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We report on a polarization measurement of inclusive J/ψ mesons in the di-electron decay channel at 
mid-rapidity at 2 < pT < 6 GeV/c in p + p collisions at 

√
s = 200 GeV. Data were taken with the STAR 

detector at RHIC. The J/ψ polarization measurement should help to distinguish between different models 
of the J/ψ production mechanism since they predict different pT dependences of the J/ψ polarization. 
In this analysis, J/ψ polarization is studied in the helicity frame. The polarization parameter λθ measured 
at RHIC becomes smaller towards high pT , indicating more longitudinal J/ψ polarization as pT increases. 
The result is compared with predictions of presently available models.

© 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/3.0/). Funded by SCOAP3.
1. Introduction

The J/ψ is a bound state of charm (c) and anti-charm (c) 
quarks. Charmonia physical states have to be colorless, however 
they can be formed via a color-singlet or a color-octet intermediate 
cc state. The first model of charmonia production, the Color Sin-
glet Model (CSM) [1–8], assumed that cc pairs are created in the 
color-singlet state only. This early prediction failed to describe the 
measured charmonia cross-section which has led to the develop-
ment of new models. For example, Non-Relativistic QCD (NRQCD) 
[9] calculations were proposed in which a cc color-octet interme-
diate state, in addition to a color-singlet state, can bind to form a 
charmonium.

Different models of J/ψ production are able to describe the 
measured J/ψ production cross section reasonably well [10–17]
and therefore other observables are needed to discriminate be-
tween different J/ψ production mechanisms. J/ψ spin alignment, 
commonly known as polarization, can be used for this purpose, 
since various models predict different transverse momentum (pT ) 
dependence for the polarization. The predictions of different mod-
els deviate the most at high pT . Therefore a high-pT J/ψ polar-
ization measurement is of particular interest since it can help to 
discriminate between the models.

NRQCD calculations with color-octet contributions [18] are in 
good agreement with observed J/ψ pT spectra in different exper-
iments at different energies, at the Relativistic Heavy Ion Collider 
(RHIC) [11,12], the Tevatron [13,14] and the Large Hadron Col-
lider (LHC) [16,17,19]. But the calculations fail to describe the J/ψ
polarization at high pT (pT > 5 GeV/c) measured by the CDF ex-
periment at FermiLab at 

√
s = 1.96 TeV [20]. NRQCD calculations 

predict transverse polarization for pT > 5 GeV/c and the growth 
of the polarization parameter λθ with increasing pT [21]. However, 
the CDF polarization measurement becomes slightly longitudinal 
with increasing pT , for 5 < pT < 30 GeV/c [20]. Also, the CMS 

* Corresponding author.
E-mail address: barbara.trzeciak@gmail.com (B.A. Trzeciak).
J/ψ polarization measurement in p + p collisions at 
√

s = 7 TeV
for high transverse momenta [22] is in disagreement with existing 
next-to-leading-order (NLO) NRQCD calculations [21,23]. In addi-
tion, the J/ψ polarization measurements at the same energy and 
for lower pT were performed by ALICE (inclusive J/ψ produc-
tion) [24] and LHCb (prompt J/ψ production) [25] experiments 
at forward rapidity. The ALICE experiment observed zero polar-
ization while LHCb λθ results indicate small longitudinal polariza-
tion (with other coefficients consistent with zero). Data from both 
experiments favor NLO NRQCD over NLO CSM [21,25]. At RHIC 
energies, at intermediate pT (1.5 < pT � 5 GeV/c) and for mid-
rapidity, the tuned leading-order (LO) NRQCD model [26] predicts 
slightly longitudinal J/ψ polarization and describes the PHENIX 
result [27] well.

In the case of the Color Singlet Model, the Next-to-Leading Or-
der calculations (NLO+ CSM) [28] for the pT spectrum are in near 
agreement with the RHIC data at low and mid pT and these CSM 
calculations predict longitudinal J/ψ polarization at intermediate 
pT (1.5 < pT < 6 GeV/c) at mid-rapidity which is in agreement 
with the PHENIX result [28]. At the Tevatron and LHC energies, the 
upper bound of NNLO* prediction [29] is very close to the exper-
imental cross section data, similar to RHIC [28]. Also, the upper 
edge of this prediction for the polarization is in good agreement 
with the CDF data [29]. However, NLO CSM calculations [21,25] do 
not describe J/ψ polarization results from ALICE and LHCb well.

For the lower pT range at RHIC energies, the LO NRQCD calcu-
lations [26] and NLO+ CSM [28] have similar predictions regard-
ing the J/ψ polarization, which is longitudinal, and describe the 
experimental results [27] well. However, these models predict dif-
ferent pT dependence: in the case of the NRQCD prediction, the 
trend is towards the transverse polarization with increasing pT , 
while the NLO+ CSM shows almost no pT dependence. Thus, it is 
especially important to measure a pT dependence of the J/ψ po-
larization and go to high pT .

In this paper, we report a J/ψ polarization measurement in 
p + p collisions at 

√
s = 200 GeV at rapidity (y) |y| < 1, in the pT

range 2 < pT < 6 GeV/c from the STAR experiment at RHIC. The 

http://creativecommons.org/licenses/by/3.0/
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analysis is done using data with a high-pT electron (so-called High 
Tower) trigger. The J/ψ is reconstructed via its di-electron decay 
channel. The angular distribution parameter (polarization parame-
ter) λθ for electron decay of the J/ψ is extracted in the helicity 
frame [30] as a function of J/ψ pT , in three pT bins. The ob-
tained result is compared with predictions of NLO+ CSM [28] and 
LO NRQCD calculations (COM) [26].

1.1. Angular distribution of decay products

J/ψ polarization is analyzed via the angular distribution of the 
decay electrons in the helicity frame [30]. In this analysis, we are 
interested in the polar angle θ . It is the angle between the positron 
momentum vector in the J/ψ rest frame and the J/ψ momentum 
vector in the laboratory frame. The full angular distribution, which 
is derived from the density matrix elements of the production am-
plitude using parity conservation rules, is described by:

d2N

d(cos θ)dφ
∝ 1 + λθ cos2 θ + λφ sin2 θ cos 2φ

+ λθφ sin 2θ cosφ, (1)

where θ and φ are polar and azimuthal angles, respectively; 
λθ and λφ are the angular decay coefficients. The angular distri-
bution integrated over the azimuthal angle is parametrized as

dN

d(cos θ)
∝ 1 + λθ cos2 θ, (2)

where λθ is called the polarization parameter. This parameter con-
tains both the longitudinal and transverse components of the J/ψ
cross section; λθ = 1 indicates full transverse polarization, and 
λθ = −1 corresponds to full longitudinal polarization.

The measurement presented in this Letter is limited to the θ
angle analysis due to statistical limitations. Extraction of the λθ

parameter in the helicity frame allows one to compare the result 
with the available model predictions and draw model dependent 
conclusions. A measurement of the θ angle with a better preci-
sion, as well as the φ angle, will be possible with a newer STAR 
data at 

√
s = 500 GeV. Then, the frame invariant parameter, also 

in different reference frames, can be calculated providing model 
independent information about the J/ψ polarization [31].

2. Data analysis

2.1. Data set and electron identification

The p + p 200 GeV data used in this analysis were recorded 
by the STAR experiment in the year 2009. The STAR detector [32]
is a multi-purpose detector. It consists of many subsystems and 
has cylindrical geometry and a large acceptance with a full az-
imuthal coverage. The most important subsystems for this analysis 
are briefly described below. The Time Projection Chamber (TPC) 
[33] is the main tracking detector for charged particles. It is also 
used to identify particles using the ionization energy loss (dE/dx). 
Outside the TPC is the Time Of Flight (TOF) detector [34] which ex-
tends STAR particle identification capabilities to momentum ranges 
where TPC dE/dx alone is inadequate. Between the TOF and the 
STAR magnet there is the STAR Barrel Electromagnetic Calorimeter 
(BEMC) [35]. The BEMC is constructed so that an electron should 
deposit all its energy in the BEMC towers while hadrons usually 
deposit only a fraction of their energy. The energy deposited by 
a particle in the BEMC can thus be used to discriminate between 
electrons and hadrons, by looking at the E/p ratio. The BEMC is 
also used to trigger on high-pT electrons. Together with the TOF, 
the BEMC is utilized to discriminate against pile-up tracks in the 
TPC, since both detectors are fast. Most of the STAR detector sub-
systems are enclosed in a room temperature solenoid magnet with 
a uniform magnetic field of maximum value of 0.5 T [36].

The analyzed data were collected with the High Tower (HT) 
trigger, which requires transverse energy deposited in at least one 
single tower of the BEMC to be within 2.6 < E T ≤ 4.3 GeV. The 
HT trigger also requires a coincidence signal from two Vertex Po-
sition Detectors [37]. We have analyzed ∼33 M events with the 
HT trigger and with a primary vertex z position |V z| < 65 cm. This 
corresponds to an integrated luminosity of ∼1.6 pb−1. The J/ψ is 
reconstructed via its di-electron decay channel, J/ψ → e+e− , with 
the branching ratio 5.94% ± 0.06% [38].

Charged tracks are reconstructed using the STAR TPC which 
has 2π azimuthal coverage and a pseudorapidity (η) coverage of 
|η| < 1. Tracks that originate from the primary vertex and have a 
distance of closest approach (DCA) to the primary vertex of less 
than 2 cm are used. In 2009 STAR did not have a vertex detector 
that would help to distinguish between prompt and non-prompt 
J/ψ , and TPC resolution alone is not enough to select non-prompt 
J/ψ from B meson decays. In order to ensure a good track quality, 
tracks are required to have at least 15 points used in the track re-
construction in the TPC, and to have at least 52% of the maximum 
number of possible track reconstruction points. Cuts of |η| < 1 and 
pT > 0.4 GeV/c are also applied. The transverse momentum cut is 
chosen to optimize the acceptance in cos θ and the significance of 
the J/ψ signal. Applying higher pT cut causes a loss of statistics 
at |cos θ | ∼ 1 while a lower pT cut reduces the J/ψ signal signifi-
cance. Efficient identification of electrons with low pT was possible 
using available information from the TOF detector. During the an-
alyzed run in 2009, 72% of the full TOF detector was installed. The 
TOF pseudorapidity coverage is |η| < 0.9.

In order to identify electrons and reject hadrons, information 
from the TPC, TOF and BEMC detectors is used. The TPC provides 
information about dE/dx of a particle in the detector. Electron can-
didates are required to have nσelectron within −1 < nσelectron < 2, 
where nσelectron = log[(dE/dx)/(dE/dx|Bichsel)]/σdE/dx , dE/dx is the 
measured energy loss in the TPC, dE/dx |Bichsel is the expected 
value of dE/dx from the Bichsel function prediction [39] and σdE/dx

is the dE/dx resolution. The Bichsel function is used to calculate 
the energy dependence of the most probable energy loss of the 
ionization spectrum from a detector. In a thin material such as 
the TPC gas, it has been shown that the Bichsel function is a very 
good approximation for the dE/dx curves [40]. At lower momenta 
(p � 1.5 GeV/c), where electron and hadron dE/dx bands overlap, 
the TOF detector is used to reject slow hadrons. For p < 1.4 GeV/c, 
a cut on the speed of a particle, β , of |1/β − 1| < 0.03 is applied. 
At higher momenta, the BEMC rejects hadrons efficiently. For mo-
menta above 1.4 GeV/c, a cut on E/p > 0.5c is used for electron 
identification, where E is the energy deposited in a single BEMC 
tower (
η × 
φ = 0.05 × 0.05). For electrons, the ratio of total 
energy deposited in the BEMC to the particle’s momentum is ex-
pected to be ≈ 1. In the analysis we use energy deposited in a 
single BEMC tower but an electron can deposit its energy in more 
towers, therefore the value of the E/p cut is 0.5c.

It is also required that at least one of the electrons from the 
J/ψ decay satisfies the HT trigger conditions. In order to en-
sure that a selected electron indeed fired the trigger, an addi-
tional cut of pT > 2.5 GeV/c is applied for that electron. The HT 
trigger requirements reduce significantly the combinatorial back-
ground under the J/ψ signal and lead to a clear J/ψ signal at 
2 < pT < 6 GeV/c.
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Fig. 1. (Color online.) (a) Invariant mass distributions of unlike-sign (black cir-
cles) and like-sign (red triangles) electron/positron pairs, for 2 < pT < 6 GeV/c and 
|y| < 1. (b) J/ψ signal after the combinatorial background subtraction (closed blue 
circles) and MC simulation (histogram).

2.2. J/ψ signal and cos θ distributions

Electrons and positrons that pass track quality and electron 
identification (eID) cuts are paired in each event. Fig. 1(a) shows 
the invariant mass distribution for di-electron pairs with |y| < 1
and pT of 2–6 GeV/c. The unlike-sign pairs are represented by cir-
cles. The combinatorial background is estimated using the like-sign 
technique, and is defined as a sum of all e+e+ and e−e− pairs 
in an event, represented by triangles. The J/ψ signal is obtained 
by subtracting the combinatorial background from the unlike-sign 
pair distribution. Fig. 1(b) shows the invariant mass distribution 
for J/ψ as circles, and the histogram is the J/ψ signal obtained 
from a Monte Carlo (MC) simulation (see Section 2.3). Momentum 
resolution of electrons and positrons from the MC simulation is 
additionally smeared in order that the simulated J/ψ signal width 
matches the width of the J/ψ signal obtained from the data. 
The simulation does not include the J/ψ radiative decay chan-
nel, J/ψ → e+e−γ [11,38], leading to the discrepancy between 
data and simulation for invariant mass ∼2.7–2.9 GeV/c2. The tail 
in the data at low invariant mass is due to electron bremsstrahlung 
and missing photons in the case of the J/ψ radiative decay recon-
struction. We select J/ψ candidates in the invariant mass range 
2.9–3.3 GeV/c2 and so the discrepancy between the data and the 
simulation for the lower mass range does not influence our result.

In the analyzed ranges of rapidity, pT , and invariant mass, the 
signal to background ratio is 15. A strong J/ψ signal is seen with 
a significance of 26σ . The number of J/ψ , obtained by counting 
data entries in the J/ψ mass window, is 791 ± 30. For the polar-
ization analysis, we split the entire J/ψ sample into 3pT bins with 
a comparable number of J/ψ in each bin: 2–3 GeV/c, 3–4 GeV/c
and 4–6 GeV/c.

Raw cos θ distributions for J/ψ (after the combinatorial back-
ground subtraction) are obtained by bin counting, using distribu-
tions from the data. Figs. 2(a)–(c) show uncorrected cos θ distribu-
tions (full squares).

2.3. Corrections

In order to obtain the cos θ corrections, unpolarized Monte 
Carlo J/ψ particles with uniform pT and rapidity distributions 
are embedded into real events, and the STAR detector response 
is simulated. Since the input pT and rapidity shapes influence ef-
ficiencies, J/ψ distributions are then weighted according to the 
J/ψ pT and rapidity shapes observed in the STAR [11] and PHENIX 
[41] experiments. Corrected cos θ distributions are obtained by di-
viding raw cos θ distributions by the corrections calculated as a 
function of cos θ , in each analyzed pT bin.

Efficiencies as a function of cos θ are calculated by applying the 
same cuts used in the data analysis to the embedding (simulation) 
sample. Most corrections related to the TPC response, such as the 
acceptance (with the pT and η cuts) and tracking efficiency, and all 
BEMC efficiencies, are obtained from the simulation. The nσelectron
and the TOF response are not simulated accurately in embedding. 
Therefore the nσelectron cut and TOF cut efficiencies are calculated 
using the data.

For the calculation of the nσelectron cut efficiency, the nσelectron
distribution from the data is approximated with a sum of Gaussian 
functions (one Gaussian function for electrons and two Gaussian 
functions for hadrons), in narrow momentum bins. In order to 
improve the fitting, the TOF and BEMC eID cuts are applied and 
the position of the Gaussian fit for electrons is constrained using 
a high-purity (almost 100%) electron sample obtained by select-
ing photonic electrons and subtracting a background from like-sign 
electron pairs. Photonic electrons are produced from photon con-
version in the detector material and Dalitz decay of π0 and η
mesons. These electrons are isolated using a cut on the invari-
ant mass of a pair of tracks of me−e+ < 100 MeV/c2 and additional 
electron identification cuts: |1/β −1| < 0.03 for p < 1.5 GeV/c and 
E/p > 0.5c for momenta above 1.5 GeV/c.

TOF matching efficiency is calculated using a low luminosity 
data sample (with almost no pile-up). Since the TOF detector did 
not have full coverage in 2009, the TOF matching efficiency is ap-
plied in the total efficiency calculation as a function of η. The effi-
ciency of the 1/β cut is calculated by using a pure electron sample 
obtained by selecting photonic electrons with −0.2 < nσe < 2 and 
with the invariant mass of a pair of tracks less than 15 MeV/c2. 
The 1/β cut efficiency is calculated in narrow momentum bins and 
then a constant function is fitted to obtain the final 1/β cut effi-
ciency.

The total J/ψ efficiency calculations include contributions from 
the acceptance, the tracking efficiency, the electron identifica-
tion efficiency, and the HT trigger efficiency, and are shown as a 
function of cos θ in Fig. 2(d)–(f) (blue triangles). The systematic 
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Fig. 2. (Color online.) Panels (a)–(c) show uncorrected cos θ distributions after the combinatorial background subtraction, for each analyzed pT bin. Panels (d)–(f) show total 
efficiencies as a function of cosθ . Systematic errors are shown as boxes. Panels (g)–(i) show different efficiencies that contribute to the total efficiency.
uncertainties (discussed in Subsection 3.2) on the total efficiency 
are also shown in the figure. The right-hand panels, Fig. 2(g)–(i), 
show separately the efficiencies that contribute to the total effi-
ciency.

The most important factor influencing the shape of the total 
efficiency is the HT trigger efficiency, which is shown as green di-
amonds in Fig. 2(g)–(i). At least one of the electrons from the J/ψ
decay is required to satisfy the trigger conditions and must have 
pT above 2.5 GeV/c. Due to the decay kinematics this cut causes 
significant loss in the number of observed J/ψ at lower J/ψ pT , 
and the efficiency decreases with decreasing |cos θ |. This pattern 
is clearly visible in the HT trigger efficiency plot for 2 < pT <

3 GeV/c in Fig. 2(g), where all entries at cos θ ∼ 0 are zero. With 
increasing J/ψ pT , the trigger efficiency increases. Since the trig-
ger has also an upper threshold (ET ≤ 4.3 GeV), a decrease of the 
efficiency at |cos θ | ∼ 1 at higher pT is seen, as evident in Fig. 2(i).

3. Results and discussion

3.1. Corrected cos θ distributions

The corrected cos θ distributions are fitted with

f (cos θ) = C
(
1 + λθ cos2 θ

)
(3)

where C is a normalization factor and λθ is the polarization pa-
rameter. The fitting procedure is carried out with no constraints 
applied to the fit parameters. The corrected cos θ distributions 
with the fits are shown in Fig. 3. The errors shown are statistical 
only. The solid line represents the most likely fit. The band around 
the line is a 1σ uncertainty contour on the fit, which takes into 
account uncertainties on both fit parameters and correlations be-
tween them. The measured values of the polarization parameter, in 
each analyzed pT bin, are listed in Table 1 together with a mean 
pT (〈pT 〉) in each bin and statistical and systematic uncertainties.

3.2. Systematic uncertainties

The systematic uncertainties on the polarization parameter λθ

are summarized in Table 2. All sources, except the last two, con-
tribute to the error on the total efficiency and are included in the 
systematic uncertainties shown in Fig. 2(d)–(f). Each contribution 
is described below. Each systematic uncertainty is the maximum 
deviation from the central value of λθ . The systematic uncertain-
ties are combined assuming that they are uncorrelated, and are 
added in quadrature.

3.2.1. Tracking efficiency
The systematic uncertainty on the tracking efficiency arises 

from small differences between the simulation of the TPC response 
in the embedding calculation and the data. Track properties, DCA 
and the number of points used in the track reconstruction in the 
TPC (fitPts), are compared between simulation and data. The sys-
tematic uncertainty is due to a shift of the fitPts distribution (by 
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Fig. 3. (Color online.) Corrected cosθ distributions fitted with the function in Eq. 
(3). The plotted errors are statistical. The solid blue lines represent the most likely 
fits, and the hatched blue bands represent the 1σ uncertainty on the fits.

2 points) in the simulation. The uncertainty is considered symmet-
ric.

3.2.2. TPC eID efficiency
The systematic uncertainty from TPC electron identification is 

estimated by changing constraints on the mean and width of the 
Gaussian fit for electrons and recalculating the total efficiency. The 
constraints put on the mean and width are allowed to vary by 3σ .

3.2.3. TOF efficiency
Since the TOF detector did not have full coverage in 2009, the 

TOF matching efficiency is applied in the total efficiency calcula-
Table 1
The polarization parameter λθ .

pT (GeV/c) 〈pT 〉 (GeV/c) λθ

2 < pT < 3 2.48 0.15±0.33 (stat.) ± 0.30 (sys.)
3 < pT < 4 3.52 −0.48±0.16 (stat.)± 0.16 (sys.)
4 < pT < 6 4.74 −0.62±0.18 (stat.)± 0.26 (sys.)

Table 2
Systematic uncertainties.

Source Systematic uncertainty on λθ ,
in pT (GeV/c) bins

2–3 3–4 4–6

Tracking efficiency 0.024 0.009 0.008
TPC eID efficiency 0.009 0.006 0.012
TOF efficiency 0.057 0.018 0.014
BEMC efficiency 0.035 0.024 0.068
HT trigger efficiency 0.049 0.006 0.003
Input J/ψ distributions in the simulation 0.190 0.019 0.027
Errors from the simulation 0.077 0.028 0.004
Polarization of the continuum background 0.025 0.034 0.034
J/ψ signal extraction 0.195 0.149 0.246

Total ±0.297 ±0.160 ±0.260

tion as a function of η. The systematic uncertainty is estimated 
with the TOF matching efficiency also being a function of az-
imuthal angle φ. The 1/β cut efficiency estimated from the data 
in small pT bins may be sensitive to fluctuations. The 1/β distri-
bution obtained from the data is well described by the Gaussian 
function. So the systematic uncertainty on the 1/β cut efficiency is 
estimated by applying the efficiency calculated for the whole mo-
mentum range of 0.4 < p < 1.4 GeV/c from a Gaussian fit to the 
1/β distribution.

3.2.4. BEMC efficiency
Differences between the simulated BEMC response and the 

BEMC response in the real data may affect the matching of a 
TPC track to the BEMC detector and the efficiency of the E/p cut. 
The matching efficiency of a TPC track to the BEMC and the E/p
distribution are compared between data and simulation. A pure 
electron sample from the data is obtained by selecting photonic 
electrons with −0.2 < nσe < 2 and with the invariant mass of a 
pair of tracks less than 15 MeV/c2. The systematic uncertainty of 
the BEMC efficiency is estimated by applying BEMC matching and 
E/p cut efficiencies obtained from the data instead of using simu-
lated BEMC response, in the total efficiency calculation.

3.2.5. HT trigger efficiency
HT trigger response in the simulation, energy in a BEMC tower, 

is compared with the BEMC response in the data. The systematic 
uncertainty on the HT trigger efficiency is estimated by varying the 
trigger turn-on conditions in the simulation by the difference seen 
between data and simulation, which is 3%.

3.2.6. Input J/ψ distribution in the simulation
Since the input J/ψ transverse momentum and rapidity distri-

butions in the simulation are flat, they need to be weighted with 
realistic pT and rapidity spectra. In order to estimate a system-
atic uncertainty, the pT and rapidity weights are changed. The pT
weight is varied by changing the ranges in which the Kaplan [42]
function is fitted to the pT spectrum. The weight used for rapidity 
is obtained by fitting a Gaussian function to the rapidity spectrum, 
and the systematic uncertainty is estimated by assuming that the 
rapidity shape is flat at mid-rapidity.

Also, the J/ψ particles in the simulation are unpolarized (the 
input cos θ distribution is flat). The acceptance of electron and 
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positron from the J/ψ decay in the detector depends on the J/ψ
polarization. In order to estimate the effect of the unknown J/ψ
polarization on the acceptance calculation, fully transverse (λθ = 1) 
and fully longitudinal (λθ = −1) J/ψ polarization is assumed in 
the embedding analysis. A systematic uncertainty is estimated as a 
difference between the result obtained with no input J/ψ polar-
ization and the result when J/ψ in the simulation is polarized. An 
average uncertainty from the two input J/ψ polarizations, longi-
tudinal and transverse, is taken as a systematic uncertainty in this 
study.

3.2.7. Errors from the simulation
Statistical errors on the total efficiencies, determined using the 

MC simulation, are included in the systematic uncertainties.

3.2.8. Polarization of the continuum background
In Fig. 1(b), it is seen that there is still some residual contin-

uum background after the combinatorial background subtraction. 
This background consists of correlated cc → e+e− and bb → e+e− . 
The continuum background is about 5% of the measured J/ψ in 
the analyzed invariant mass range. Due to the small statistics of 
the continuum background, we are not able to estimate a polariza-
tion of the correlated background using our data. Instead, we use 
the value obtained by the PHENIX experiment [27]. They found 
that the continuum polarization is between −0.3 and 0.3. We es-
timate a systematic uncertainty by simulating cos θ distributions 
for the residual background taking two extreme values of λθ : −0.3
and 0.3. Then those cos θ distributions are subtracted from the cor-
rected cos θ distributions from the data, assuming that the resid-
ual background is 5% of the J/ψ yield, in order to estimate the 
influence of the continuum background polarization on the mea-
sured λθ .

3.2.9. J/ψ signal extraction
The systematic uncertainty associated with the J/ψ signal ex-

traction is estimated by counting the number of J/ψ particles 
using the simulated J/ψ signal shape. The J/ψ signal from the 
simulation is extracted in each pT and cos θ bin and fitted to the 
data.

3.3. Polarization parameter λθ

Fig. 4 shows the polarization parameter λθ as a function of J/ψ
pT for inclusive J/ψ production. The result includes direct J/ψ
production, as well as J/ψ from feed-down from heavier charmo-
nium states, ψ ′ and χC (about 40% of the prompt J/ψ yield [43]), 
as well as from B meson decays (non-prompt J/ψ ) [11]. The non-
direct J/ψ production may influence the observed polarization. 
The STAR result (red stars) is compared with the PHENIX mid-
rapidity (|y| < 0.35) J/ψ polarization result for inclusive J/ψ [27]
(black solid circles). The blue line is a linear fit, which takes into 
account both statistical and systematic uncertainties, to all RHIC 
points. The fit gives a negative slope parameter −0.16 ± 0.07 with 
χ2/ndf = 1.5/4. A trend towards longitudinal J/ψ polarization is 
seen in the RHIC data. 

STAR observes longitudinal J/ψ polarization in the helicity 
frame at pT > 3 GeV/c. The STAR and PHENIX measurements are 
consistent with each other in the overlapping pT region. Our result 
can be compared to the polarization measurements from CDF [20]
and CMS [22] at mid-rapidity for prompt J/ψ . At pT ∼ 5 GeV/c, 
CDF observes almost no polarization, λθ ∼ 0 (the polarization 
becomes slightly longitudinal as pT increases) while STAR ob-
serves a strong longitudinal polarization in that pT region. At LHC √

s = 7 TeV, CMS reports zero polarization at mid-rapidity up to 
pT ∼ 70 GeV/c [22]. In addition, the ALICE experiment also reports 
Fig. 4. (Color online.) Polarization parameter λθ as a function of J/ψ pT (red stars) 
for |y| < 1. The data is compared with the PHENIX result (black solid circles) [27]
and two model predictions: NLO+ Color Singlet Model (CSM) (green dashed lines 
represent a range of λθ for the direct J/ψ , and the hatched blue band is an extrap-
olation of λθ for the prompt J/ψ ) [28] and LO NRQCD calculations with color-octet 
contributions (COM) [26] (gray shaded area). The pT coverages of the CSM and COM 
models are ∼0.6–6.0 GeV/c and ∼1.5–5.0 GeV/c, respectively. The horizontal error 
bars represent widths of pT bins. The blue line is a linear fit (Ax + B) to RHIC 
points.

very small polarization within 2 < pT < 8 GeV/c at forward ra-
pidity [24]. However, if the J/ψ production is xT dependent [10], 
the RHIC result at pT ∼ 2 GeV/c is comparable with the CDF re-
sult at pT ∼ 20 GeV/c and with the CMS result at pT ∼ 70 GeV/c
(xT ∼ 0.02, xT = 2pT /

√
s).

The data are compared with two model predictions for λθ at 
mid-rapidity: NLO+ CSM [28] and LO COM [26]. The prediction 
of the COM [26] for direct J/ψ production, the gray shaded area, 
moves towards the transverse J/ψ polarization as pT increases 
[20]. The trend seen in the STAR and PHENIX results is towards 
longitudinal J/ψ polarization with increasing pT , and a linear fit 
to the RHIC data has a negative slope parameter. The difference 
between the central value of the COM model calculations and the 
STAR data in terms of χ2/ndf (P value) is 6.7/3 (8.2 × 10−2). The 
COM failed to describe the polarization measurements by the CDF 
and CMS experiments at higher energies.

Green dashed lines represent a range of λθ for the direct J/ψ
production from the NLO+ CSM prediction and an extrapolation of 
λθ for the prompt J/ψ production is shown as the hatched blue 
band [28]. It predicts a weak pT dependence of λθ , and within the 
experimental and theoretical uncertainties, the RHIC result is con-
sistent with the NLO+ CSM model prediction. Comparison between 
the central value of the NLO+ CSM prediction and the STAR data 
gives χ2/ndf (P value) of 3.0/3 (3.9 × 10−1) and 5.1/3 (1.6 × 10−1) 
for the direct and prompt J/ψ production, respectively.

4. Summary and outlook

This paper reports the first STAR measurement of J/ψ polar-
ization and contributes to the evolving understanding of the J/ψ
production mechanisms. J/ψ polarization is measured in p + p
collisions at 

√
s = 200 GeV in the helicity frame at |y| < 1 and 

2 < pT < 6 GeV/c. RHIC data indicates a trend towards longitu-
dinal J/ψ polarization as pT increases. The result is consistent, 
within experimental and theoretical uncertainties, with the NLO+
CSM model.

Newer data at 
√

s = 500 GeV, taken in 2011 with much 
higher luminosity, may help to further distinguish between J/ψ
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production models, and may permit analysis of the full angular 
distribution. Furthermore, uncertainties in the models need to be 
reduced in order to draw more precise conclusions from experi-
mental measurements.
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