX)2

(1− κ)3 ,

cf. Lemma 2.3.4 in [34]. Hence ED2 in Theorem 3.5.1 has the form

ED2 = σ2
D + µ2

D =
σ2

X
1− κ

+
(EX)2

(1− κ)3 .

In the special case, when the claims are all constant, say X = f (A) ≡ c > 0, direct
calculation yields ED = c/(1− κ) , with κ = E[κA], and

ϕ′′(0) =
E (−c + κA ϕ′(0))2

1− κ
= c2 Var κA + 1

(1− κ)3 ,
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obtaining

ED2 = ϕ′′(0) = c2 Var κA + 1
(1− κ)3 ,

in particular, for c = 1 we recover expression in [28].

In the rest of this subsection, we study marked Hawkes process in the case when
Di’s are regularly varying with index α < 2. Using the result of [24], one can show
that when the individual claims X = f (A) are regularly varying, this property is
frequently passed on to the random variable D under appropriate moment assump-
tions on κA. However, using the specific form of the Laplace transform for D given
in (3.24), one can show regular variation of D under weaker conditions. This is the
content of the following lemma.

3.5.2 Lemma. Assume that κ < 1 and that X = f (A) is regularly varying with index
α ∈ (0, 1) ∪ (1, 2). When α ∈ (1, 2), assume additionally that Y = X + κAµD is regularly
varying of order α. Then the random variable D is regularly varying with the same index α .

Proof. We will use Karamata’s Tauberian Theorem, as formulated and proved in
Theorem 8.1.6 of [7]. In particular, the equivalence between (8.1.12) and (8.1.11b) in
[7] yields the following.

3.5.2 Theorem. The nonnegative random variable X is regularly varying with a noninteger
tail index α > 0, i.e. F̄(x) ∼ x−α`(x) as x → ∞ if and only if

ϕ(dαe)(s) ∼ csα−dαe`(1/s), s→ 0+,

for some slowly varying function ` and a constant depending only on α: c = −Γ(α +
1)Γ(1− α)/Γ(α− bαc).

Consider first the case 0 < α < 1. By differentiating once the expression for the
Laplace transform, we obtain the identity (3.25)

ϕ′(s) =
−E

[
e−sXeκA(ϕ(s)−1)X

]
1−E[e−sXeκA(ϕ(s)−1)κA]

, s > 0.

We are interested in the behaviour of this derivative as s→ 0+. Using the inequality
|1− e−x| = 1− e−x ≤ x, we have∣∣∣∣∣ϕ′(s)− −E

[
e−sXX

]
1−E[e−sX−κA(1−ϕ(s))κA]

∣∣∣∣∣ ≤ E
[
κA(1− ϕ(s))e−sXX

]
1−E[e−sX−κA(1−ϕ(s))κA]

≤ 1− ϕ(s)
s

E
[
κAe−sXsX

]
1−E[e−sX−κA(1−ϕ(s))κA]

.
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As e−sXsX ≤ e−1, we prove that E
[
κAe−sXsX

]
= o(1) as s→ 0+ by dominated con-

vergence. As in the proof of Lemma 3.5.1 the denominator 1−E[e−sX−κA(1−ϕ(s))κA]
is controlled thanks to dominated convergence as well. Moreover, using again
1− e−x ≤ x and denoting ϕX(s) = E[e−sX] the Laplace transform of X, we have

0 ≤ ϕX(s)− ϕ(s) ≤ E[e−sXκA(1− ϕ(s))] ≤ κ(1− ϕ(s))

so that

1− ϕ(s) ≤ 1
1− κ

(1− ϕX(s)).

Collecting all those bounds and using the identity ϕ′X(s) = −E[e−sXX], we obtain∣∣∣∣ϕ′(s)− ϕ′X(s)
1−E[e−sXeκA(ϕ(s)−1)κA]

∣∣∣∣ = o
(

1− ϕX(s)
s

)
, s→ 0+. (3.30)

The regular variation of the random variable D follows now from the regular vari-
ation of the random variable X by two consecutive applications of Theorem 3.5.2.
First, as X is regularly varying of order 0 < α < 1, applying the direct part of the
equivalence in Theorem 3.5.2 we obtain

ϕ′X(s) ∼ csα−1`(1/s), s→ 0+.

Applying Karamata’s theorem, i.e. the equivalence between (8.1.9) and (8.1.11b) in [7,
Theorem 8.1.6], we obtain (1− ϕX(s))/s = O(ϕ′X(s)) as s → 0+. Using (3.30) and
the limiting relation

E[e−sXeκA(ϕ(s)−1)κA]→ κ, s→ 0+ ,

we obtain

ϕ′(s) ∼ ϕ′X(s)
1− κ

∼ csα−1`(1/s)
1− κ

, s→ 0+.

Finally, applying the reverse part of Theorem 3.5.2, we obtain

F̄D(x) ∼ `(x)x−α

1− κ
=

F̄X(x)
1− κ

, x → ∞.

The case 1 < α < 2 can be treated similarly, under the additional assumption
that Y = X + κAµD is regularly varying. We will again show that P(D > x) ∼
(1− κ)−1P(Y > x) as x → ∞. To prove this equivalence, recall the identity (3.26)

ϕ′′(s) =
E
[
e−sXeκA(ϕ(s)−1) (−X + κA ϕ′(s))2

]
1−E[e−sXeκA(ϕ(s)−1)κA]

.
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As α > 1, we have that E[Y] < ∞ and thus E[X] < ∞ and E[D] = µD = (1−
κ)−1E[X]. Observe that, for any s > 0,∣∣∣∣∣ϕ′′(s)− E

[
e−sYY2]

1−E[e−sX−κA(1−ϕ(s))κA]

∣∣∣∣∣
=

∣∣∣∣∣∣
E
[
e−sX−κA(1−ϕ(s)) (−X + κA ϕ′(s))2

]
−E

[
e−sYY2]

1−E[e−sX−κA(1−ϕ(s))κA]

∣∣∣∣∣∣ .

Let us decompose the numerator into two terms

E

∣∣∣e−sX−κA(1−ϕ(s))
((
−X + κA ϕ′(s)

)2 −Y2
)∣∣∣︸ ︷︷ ︸

I1

+ E

∣∣∣(e−sY − e−sX−κA(1−ϕ(s))
)

Y2
∣∣∣︸ ︷︷ ︸

I2

.

Using the identity a2 − b2 = (a− b)(a + b), I1 is bounded by

I1 ≤ (µD + ϕ′(s))E
[
e−sX−κA(1−ϕ(s))κA

(
2X + κA(µD − ϕ′(s))

)]
≤ µD + ϕ′(s)

s

(
E
[
2κAe−sXsX

]
+ E

[
κAe−κA(1−ϕ(s))s(µD − ϕ′(s))

])
.

As e−sXsX ≤ e−1 then E
[
2κAe−sXsX

]
= o(1) as s→ 0+ by dominated convergence.

By convexity of ϕ(s) we have 1− ϕ(s) ≥ −ϕ′(s)s for any s > 0. Thus

e−κA(1−ϕ(s))(−ϕ′(s)s) ≤ e−κA(−ϕ′(s)s)(−ϕ′(s)s) ≤ e−1

and the dominated convergence argument also applies to the second integrand as
−ϕ′(s)s ≤ 1− ϕ(s) = o(1). We obtain I1 = o((µD + ϕ′(s))/s) as s → 0+. In order
to control the rate of (µD + ϕ′(s))/s, we notice that ϕ(s) is µD Lipschitz on s ≥ 0 so
that |1− ϕ(s)| = 1− ϕ(s) ≤ µDs. Then

sX + κA(1− ϕ(s)) ≤ sX + sκAµD = sY

and we bound

ϕ′(s) ≤
−E

[
e−sYX

]
1−E[e−sYκA]

≤
ϕ′Y(s)

1−E[e−sYκA]
+

κµD

1−E[e−sYκA]

where ϕY(s) = E[e−sY] denotes the Laplace transform of Y. It yields to the estimates
µD + ϕ′(s) = O(µD + ϕ′Y(s)) + O(κ −E[e−sYκA]). Using again that 1− e−x ≤ x on
the second term we obtain that I1 = o((µD + ϕ′Y(s))/s) + o(1) as s→ 0+.
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We now turn to the term I2 that we identify as

I2 = E

∣∣∣(esX+κA(1−ϕ(s))−sY − 1
)

e−sX−κA(1−ϕ(s))Y2
∣∣∣

= E

∣∣∣(e−κA(µDs−(1−ϕ(s))) − 1
)

e−sX−κA(1−ϕ(s))Y2
∣∣∣ .

As 1− ϕ(s) ≤ µDs the term in the absolute value is negative for s > 0 and

I2 = E
[(

1− e−κA(µDs−(1−ϕ(s)))
)

e−sX−κA(1−ϕ(s))Y2
]

.

Using again the basic inequality 1− e−x ≤ x for x ≥ 0 we obtain the new estimate

I2 ≤ E
[
κA(sµD − (1− ϕ(s))e−sX−κA(1−ϕ(s))Y2

]
≤ sµD − (1− ϕ(s))

s2 E
[
κAe−sX−κA(1−ϕ(s))(sY)2

]
.

We have
(sY)2 ≤ (sX + κA(1− ϕ(s)))2 + κ2

A(sµD − (1− ϕ(s)))2 .

As e−xx2 ≤ 4e−2 for any x > 0, we prove that

E
[
κAe−(sX+κA(1−ϕ(s))(sX + κA(1− ϕ(s)))2

]
= o(1)

as s→ 0+ by dominated convergence. It remains to bound the term

e−sX−κA(1−ϕ(s))κ2
A(sµD − (1− ϕ(s)))2

uniformly for s > 0 sufficiently small. As 1 − ϕ(s) ∼ sµD as s → 0+, we have
0 ≤ sµD − (1− ϕ(s)) ≤ 1− ϕ(s) for s sufficiently small. Then we obtain

e−sX−κA(1−ϕ(s))κ2
A(sµD − (1− ϕ(s)))2 ≤ e−κA(1−ϕ(s))κ2

A(1− ϕ(s))2 = o(1)

where the negligibility follows from dominated convergence and the basic inequality
e−xx2 ≤ 4e−2 for any x > 0. We obtain

I2 = o
(

sµD − (1− ϕ(s))
s2

)
, s→ 0+.

Similar computation than above yields

0 ≤ ϕ(s)− ϕY(s) ≤ E
[
κA(sµD − (1− ϕ(s))e−sX+κA(ϕ(s)−1))

]
≤ κ(sµD − (1− ϕ(s)).
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Thus as (sµD − (1− ϕ(s)) ≤ (sµD − (1− ϕY(s))/(1− κ) and E[Y] = E[X] + κµD =
µD we conclude that∣∣∣∣ϕ′′(s)− ϕ′′Y(s)

1−E[e−sX−κA(1−ϕ(s))κA]

∣∣∣∣
= o

(
1 +

E[Y] + ϕ′Y(s)
s

+
sE[Y]− (1− ϕY(s))

s2

)
,

as s → 0+. Let us first apply Theorem 3.5.2 on Y so that ϕ′′Y(s) is α− 2 regularly
varying around 0. Applying Karamata’s theorem again, i.e the equivalences between
(8.1.11b) and (8.1.9), (8.1.11b) and (8.1.10) in [7, Theorem 8.1.6] assert respectively that
(sE[Y]− (1− ϕY(s)))/s2 = O(ϕ′′Y(s)) and (E[Y] + ϕ′Y(s))/s = O(ϕ′′Y(s)) as s→ 0+.
We then obtain

ϕ′′(s) ∼
ϕ′′Y(s)
1− κ

∼ csα−2`(1/s)
1− κ

, s→ 0+,

and finally F̄(x) ∼ F̄Y(x)/(1− κ), x → ∞, by applying the reverse part of Theorem
3.5.2.

We are now ready to characterize the asymptotic behavior of S(t) in the regularly
varying case.

3.5.3 Theorem. Assume that the assumptions of Lemma 3.5.2 hold.
i) If α ∈ (0, 1) and there exists δ > 0 such that

tδE[µ̃A(t, ∞)]→ 0. (3.31)

as t→ ∞, then there exists a sequence (an), an → ∞, and an α–stable random variable Gα

such that
S(t)
abνtc

d−→ Gα .

ii) If α ∈ (1, 2) and

t1+δ−1/αE[µ̃A(t, ∞)]→ 0 , (3.32)

as t→ ∞ holds for some δ > 0, then there exists a sequence (an), an → ∞, and an α–stable
random variable Gα such that

S(t)− tνµD

abνtc

d−→ Gα .

Proof. The proof is based on the representation (3.4), and application of Proposi-
tions 3.4.1 and 3.4.2. In either case, it remains to show that

εt = oP(at) .
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Consider first the case α ∈ (1, 2). Since then µD = ED < ∞, the argument in the
proof of Theorem 3.5.1 still yields the bound (3.28) on Eεt. Using L’Hôpital’s rule
again together with condition (3.32), shows that Eεt = o(t1/α−δ), where we assume
without loss of generality that δ < 1/α. Since, at = t1/α`(t) for some slowly varying

function `, it follows that εt/at
P−→ 0 as t→ ∞.

For α ∈ (0, 1), random variable D has no finite mean. In order to prove that εt =
oP(at) we use the Markov inequality of order 0 < γ < α as E[Dγ] < ∞. We will
show that under assumption (3.31)

E[εγ
t ] = o(aγ

t ) , t→ ∞.

By sub-linearity of x → xγ, γ ≤ 1, we have

E[εγ
t ] = E

[(
∑

Γi≤t
∑

j
IΓi+Tij>tXij

)γ]
= E

[(
∑
τi≤t

∑
τj>t

DτjIτi→τj

)γ]
≤ E

[
∑
τi≤t

∑
τj>t

Dγ
τjIτi→τj

]

= E
[

∑
τi≤t

E
[ Li

∑
k=1

Dγ
τi+Wik

Iτi+Wik>t | (τi, Ai)i≥0; τi ≤ t
]]

= E[Dγ]E

[∫ t

0

∫
M

µ̃a((t− s, ∞))N(ds, da)
]

.

We can again compare the marked Hawkes process N with a stationary version of it,
N∗ say. By the same arguments as in the proof of Theorem 3.5.1, we obtain

E

 ∑
0≤τi≤t

∑
t<τj

Iτi→τj

 ≤ ν

1− κ

(∫ t

0

∫ ∞

u
E[h(s, A)]dsdu

)
.

By regular variation of order 1/α of (at) we have tγ/α−δ′ = o(aγ
t ) for any δ′ > 0. Once

again, we use a Cesaró argument to prove that E[εγ
t ] = o(aγ

t ) under the condition

t1+δ′−γ/αE[µ̃A(t, ∞)]→ 0 , t→ ∞ .

As γ can be taken as close as possible to α, the result holds under assumption
(3.31).

3.5.2 Remark. Theorem 3.5.3 i) and ii) also hold on the stationary version following the
same arguments as in the proof of Theorem 3.5.1.
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4
On maximal claim size for marked
Poisson cluster models

4.1 Introduction

We want to observe and understand the behaviour of the maximal claim size up until
time t, i.e. we are interested in

M(t) = sup { f (Xk) : τk ≤ t} ,

where τk represents the arrival time of k′th event and events arrive in clusters. It
turns out that with suitable conditions on claim sizes and the leftover effect at time
t one can handle maximal claim size, M(t). Namely, if the claim size, X belongs to
the maximum domain of attraction of of one of the three extreme value distribution
and the number of claims in the leftover effect at time t grows much slower than
the normalizing sequence it can be proved that M(t), when properly normalized
converges weakly to an extreme value distribution. The case when a random variable
X belongs to the maximum domain of attraction (MDA for short) of the Fréchet
distribution has been studied the most (so the literature is quite rich, see e.g. [16],
[39], [38], [20], [7]) and is often used in practice. On the other hand, the maximum
domain of attraction of the Gumbel distribution contains wide range of distributions.
It includes sub–exponential distributions (e.g. lognormal distribution), but also
distributions with light tails and infinite right-end point (e.g.normal, exponential)
and it also contains distributions with finite right-end point.

4.1.1 Remark. We will discuss only the cases of Fréchet and Gumbel maximum domain of
attraction. The case when distributions are in the maximum domain of attraction of Weibull
distribution follows easy from the results in the Fréchet case. Nevertheless, we will omit them
because distributions in the maximum domain of attraction of Weibull distributions have
support bounded to the right (Theorem 3.3.12., p 135 [16]). So, because xF < ∞ they are
mostly omitted in modelling extremal events in insurance and finance. As in [16] is stated,
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often distributions with xF = ∞ should be preferred since they allow for arbitrarily large
values in a sample. Such distributions typically belong to the maximum domain of attraction
of Fréchet or Gumbel distribution. See Section 3.3.2 in [16] for detail.

In the next section we introduce our general model. In section three we state and
prove our result. In the last, fourth section we apply this result on to the three
special marked Poisson cluster models where, as our key example, the linear marked
Hawkes process plays the most interesting role.

4.2 The general marked Poisson cluster model

The model we used is essentially the same as one introduced in section 3.2.

Recall, to describe the size and other characteristics of the claims together with their
arrival times, we use a marked point process N as a random element in N #g

R≥0×M of
the form 3.1

N =
∞

∑
i=1

Ki

∑
j=0

δΓi+Tij,Aij ,

where we set Ti0 = 0 and Ai0 = Ai. In this representation, the claims arriving at
time Γi and corresponding to the index j = 0 are called ancestral or immigrant
claims, while the claims arriving at times Γi + Tij, j ≥ 1, are referred to as progeny or
offspring. Also, we assume that

EKi < ∞ . (4.1)

Since N is locally finite, one could also write

N =
∞

∑
k=1

δτk,Ak ,

with τk ≤ τk+1 for all k ≥ 1 and Ak are iid marks (we ignore the information
regarding the clusters of the point process). Clearly, if the cluster processes GAi are
independently marked with the same mark distribution Q independent of Ai, then
all the marks Ak are i.i.d.

We again assume that the size of claims is produced by an application of a measurable
function, say f : M → R+, on the marks. Maximum of all the claims due to the
arrival of an immigrant claim at time Γi equals

Hi = max
{

f (Aij) : 0 ≤ j ≤ Ki
}

, (4.2)
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while the maximal claim size in the period [0, t] can be calculated as

M(t) = sup
{

f (Ak) : τk ≤ t
}

.

Hi has an interpretation as the maximal claim size coming from the ith immigrant
and its progeny. It is useful in the sequel to introduce random variables

τ(t) = inf {n : Γn > t} , t ≥ 0 ,

Let (Wn) be an iid sequence of Exponential random variables with parameter ν > 0,
that is W1 ∼ Exp(ν), so we have EW1 = 1

ν .
Then, τ(t) is a renewal process generated by the sequence (Wn). According to Theo-
rem 5.1. in [19], for every c ≥ 0,

τ(tc)
νt

as−→ c, t→ ∞. (4.3)

If we denote
Mτ(t) = sup{Hi : 1 ≤ i ≤ τ(t)},

then we can write

Mτ(t) = M(t)
∨

Hτ(t)
∨

εm
t , t ≥ 0 , (4.4)

where the last error term represents the leftover effect at time t, i.e. the maximum of
all the claims arriving after t which correspond to the progeny of immigrants arriving
before time t, that is

εm
t = max{ f (Aij) : 0 ≤ Γi ≤ t, t < Γi + Tij} t ≥ 0 . (4.5)

Denote the (increasing) number of members in the εm
t by

J(t) = #{(i, j) : 0 ≤ Γi ≤ t, t < Γi + Wij}.

To simplify the notation, for a generic member of an identically distributed sequence
or an array, say (Hn), (Aij), we write H, A etc.

4.3 Limiting behaviour of the maximal claim size

4.3.1 Definition. [20], [16], [7] A random variable X belongs to the maximum domain of
attraction of the extreme value distribution G if there exists constants an > 0, bn ∈ R such
that ∨n

i=1 Xi − bn

an

d−→ G, n→ ∞,

for an i.i.d. sequence X, X1, X2, . . . of non-degenerate random variables.
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4.3.1 Proposition. Assume that Hi’s are in the maximum domain of attraction of Fréchet or
Gumbel extreme value distribution G and that

J(t) = oP(at). (4.6)

Then
M(t)− bbνtc

abνtc

d−→ G , (4.7)

as t→ ∞ .

Proof. Similarly as in Propositions 3.3.1, 3.4.1 and 3.4.2 in chapter 3, we relay on (4.4)
and on two results in Basrak and Špoljarić [6]. We state them below.

4.3.1 Lemma. (Lemma 1 in [6]) Assume that N, (Nt), t ≥ 0 are point processes with values
in N #

R≥0×E, for a measurable subset E of Rd. Assume further that Z, (Zt), t ≥ 0 are R≥0

valued random variables. If P(N({Z} ×E) > 0) = 0 and (Nt, Zt)
d−→ (N, Z), as t→ ∞,

then
Nt|[0,Zt]×E

d−→ N|[0,Z]×E,

as t→ ∞.

By m|A above we denote the restriction of a point measure m on a set A, i.e. m|A(B) =

m(A ∩ B).

4.3.1 Theorem. (Theorem 2 in [6]) Suppose (Xn) is an iid sequence such that X1 ∈
MDA(G). If the mean step size of the renewal process (τ(t)) is finite (EW = 1

ν < ∞), then,
for every c ≥ 0,

Nt

∣∣∣∣[
0, τ(tc)

νt

]
×M

d−→ N
∣∣∣∣
[0,c]×M

, t→ ∞, (4.8)

where N is PRM(λ × µG) with λ represents Lebesgue measure, µG and state space M

correspond to G and

Nt =
∞

∑
i=1

δ(
i

νt ,
Xi−bbνtc

abνtc

)

Recall from subsection 2.2.1, abbreviation PRM(λ× µG) stands for Poisson random
measure with mean measure λ× µG where λ denotes the Lebesgue measure and µG
represents the measure induced by the nondecreasing function log G (see for example
[39]), indicating that the limit is a Poisson process. If the conditions of the previous
theorem are satisfied, then

Mτ(t)− bbνtc
abνtc

d−→ G, t→ ∞. (4.9)
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Namely,

P

(
Mτ(t)− bbνtc

abνtc
≤ x

)
= P

(
Nt|[0, τ(t)

νt

]
×〈x,∞]

= 0
)

,

it follows

P

(
Nt|[0, τ(t)

νt

]
×〈x,∞]

= 0
)
→ P

(
N|[0,1]×〈x,∞] = 0

)
= G(x), t→ ∞,

Equation (4.4) and the previous result yield

Mτ(t)− bbνtc
abνtc

=
M(t)− bbνtc

abνtc

∨ Hτ(t) − bbνtc
abνtc

∨ εm
t − bbνtc

abνtc
, t ≥ 0 .

Next, we have

0 ≤
Hτ(t) − bbνtc

abνtc
≤

Hτ(t)

abνtc
≤

Kτ(t)

∑
j=0

Xτ(t)j

abνtc

P−→ 0, t→ ∞.

because (Γn) and (∑Kn
j=0 Xnj) are independent (see Lemma 2.9 and Lemma 3.5 in

[18]). Notice, the centering sequence (bn) is nonnegative because the size of claims is
produced by an application of a measurable function f : M→ R+, on the marks and
by taking into account that bn = F←(1− 1

n ) [16] . To finish the proof, we will use the
assumption (4.6) and the same technique used in Theorem 3.1 [6]. According to (4.9),
Mτ(t) behaves as Mbνtc, so we define

Nt = ∑
i≥1

δ(
i
bνtc ,

Xi−bbνtc
abνtc

).

The assumption X1 ∈ MDA(G) is equivalent to Nt
d−→ N, n → ∞ where N is

PRM(λ× µG). Next, by (4.6)

νt− J(t)
νt

= 1− 1
ν
· J(t)

t
P−→ 1− 0 = 1.

Thus, by Proposition 3.1 in [39] we have joint convergence(
Nt,
bνtc − J(t)

νt

)
d−→ (N, 1) ,

as t→ ∞. An application of Lemma 1 in [6] yields

Nt|[0, νt−J(t)
νt

]
×M

d−→ N|[0,1]×M,
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as t→ ∞. Since

P

∨bνtc−J(t)
i=1 Xi − bbνtc

abνtc
≤ x

 = P

(
Nt|[0, bνtc−J(t)

bνtc

]
×〈x,∞]

= 0
)

,

it follows

P

(
Nt|[0, bνtc−J(t)

bνtc

]
×〈x,∞]

= 0
)
→ P

(
N|[0,1]×〈x,∞] = 0

)
= G(x), t→ ∞.

Now we have,

Mτ(t)− bbνtc
abνtc

∼
∨bνtc−J(t)

i=1 −bbνtc
abνtc

∨ ∨J(t)
i=1 −bbνtc

abνtc
,

as t→ ∞. From two previous results, and by taking into account that ∨J(t)
i=1Xi is tight

(it is stochastically dominated by Mτ(t)) it follows that

εm
t − bbνtc

abνtc

d
=

∨J(t)
i=1 −bbνtc

abνtc

P−→ 0,

which finishes the proof.

4.4 Maximal claim size for three special models

As we have seen in the previous section, it is relatively easy to determine asymptotic
behaviour of the maximal claim size M(t) as long as we are able to determine proper-
ties of the random variables Hi and the leftover effect at time t, εt in (4.4). However,
this is typically a rather technical task, highly dependent on an individual Poisson
cluster model. Similarly as for S(t) in previous chapter 3, in order to characterize lim-
iting behaviour of M(t), it is useful to determine behaviour of random variables Hi
for each individual cluster model. In this section we introduce three special models.

But first, we want to find some useful conditions regarding the behaviour of

Hi = max
{

f (Aij) : 0 ≤ j ≤ Ki
}

which represents the maximal claim size in the i−th cluster.

Note that the cluster Hi admits the following representation

H = max
{

Xj : 0 ≤ j ≤ K
}

,
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for (Xj)j≥0 = f (Aj)j≥0 i.i.d. copies of X = f (A) and some integer valued K such
that E[K] < ∞. The tail behaviour of random maxima has been studied before (see
[26], [13], [43]). We list below some of these results (conditions) in the case when X is
in the maximum domain of attraction of Fréchet distribution, which are applicable
to our setting. Recall, the maximum domain of attraction of Fréchet distribution
consists of distributions whose right tail is regularly varying with index α, see for
example Embrechts et a.l [16].

(MRV1) If X is regularly varying with index α > 0 and independent of K, then P(H >
x) ∼ (E[K] + 1)P(X > x) as x → ∞, see [26], Lemma 5.1.;

(MRV2) If X and K are independent and both regularly varying with index α ∈ (1, 2)
and tail equivalent, then P(H > x) ∼ (E[K] + 1)P(X > x) + P(K > x/E[X])
as x → ∞, [13], Theorem 7.

The next Lemma slightly generalize previous two results because it includes all three
domains of attraction (Fréchet, Gumbel and Weibull). It will be proved using one
more time results in [6].

4.4.1 Lemma. If X is in the maximum domain of attraction of Gumbel, Fréchet or Weibull
distribution and K a nonnegative random variable with EK < ∞ and independent of X, then
H also belongs to the same domain of attraction.

Proof. Recall that X ∈ MDA(G) means that for some sequences (an) and (bn)∨n
i=1 Xi − bn

an

d−→ G, n→ ∞,

for an i.i.d. sequence X, X1, X2, . . . of non–degenerate random variables.

This is equivalent to

n ·P(X1 > anx + bn)→ − log G(x), n→ ∞.

Our aim is to show that∨n
i=1 Hi − bb(EK+1)·nc

ab(EK+1)·nc

d−→ G, n→ ∞,

for an i.i.d. sequence H, H1, H2, . . . of non–degenerate random variables. By Defini-
tion 4.3.1 the above expression is what we intend to prove.

First we will see that due to the independence of K and X

n∨
i=1

Hi =
n∨

i=1

Ki∨
j=0

Xij
d
=

K′1+···+K′n+n∨
i=1

Xi, (4.10)
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where Kn and K′n, for every n ∈ N are i.i.d random variables, equally distributed
as K and represent the number of points in a cluster. Without loss of generality, let
n = 2. We then have the following:

P

(
K1∨

i=0

Xi ∨
K2∨

i=0

Xi ≤ x

)
= P

(
X0 ≤ x, . . . , XK1 ≤ x, X′0 ≤ x, . . . , X′K2

≤ x
)

= ∑
k1∈N

∑
k2∈N

P

(
X0 ≤ x, . . . X′k2

≤ x
∣∣∣∣K1 = k1, K2 = k2

)
P(K1 = k1)P(K2 = k2)

= ∑
k1∈N

∑
k2∈N

P
(

X0 ≤ x, . . . Xk1 ≤ x, . . . X′k2
≤ x

)
P(K1 = k1)P(K2 = k2)

= ∑
k1∈N

∑
k2∈N

[P (X ≤ x)]k1+k2+2
P(K1 = k1)P(K2 = k2)

= ∑
k1∈N

E[P (X ≤ x)]k1+K2+2
P(K1 = k1)

= EE[P (X ≤ x)]K1+K2+2.

The third equality follows from the independence between K1, K2 and X0, . . . , X′k2
and the fourth from the fact that X0, . . . , X′k2

are i.i.d. random variables. Similar, on
the other side,

P

K′1+K′2+2∨
i=1

Xi ≤ x

 = P
(

X1 ≤ x, . . . , XK′1+K′2+2 ≤ x
)

= ∑
k∈N

P

(
X1 ≤ x, . . . Xk+2 ≤ x

∣∣∣∣K′1 + K′2 = k
)

P(K1 + K2 = k)

= ∑
k∈N

[P (X ≤ x)]k+2
P(K′1 + K′2 = k)

= ∑
k∈N

[P (X ≤ x)]k+2
k

∑
k1=0

P(K′1 = k1)P(K′2 = k− k1)

= ∑
k∈N

k

∑
k1=0

[P (X ≤ x)]k+2
P(K1 = k1)P(K2 = k− k1)

= ∑
k1∈N

∑
k2∈N

[P (X ≤ x)]k1+k2+2
P(K1 = k1)P(K2 = k2)

= EE[P (X ≤ x)]K1+K2+2.

So we see that the (4.10) is true for n = 2. For general n the proof follows the same
steps.

Denote now by (T(n)) the random walk generated by the iid sequence of nonneg-
ative, integer valued random variables (Kn) equally distributed as K. Recall that
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EK1 < ∞ by assumption. By the strong law of large numbers (SLLN) it follows that
T(n)

n
as−→ EK, as n→ ∞ or, equivalently,

T(n) + n
n · (EK + 1)

as−→ 1, n→ ∞ (4.11)

(see, for example Theorem 2.4.1, p. 63 in [14]). Next, we consider point process of the
form

Nn = ∑
i≥1

δ( i
g(n) ,Xn,i

)
for a nondecreasing function g : (0, ∞)→ (0, ∞) tending to +∞ as n→ ∞, with

Xn,i =
Xi − bg(n)

ag(n)
,

where scaling and centering sequences (an) and (bn) are given before. The assump-

tion X1 ∈ MDA(G) is equivalent to Nn
d−→ N, n → ∞ where N is PRM(λ× µG)

where λ denotes the Lebesgue measure and µG represents the measure induced by
the nondecreasing function log G, see for example Corollary 6.1, p. 183 in [39]. Due
to the assumption EK < ∞, by Proposition 3.1. (p. 57) in [39] and using (4.11) we
have joint convergence of(

Nn,
T(n)

n · (EK + 1)

)
d−→ (N, 1) ,

as n→ ∞. The convergence takes place inN #g
R≥0×M×R≥0 endowed with the product

topology i.e. topology of vague convergence of point measures and standard topology
on R≥0 generated by the open intervals. Now, by Lemma 1 in [6] with g(n) = n ·EK
and Zn = T(n)

n·(EK+1) we have

Nn|[0, T(n)
n·(EK+1)

]
×M

d−→ N|[0,1]×M,

as n→ ∞. Since

P

(∨n
i=1 Hi − bb(EK+1)·nc

ab(EK+1)·nc
≤ x

)
= P

(
Nn|[0, T(n)

n·(EK+1)

]
×〈x,∞]

= 0
)

,

it follows

P

(
Nn|[0, T(n)

n·(EK+1)

]
×〈x,∞]

= 0
)
→ P

(
N|[0,1]×〈x,∞] = 0

)
= G(x), n→ ∞,

which proves the desired result.
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4.4.1 Mixed binomial Poisson cluster model

Assume again that the clusters have the following form

GAi =
Ki

∑
j=1

δWij,Aij ,

with (Ki, (Wij)j≥1, (Aij)j≥0)i≥0 being an i.i.d. sequence. Assume moreover that
(Aij)j≥0 are i.i.d. for any fixed i = 1, 2, . . . and that (Aij)j≥0 is independent of
Ki, (Wij)j≥1 for all i ≥ 0. As before we assume E[K] < ∞.

4.4.1 Corollary. Assume that X is in the maximum domain of attraction of Fréchet or
Gumbel distribution, then the relation (4.7) holds.

Proof. Recall, we denote the (increasing) number of summands in the r.h.s. term
by J(t) = #{(i, j) : 0 ≤ Γi ≤ t, t < Γi + Wij}. We can apply Proposition 4.3.1 after
observing that J(t) = oP(t). It is sufficient to show the convergence to 0 of the ratio

E[J(t)]
t

=
E[#{i, j : 0 ≤ Γi ≤ t, t < Γi + Wij}]

t

=
E
[
∑0≤Γi≤t ∑Ki

j=1 It≤Γi+Wij

]
t

.

Using calculation as in the proofs of corollaries 3.5.1 and 3.5.3 in chapter 3, we obtain
an explicit formula for the r.h.s. term as

E
[
∑0≤Γi≤t ∑Ki

j=1 It<Γi+Wij)
]

t
=

∫ t
0 E

[
∑Ki

j=1 IWij>t−s)
]

νds

t

=
ν
∫ t

0 E
[
E
[

∑Ki
j=1 IWij>t−s | Ai0

]]
ds

t

=
ν
∫ t

0 E[mAP(W > x | A)]dx
t

→ 0, t→ ∞,

From a Cesaró argument, the result will follow if

E[mAP(W > x | A)]→ 0, x → ∞.

We can verify this because the random sequence mAP(W > x | A)→ 0 a.s. because
P(W > x | A) ≤ 1 and because the sequence is dominated by mA that is integrable.
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4.4.2 Renewal cluster model

Assume the same as in previous chapter that the clusters GAi have the following
distribution

GAi =
Ki

∑
j=1

δTij,Aij ,

where (Tij)j represents a renewal sequence

Tij = Wi1 + · · ·+ Wij ,

and we keep all the other assumptions from the model in previous subsection.

4.4.2 Corollary. Assume that X is in the maximum domain of attraction of Fréchet or
Gumbel distribution, then the relation (4.7) holds.

Proof. The desired result follows if one can show that J(t) = #{(i, j) : 0 ≤ Γi ≤ t, t <
Γi + Wi1 + · · ·+ Wij} = oP(t). Using the Markov’s inequality, it is enough to check
that E[J(t)]/t = o(1). We estimate the moment of J(t) similarly as the one of εt in
Corollary 3.5.5.

E[Jt] = E

[
∑

0≤Γi≤t

Ki

∑
j=1

IΓi+Wi1+···+Wij>t f (Aij)

]

=
∫ t

0
E

[
Ki

∑
j=1

IWi1+···+Wij>x

]
νdx

≤
∫ t

0
E
[
KiIWi1+···+WiKi

>x

]
νdx.

We used the stochastic domination (3.20)

Ki

∑
j=1

IWi1+···+Wij>x ≤ IWi1+···+WiKi
>xKi .

to obtain the last upper bound. From a Cesaró argument, the result will follow if

E
[
KiIWi1+···+WiKi

>x

]
→ 0, x → ∞.

One can actually check this negligibility property because the random sequence
KiIWi1+···+WiKi

>x → 0 a.s. by finiteness of Wi1 + · · ·+ WiKi and because the sequence
is dominated by Ki that is integrable.
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4.4.3 Marked Hawkes processes

Here is important to emphasize that in order to apply Lemma 4.4.1 we need indepen-
dence between X and K. This is not the case for general marked Hawkes processes
introduced in subsection 3.2.1 so we will observe the case when marks do not in-
fluence stochastic intensity, i.e. when h(s, a) = h(s). Stochastic intensity is of the
form

λ(s) = ν + ∑
τi≤t

h(t− τi).

For this model, the clusters GA are recursive aggregation of Cox processes, i.e. Pois-
son processes with random mean measure µ̃×Q where µ̃ has the form

µ̃(B) =
∫

B
h(s)ds ,

for some fertility (or self–exciting) function h. More precisely, if NA = ∑L
l=1 δτ1

l ,A1
l

is a
Poisson process with random mean measure µ̃×Q, the cluster process corresponding
to a point (τ, A) satisfies the following recursive relation

GA =
L

∑
l=1

(
δτ1

l ,A1
l
+θτ1

l
GA1

l

)
,

where the sequence on the (GA1
l )l on the right side is i.i.d., distributed as GA and

independent of NA.

Under the assumption (2.17),

κ =
∫

h(s)ds < 1 ,

the total number of points in a cluster K + 1 has Borel distribution with parameter κ.
So, E(K + 1) = 1

1−κ .

In this case, maximal claim size in one cluster is of the form

H d
=

K∨
j=0

Xj or H d
= X ∨

L∨
j=1

Hj.

Notice that in this case K and (Xj) are independent.

4.4.3 Corollary. Assume that X is in the maximum domain of attraction of Fréchet or
Gumbel distribution and

µ̃(t, ∞)→ 0, t→ ∞. (4.12)

Then the relation (4.7) holds.
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Proof. We will use Markov’s inequality one more time to show that it is enough to
check E[J(t)]/t = o(1).

EJ(t) = E
[

∑
Γi≤t

∑
j

IΓi+Tij>t

]
= E

[
∑
τi≤t

∑
τj>t

LiIτi→τj

]

= E
[

∑
τi≤t

E
[ Li

∑
k=1

Iτi+Wik>t | (τi, Ai)i≥0; τi ≤ t
]]

= E

[∫ t

0

∫
M

µ̃a((t− s, ∞))N(ds, da)
]

,

where µ̃a((u, ∞)) =
∫ ∞

u h(s, a)ds. Observe that from projection theorem, see [8],
Chapter 8, Theorem 3, the last expression equals to

E

[∫ t

0

∫
M

µ̃a((t− s, ∞))Q(da)λ(s)ds
]

,

One can further bound this estimate by

E

[∫ t

0

∫
M

µ̃a((t− s, ∞))Q(da)λ∗(s)ds
]
=
∫ t

0

∫
M

µ̃a((t− s, ∞))Q(da)E[λ∗(s)]ds

=
ν

1− κ

∫ t

0

∫
M

µ̃a((t− s, ∞))Q(da)ds

Here we used Fubini’s theorem, and the expression E [λ∗(s)] ≡ ν/(1− κ). Observe
that this expectation is constant since N∗ is a stationary point process, to show that it
equals ν/(1− κ). Now, we have (3.28),

EJ(t) ≤ ν

1− κ

∫ t

0

∫
M

µ̃a((t− s, ∞))Q(da)ds =
ν

1− κ

∫ t

0

∫ ∞

s
h(u)duds .

Dividing the last expression by t and applying L’Hôpital’s rule, proves the theorem
for the nonstationary or pure Hawkes process.
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erom objavila je članak "On total claim amount for marked Poisson cluster model",
Advances in Applied Probability, 2019.

| 73


	Introduction
	Motivation
	Outline

	On stohastic intensity for linear marked Hawkes process
	Hawkes processes and stochastic intensity - intuition
	Framework
	A framework for general point processes
	Existence and uniqueness of linear marked Hawkes processes
	Hawkes processes – Poisson cluster representation


	On total claim amount for marked Poisson cluster models
	Introduction
	The general marked Poisson cluster model
	Some special models

	Central limit theorem
	Infinite variance stable limit
	Case (1,2)
	Case (0,1)

	Total claim amount for special models
	Mixed binomial cluster model
	Renewal cluster model
	Marked Hawkes process


	On maximal claim size for marked Poisson cluster models
	Introduction
	The general marked Poisson cluster model
	Limiting behaviour of the maximal claim size
	Maximal claim size for three special models
	Mixed binomial Poisson cluster model
	Renewal cluster model
	Marked Hawkes processes



