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A measurement of dijet correlations in p–Pb collisions at √sNN = 5.02 TeV with the ALICE detector is 
presented. Jets are reconstructed from charged particles measured in the central tracking detectors and 
neutral energy deposited in the electromagnetic calorimeter. The transverse momentum of the full jet 
(clustered from charged and neutral constituents) and charged jet (clustered from charged particles only) 
is corrected event-by-event for the contribution of the underlying event, while corrections for underlying 
event fluctuations and finite detector resolution are applied on an inclusive basis. A projection of the 
dijet transverse momentum, kTy = pch+ne

T,jet sin(�ϕdijet) with �ϕdijet the azimuthal angle between a full 
and charged jet and pch+ne

T,jet the transverse momentum of the full jet, is used to study nuclear matter 
effects in p–Pb collisions. This observable is sensitive to the acoplanarity of dijet production and its 
potential modification in p–Pb collisions with respect to pp collisions. Measurements of the dijet kTy as 
a function of the transverse momentum of the full and recoil charged jet, and the event multiplicity are 
presented. No significant modification of kTy due to nuclear matter effects in p–Pb collisions with respect 
to the event multiplicity or a PYTHIA8 reference is observed.

© 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V. This is an open 
access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Dijets produced in 2 → 2 leading-order (LO) scattering pro-
cesses are balanced in transverse momentum and back-to-back in 
azimuth. In proton–proton collisions a small acoplanarity appears 
due to intrinsic transverse momentum kT from partonic Fermi mo-
tion [1] and initial state gluon radiation [2,3]. At large momentum 
transfer between the incoming partons, the phase space for hard 
gluon radiation in the parton shower or from next-to-leading-order 
(NLO) processes increases, resulting in acoplanarity of the dijet sys-
tem [4–6]. This also results in an imbalance of the jet transverse 
momenta also referred to as a broadening of the dijet transverse 
momentum. The relative contribution of hard QCD radiation to the 
dijet kT can be varied by applying kinematic and acceptance selec-
tions to the dijet sample.

In p–Pb collisions the dijet kinematics are potentially modified 
due to nuclear matter effects which are expected to induce a mo-
mentum imbalance and acoplanarity of dijet pairs with respect to 
pp collisions, so-called transverse momentum broadening [7]. For 
instance, multiple scatterings inside the nucleus of the initial- and 
final-state partons in hard scatterings can lead to such a transverse 
momentum broadening.

In heavy-ion collisions, jets produced in hard scattering pro-
cesses are used to probe the properties of the produced medium. 
Highly energetic partons propagate through the medium, which 

� E-mail address: alice-publications@cern.ch.

modifies the parton shower resulting in a modified fragmentation
pattern of the final hadronization products [8,9]. Heavy-ion jet 
measurements are compared to measurements in pp collisions 
to determine the effect of hot nuclear matter on jet observ-
ables [10–13]. In the context of such studies, measurements in 
p–Pb collisions serve as a benchmark to study hard scattering pro-
cesses in a nuclear target.

Measurements presented in [14] of the dijet transverse mo-
mentum imbalance and dijet azimuthal angle distributions show 
results which are comparable to results obtained with pp data and 
independent of the event activity. This letter presents a measure-
ment of dijet acoplanarity in p–Pb collisions at 

√
sNN = 5.02 TeV, 

recorded with the ALICE detector at the Large Hadron Collider 
(LHC). The jet azimuthal correlations are measured at mid-rapidity 
for jet transverse momentum between 15 and 120 GeV/c. Jets 
entering in the acceptance of electromagnetic calorimeter are re-
constructed from charged and neutral particles (full jet) while the 
recoil jet is reconstructed from charged particles only (charged jet). 
Measurements are presented as a function of the full and associ-
ated charged jet transverse momentum in two event multiplicity
classes which are correlated to the centrality of the p–Pb colli-
sions [15].

2. Experimental setup and data sample

Collisions of proton and lead beams were provided by the LHC 
in the first months of 2013. The beam energies were 4 TeV for the 

http://dx.doi.org/10.1016/j.physletb.2015.05.033
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proton beam and 1.58 TeV per nucleon for the lead beam, result-
ing in collisions at a center of mass energy 

√
sNN = 5.02 TeV. The 

nucleon–nucleon center-of-mass system moves in rapidity with re-
spect to the ALICE reference frame by −0.465 in the direction of 
the proton beam [16]. In the following η refers to the pseudora-
pidity in the ALICE reference frame.

The V0 detectors, two arrays of scintillator tiles covering the full 
azimuth within 2.8 < η < 5.1 (V0A) and −3.7 < η < −1.7 (V0C), 
were used for online minimum bias event triggering, offline event 
selection and characterization of events in different particle mul-
tiplicity classes. The minimum bias trigger required a signal from 
a charged particle in both the V0A and V0C. The total integrated 
luminosity of the minimum bias event sample is 37 μb−1.

The electromagnetic calorimeter (EMCal) in ALICE [17] covers 
100 degrees in azimuth, 1.4 < ϕ < π , and |η| < 0.7. For the an-
alyzed data set an online jet patch trigger of 32 × 32 adjacent 
towers, corresponding to an area of approximately 0.2 rad was 
used. This jet patch trigger fired if an integrated patch energy of 
at least 10 GeV (low-energy trigger) or 20 GeV (high-energy trig-
ger) was found. The low-energy triggered event sample provided 
a significant overlap in jet energy between the minimum bias and 
high-energy trigger event samples, allowing assessment of the trig-
ger biases. The event sample obtained with the low-energy trigger 
corresponds to a total integrated luminosity of 21 μb−1. The event 
sample with the high energy threshold has a total integrated lumi-
nosity of 1.6 nb−1.

The position of the primary vertex was determined using re-
constructed charged particle tracks in the ALICE tracking systems, 
Inner Tracking System (ITS) [18] and Time Projection Chamber 
(TPC) [19]. The algorithm to reconstruct the primary vertex is 
fully efficient for events with at least one primary track within 
|η| < 1.4 [20]. To ensure a high tracking efficiency uniform in η, 
events are accepted if the coordinate of the vertex along the beam 
direction is within ±10 cm from the center of the detector.

The total event sample is divided into two multiplicity classes 
based on the total charge deposited in the V0A detector [21]. For 
the data sample used in this analysis, the V0A detector is located 
in the direction of the Pb remnants and thus sensitive to the frag-
mentation of the nucleus limiting a correlation in the definition 
of the multiplicity class with the dijet measurement at midra-
pidity. Two multiplicity classes 0–40% and 40–100% are used in 
this analysis. The higher multiplicity class (0–40%) corresponds 
to 〈dN/dη〉|η|<0.5 = 37.2 ± 0.8 and the lower multiplicity class 
(40–100%) to 〈dN/dη〉|η|<0.5 = 9.4 ± 0.2.

3. Jet reconstruction and dijet kTy

3.1. Jet reconstruction

Jets are reconstructed with the anti-kT jet algorithm of the 
FastJet package [22,23] combining charged tracks measured in the 
central tracking detectors, ITS and TPC, and neutral fragments mea-
sured with the EMCal [17]. Tracks from the combined ITS and TPC 
track reconstruction algorithm are used. Quality criteria for track 
selection follow the same strategy as in [24]. The tracking effi-
ciency is 70% for tracks with a transverse momentum pT,track =
0.15 GeV/c and increases to 85% at pT,track = 1 GeV/c and above. 
The pT resolution of tracks is 0.8% (3.8%) for pT,track = 1 GeV/c
(50 GeV/c). EMCal clusters are formed by a clustering algorithm 
that combines signals from adjacent EMCal towers, with cluster 
size limited by the requirement that each cluster contains only 
one local energy maximum. Energy deposited by charged particles 
in the EMCal is subtracted from the measured energy in the EMCal 
clusters which prevents counting the charged energy twice [20,25]. 
ALICE also reconstructs jets from charged particles only. These jets 

are referred to as ‘charged jets’, while jets reconstructed from 
charged and neutral fragments are called ‘full jets’ in this letter.

In this analysis, anti-kT jets are reconstructed using the boost-
invariant pT recombination scheme and a jet resolution parameter 
of R = 0.4. A jet is only accepted if it is fully contained in the 
acceptance in which the constituents are measured: for charged 
jets in the full azimuth and |ηch

jet| < 0.9 − R while for full jets 
1.4 + R < ϕch+ne

jet < π − R and |ηch+ne
jet | < 0.7 − R . It was veri-

fied that reducing the acceptance with 0.05 on all edges, in ηjet
and ϕjet, has a negligible effect on the measurement. Tracks with 
pT,track > 0.15 GeV/c and neutral constituents with ET > 0.3 GeV
are considered. The minimum required area for jets with a res-
olution parameter R = 0.4 is equal to 0.3 (≈ 60% of the area 
of a rigid cone with R = 0.4). This selection does not affect the 
jet finding efficiency for jets (full and charged) with transverse 
momentum pT,jet > 15 GeV/c. In addition, jets containing a track 
with pT,track > 100 GeV/c, for which the track momentum resolu-
tion exceeds 6.5%, are tagged and rejected. This last requirement 
has negligible effect in the reported range of jet momenta. The 
measurement is corrected to particle level as will be explained in 
Section 3.3.

The measured transverse momentum of the anti-kT jet is cor-
rected for the contribution of the underlying event by subtracting 
the average background momentum density, ρ for full jets and ρch
for charged jets, multiplied by the area of the considered jet. The 
contribution of the underlying event to the charged jets is esti-
mated using clusters reconstructed with the kT jet algorithm using 
only charged tracks. This is achieved by calculating event-by-event 
the median charged background density, ρch, from all kT clusters in 
the event with in addition a correction for the sparsely populated 
p–Pb events [26,27]. The average ρch in minimum-bias events is 
equal to 1.9 GeV/c for the 0–40% multiplicity class and 0.7 GeV/c
for the 40–100% event multiplicity class with a negligible statisti-
cal uncertainty in both cases. Finally, ρch is multiplied by a scale 
factor to account for the neutral energy to estimate ρ . The scale 
factor is determined by measuring the ratio between the energy of 
all the EMCal clusters and the charged tracks pointing into the EM-
Cal acceptance in the minimum-bias event sample. The extracted 
scale factor 1.28 is independent of event multiplicity. The influ-
ence of background fluctuations is quantified and corrected for on 
an inclusive basis, see Section 3.3.

3.2. Dijet kTy

Each measured full jet is correlated with the charged jet of 
highest transverse momentum in the opposite hemisphere. Only 
pairs for which the full jet has a larger transverse momentum than 
the associated charged jet are considered. Furthermore only dijets 
pairs with |�ϕdijet −π | < π/3, with �ϕdijet the angle between the 
jet axis of the full and charged jet, are considered in the analysis. 
The selection in �ϕdijet rejects 5–8% of the dijet pairs depending 
on the kinematic selection of the full and associated charged jet. 
The azimuthal acoplanarity of dijets is studied by measuring the 
transverse component of the kT vector of the dijet system, kTy, de-
fined as

kTy = pch+ne
T,jet sin(�ϕdijet), (1)

with pch+ne
T,jet the transverse momentum of the full jet. It should 

be noted that this definition differs from the one used in pre-
vious publications, for example [28]. Since dN/dkTy is a sym-
metric distribution around zero, |kTy| is reported throughout the 
paper. For events from the minimum-bias sample full jets with 
pch+ne

T,jet > 20 GeV/c are considered, while in the jet-triggered data 
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samples (see Section 2) only jets with pch+ne
T,jet > 40 GeV/c for the 

low energy trigger and pch+ne
T,jet > 60 GeV/c for the higher energy 

trigger are used. In these kinematic regimes the triggers are fully 
efficient and no fragmentation bias is observed with respect to 
the minimum-bias jet sample. The |kTy| distributions are reported 
at particle level involving a correction for detector effects and 
pT-smearing due to the underlying event, see Section 3.3.

The dijet sample is biased due to the requirement that the full 
jet has a larger transverse momentum than the associated charged 
jet, while the full jet momentum is used to estimate kTy. In an 
unbiased measurement, the full jet would correspond to the lead-
ing jet of the event in only 50% of the cases. A PYTHIA [29,30]
study was performed in which the particle-level jet was defined as 
the jet containing all final state particles (no kinematic selection 
on constituents and full azimuthal acceptance). Applying the selec-
tion of this analysis to detector-level reconstructed jets, results in 
a correct tagging of the leading jet in 70% of the dijet events. This 
results in a slightly harder |kTy| distribution with a 10% smaller 
yield at low |kTy| and 20% higher yield at large |kTy|. The results of 
the p–Pb data analysis will be compared to particle-level PYTHIA 
with the same dijet selection incorporating the mentioned bias.

The dijet acoplanarity is measured as a function of the trans-
verse momentum of the full jet while the kinematic interval of the 
associated charged jet is also varied to explore kTy for more or less 
balanced dijets in transverse momentum. In addition kTy distribu-
tions are also presented for two event multiplicity classes.

3.3. Corrections and systematic uncertainties

The measured dijet |kTy| distributions are corrected to the par-
ticle level, defined as the dijet |kTy| from jets clustered from all 
prompt particles produced in the collision including all decay 
products, except those from weak decays of light flavor hadrons 
and muons. Both full and charged jets are accepted at particle 
level in the full azimuthal acceptance and in the pseudorapid-
ity range of |ηjet| < 0.5. The correction to particle level is based 
on a data-driven method to correct for the influence of the un-
derlying event fluctuations and on simulated PYTHIA events (tune 
Perugia-2011 [31]) transported through the ALICE detectors layout 
with GEANT3 [32]. The correction procedure takes into account the 
pT and angular resolution of the measured dijets.

Detector-level jets are defined as jets reconstructed from recon-
structed tracks and EMCal clusters after subtraction of the charged 
energy deposits. The jet energy scale and resolution are affected 
by unmeasured particles (predominantly K0

L and neutrons), fluc-
tuations of the energy deposit by charged tracks in the EMCal, the 
EMCal energy scale and the charged particle tracking efficiency and 
pT resolution. A response matrix as a function of pT,jet of the full 
and associated charged jet, �ϕdijet and kTy is created after match-
ing the detector-level to the particle-level jets as described in [33].

The pT-smearing due to fluctuations of the underlying event 
is estimated with the random-cones technique which is also ap-
plied in the analysis of Pb–Pb data [24]. Cones with a radius equal 
to the resolution parameter R are placed in the measured p–Pb 
events at random positions in the η–ϕ plane ensuring the cone 
is fully contained in the detector acceptance. The fluctuations of 
the background are characterized by the difference between the 
summed pT of all the tracks and clusters in the random cone (RC) 
and the estimated background: δpT = ∑RC

i pT,i − A · ρ , where A is 
the area of the random cone (A = π R2) and the subscript i indi-
cates a cluster or track pointing inside the random cone. A random 
cone can overlap with a jet but to avoid oversampling in small sys-
tems like p–Pb, a partial exclusion of overlap with the leading jet 
in the event is applied. This is achieved by excluding random cones 

overlapping with a leading jet with a given probability, p = 1/Ncoll
where Ncoll is the number of binary collisions. Ncoll is taken from 
estimates applying a Glauber fit to the multiplicity measured in 
the V0A detector resulting in values between 14.7 and 1.52 de-
pending on the event activity measured in the V0A detector. The 
width of the background fluctuations for full (charged) jets varies 
between 2.12 (1.59) and 0.73 (0.56) GeV/c depending on the mul-
tiplicity of the event.

The influence of background fluctuations is added to the re-
sponse extracted from detector simulation through a Monte Carlo 
model assuming that the background fluctuation for the full and 
associated charged jet are uncorrelated within 20% wide bins of 
V0A multiplicity classes. Within these selected multiplicity classes 
the variation of the background fluctuations is negligible. Since the 
Monte Carlo model does not generate full events and only accounts 
for the δpT smearing on a jet-by-jet basis, additional jet finding 
inefficiencies and worsening of angular resolution due to the back-
ground fluctuation are not taken into account. These effects are 
negligible since the contribution of the underlying event to the jets 
in p–Pb collisions is small. No correction for the angular resolution 
of the charged jet due to missing neutral fragments is applied. This 
effect increases the width of �ϕdijet by ∼ 0.03 and is present, and 
of the same magnitude, in the p–Pb data and the PYTHIA refer-
ence.

The most probable correction to the jet energy, taking into ac-
count detector effects and background fluctuations, for fully recon-
structed jets is 28% at pch+ne

T,jet = 20 GeV/c and decreases to 20% 
for jets with pch+ne

T,jet > 40 GeV/c. The uncertainty on the jet energy 
scale is evaluated by changing the tracking efficiency in data and 
full detector simulation [34], varying the double counting correc-
tion for the hadronic energy deposit in the EMCal and by using 
different estimates of the underlying-event fluctuations. The final 
uncertainty on the jet energy scale is 4%. The jet energy resolution 
for full jets is 22% at pch+ne

T,jet = 20 GeV/c and decreases gradually to 
18% at pch+ne

T,jet = 120 GeV/c. The influence of the uncertainties on 
the jet energy scale and resolution on the dijet |kTy| measurement 
are discussed in the following.

The measured |kTy| distributions are corrected to the parti-
cle level by applying bin-by-bin correction factors, which are 
parametrized by a linear fit to the ratio between the particle- and 
detector-level |kTy| distributions for a given dijet selection. The cor-
rection factors take into account the effects of feed-in and feed-out 
of the selected kinematic and angular intervals of the full and as-
sociated charged jets. These effects slightly change the shape of 
the |kTy| distributions resulting in correction factors which vary 
between 0.9 for small |kTy| to 1.2 at large |kTy|. The correction is 
relatively small, because while feed-in from lower pch+ne

T,jet narrows 
the |kTy| distribution, feed-in from higher pch+ne

T,jet broadens the dis-
tribution resulting in a cancellation. Similarly the feed-out to high 
and low pch+ne

T,jet has a small effect on the observable. By using a 
linear fit to the correction factors the statistical fluctuations of the 
detector simulation are not propagated to the measurement. The 
95% confidence limit of the parametrization using the linear fit is 
included in the systematic uncertainty of the measurement. Cor-
rection factors are extracted as a function of V0A event multiplicity 
class and kinematic intervals of the full and associated charged jet.

The dominant systematic uncertainty on the measurement orig-
inates from the extraction of bin-by-bin correction factors. The un-
certainty of the parametrization of the correction factors results in 
10–20% correlated systematic uncertainty on the dijet |kTy| yields. 
An additional 2.5% uncertainty arises from the uncertainty on the 
tracking efficiency which is 4%. Systematic uncertainties originat-
ing from the charged hadron energy deposit in EMCal towers, 
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Fig. 1. Dijet |kTy| distributions in p–Pb collisions in the 0–40% V0A multiplicity event class for several kinematic intervals of the full jet (pch+ne
T,jet ). The measurement is 

compared to PYTHIA8 (tune 4C, K = 0.7) with and without initial state radiation. The lower panels show the ratio between the measurement and PYTHIA8 including initial 

state radiation.

background fluctuations and the average momentum density ρ
were evaluated and found to be negligible.

4. Results

The dijet |kTy| distributions are presented as functions of the 
full-jet transverse momentum, the transverse momentum of the 
associated charged jet and event multiplicity classes. The results 
are compared to the predictions of the PYTHIA8.176 event genera-
tor with tune 4C and K = 0.7 [29,30]. This tune has been found to 
give a reasonable description of jet production at the LHC. The final 
state particles are shifted in pseudorapidity with ηshift = −0.465 to 
mimic the rapidity shift of the laboratory frame due to the energy 
difference of the proton and Pb beams.

4.1. Evolution with full-jet transverse momentum

Fig. 1 shows the corrected |kTy| distributions for several kine-
matic intervals for the full jet, from pch+ne

T,jet = 20 GeV/c to pch+ne
T,jet =

120 GeV/c, in the 0–40% V0A multiplicity class. The associated 
charged jet has a minimum transverse momentum, pch

T,assoc jet, of 
15 GeV/c and is always of lower transverse momentum than the 
full jet. The mean |kTy| increases with the transverse momen-
tum of the full jet. Increasing the transverse momentum of the 
full jet extends the kinematic reach of |kTy| by opening phase–
space for more gluon radiation. This results in a harder |kTy| dis-
tribution which drops at large |kTy| because the kinematic limit 
|kTy|max = pch+ne

T,jet,max sin(2π/3) is reached. The p–Pb data points 
and the PYTHIA8 calculation show a similar dependence on pch+ne

T,jet . 
The lower panels of Fig. 1 show the ratio between data and 
PYTHIA8, including initial state radiation (ISR), which is observed 
to be consistent with unity for all transverse momentum ranges 
studied. In the upper panels PYTHIA without the initial state radi-
ation option is shown in addition (dashed line). Without ISR the 
amount of QCD radiation (which includes NLO corrections) is re-
duced, resulting in a steeper |kTy| spectrum. The effect is most 
pronounced for the pch+ne

T,jet > 40 GeV/c where the p–Pb measure-
ment is in agreement with full PYTHIA simulation but differs sig-
nificantly from PYTHIA without ISR. This observation suggests that 

the dijet |kTy| spectrum for large Q 2 processes is highly sensitive 
to the increased available phase–space of QCD radiation processes. 
Measurements presented in [14] of the dijet transverse momentum 
imbalance for more energetic jets than the measurement presented 
here also show results which are comparable to simulated pp ref-
erence and independent of the forward transverse energy.

4.2. Evolution with event multiplicity and pch
T,assoc jet

In addition to the measurement of |kTy| in the highest multi-
plicity p–Pb events, the |kTy| distribution is also measured in the 
lower multiplicity V0A event class 40–100%. If strong nuclear ef-
fects are present they are expected to be stronger in the high 
multiplicity events due to the larger number of participants in 
the collision. A comparison is shown in the left panel of Fig. 2. 
The systematic uncertainties between the two measurements are 
fully correlated since they originate from the uncertainty on the 
jet energy scale of the full jet. The consistency between the |kTy|
distributions in the high and low multiplicity event class was eval-
uated by taking the ratio and performing a constant fit taking into 
account only the statistical errors. The fit is within 1.2σ consis-
tent with unity. This result shows that in the measured kinematical 
region, possible nuclear matter effects and/or shadowing in the 
|kTy| distributions in p–Pb collisions are not observed for dijets at 
midrapidity.

The sensitivity to dijet acoplanarity is enhanced by selecting 
more pT imbalanced jet pairs. The |kTy| distribution for full jets 
with 70 < pch+ne

T,jet < 120 GeV/c for various pch
T,assoc jet ranges is 

shown in the right panel of Fig. 2. The |kTy| distribution tends 
to become steeper if jets are more balanced indicating that the 
influence of QCD radiation decreases. This behavior supports the 
previous observation (Section 4.1) that the dijet |kTy| observable 
for highly energetic jets is over a wide range of |kTy| mainly sensi-
tive to QCD radiation processes rather than elastic scatterings.

4.3. Evolution and characterization via 〈|kTy|〉

The measured |kTy| distributions are further characterized by 
reporting the mean (〈|kTy|〉) of the distribution. To avoid that the 
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Fig. 2. Distributions of |kTy| for two V0A event classes (left panel) and three pch
T,assoc jet ranges (right panel).

Fig. 3. Mean of the |kTy| distributions as a function of the full jet transverse momentum pch+ne
T,jet (left) and the associated charged jet transverse momentum pch

T,assoc jet (right) 
compared to PYTHIA8.
extracted moment is biased by statistical fluctuations for large val-
ues of |kTy|, the distributions are extrapolated using a template 
generated with PYTHIA8 (tune 4C, K = 0.7), which agrees well 
with the p–Pb measurement (see Fig. 1). The PYTHIA |kTy| distribu-
tion is normalized to minimize the χ2 between data and PYTHIA. 
The transition from the data to the normalized template is fixed 
at 60% of the kinematic limit |kTy|max. The transition point is var-
ied to estimate the systematic uncertainty from this extrapolation 
procedure. In addition, the normalization of the PYTHIA template 
is varied by one standard deviation of the fit uncertainty. This re-
sults in an additional systematic uncertainty on the extraction of 
〈|kTy|〉. For low pch+ne

T,jet the uncertainty on the extracted mean is 
equal to 2.9% and increases to 8.1% for the highest pch+ne

T,jet val-
ues.

The left panel of Fig. 3 shows the mean of the measured |kTy|
distributions as a function of the full jet transverse momentum and 
is compared to the PYTHIA values. The measured moment in p–Pb 
collisions agrees within the uncertainties of the measurement with 
the PYTHIA8 expectation. The mean increases with pch+ne

T,jet since 
the additional kT due to radiative QCD processes increases with 
pch+ne

T,jet .
The right panel of Fig. 3 shows the evolution of 〈|kTy|〉 as a 

function of pch
T,assoc jet for 70 < pch+ne

T,jet < 120 GeV/c. The mean, 
〈|kTy|〉, is compared to the earlier presented PYTHIA8 tune in 
Section 4.1 and is in agreement within the uncertainties of the 
measurement. The mean for 60 < pch+ne

T,jet < 80 GeV/c is reported 
for two multiplicity event classes in Table 1. No significant dif-
ference is observed as a function of the multiplicity measured 
with V0A.

Table 1
Mean of the |kTy| distributions for 60 < pch+ne

T,jet < 80 GeV/c and 15 < pch
T,assoc jet <

pch+ne
T,jet GeV/c in a high (0–40%) and low (40–100%) V0A multiplicity event class. 

The first quoted uncertainty is statistical while the second is systematic. The last 
column corresponds to the values from the PYTHIA8 calculation at particle level 
with the same kinematic selection. The uncertainty on the PYTHIA calculation is 
statistical.

0–40% 40–100% PYTHIA8 pp

〈|kTy|〉 (GeV/c) 14.7 ± 0.8 ± 0.3 13.6 ± 1.1 ± 0.5 15.1 ± 0.1

5. Conclusion

The dijet acoplanarity in p–Pb collisions was studied by mea-
suring dijet transverse momentum |kTy|. The evolution of |kTy| as 
function of the transverse momentum of the full jet, associated 
charged jet and event multiplicity was presented. The |kTy| spectra 
for different full and associated charged jet transverse momentum 
ranges in the 0–40% V0A event multiplicity class were found con-
sistent with the PYTHIA prediction. The observed increase with jet 
energy from the mean |kTy| of 6.6 ± 0.4 (stat.) ± 0.2 (syst.) GeV/c
to 18.8 ± 1.3 (stat.) ± 1.5 (syst.) GeV/c as well as the observed 
narrowing of |kTy| for more balanced jets suggests that the dijet 
|kTy| spectrum for large Q 2 processes is mainly sensitive to the 
increased available phase–space for QCD radiation processes. Fur-
thermore the dijet acoplanarity was found to be consistent (within 
1.2σ ) in the two event multiplicity classes analyzed in this study, 
indicating that in the measured kinematical region no strong nu-
clear matter effects in p–Pb collisions are observed. Since these 
results indicate that nuclear kT effects are small, the pT imbalance 
of jet correlations in Pb–Pb results [35,36] are unlikely to originate 
from multiple scatterings in the nuclear target.
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Executive Agency for Higher Education Research Development and 
Innovation Funding (CNCS–UEFISCDI), Romania; Ministry of Edu-
cation and Science of the Russian Federation, Russian Academy of 
Sciences, Russian Federal Agency of Atomic Energy, Russian Fed-
eral Agency for Science and Innovations and The Russian Founda-
tion for Basic Research; Ministry of Education of Slovakia; Depart-
ment of Science and Technology, Republic of South Africa; Centro 
de Investigaciones Energeticas, Medioambientales y Tecnologicas 
(CIEMAT), E-Infrastructure shared between Europe and Latin Amer-
ica (EELA), Ministerio de Economía y Competitividad (MINECO) of 
Spain, Xunta de Galicia (Consellería de Educación), Centro de Apli-
caciones Tecnológicas y Desarrollo Nuclear (CEADEN), Cubaenergía, 
Cuba, and IAEA (International Atomic Energy Agency); Swedish 
Research Council (VR) and Knut & Alice Wallenberg Foundation 
(KAW); Ukraine Ministry of Education and Science; United King-
dom Science and Technology Facilities Council (STFC); The United 
States Department of Energy, the United States National Science 
Foundation, the State of Texas, and the State of Ohio; Ministry of 
Science, Education and Sports of Croatia and Unity through Knowl-
edge Fund, Croatia. Council of Scientific and Industrial Research 
(CSIR), New Delhi, India.

References

[1] R. Feynman, R. Field, G. Fox, Correlations among particles and jets produced 
with large transverse momenta, Nucl. Phys. B 128 (1977) 1–65.

[2] L. Apanasevich, et al., Evidence for parton kT effects in high-pT particle pro-
duction, Phys. Rev. Lett. 81 (Sep. 1998) 2642–2645.

[3] L. Apanasevich, et al., kT effects in direct-photon production, Phys. Rev. D 59 
(Feb. 1999) 074007.

[4] D0 Collaboration, V. Abazov, et al., Measurement of dijet azimuthal decorrela-
tions at central rapidities in pp̄ collisions at √s = 1.96 TeV, Phys. Rev. Lett. 94 
(2005) 221801, arXiv:hep-ex/0409040.

[5] CMS Collaboration, V. Khachatryan, et al., Dijet azimuthal decorrelations in pp
collisions at √s = 7 TeV, Phys. Rev. Lett. 106 (2011) 122003, arXiv:1101.5029 
[hep-ex].

[6] ATLAS Collaboration, G. Aad, et al., Measurement of dijet azimuthal decorrela-
tions in pp collisions at √s = 7 TeV, Phys. Rev. Lett. 106 (2011) 172002, arXiv:
1102.2696 [hep-ex].

[7] J. Albacete, N. Armesto, R. Baier, G. Barnafoldi, J. Barrette, et al., Predictions 
for p + Pb collisions at √sNN = 5 TeV, Int. J. Mod. Phys. E 22 (2013) 1330007, 
arXiv:1301.3395 [hep-ph].

[8] M. Gyulassy, M. Plumer, Jet quenching in dense matter, Phys. Lett. B 243 (1990) 
432–438.

[9] R. Baier, Y.L. Dokshitzer, S. Peigne, D. Schiff, Induced gluon radiation in a QCD 
medium, Phys. Lett. B 345 (1995) 277–286, arXiv:hep-ph/9411409.

[10] ATLAS Collaboration, G. Aad, et al., Measurements of the nuclear modification 
factor for jets in Pb + Pb collisions at √sNN = 2.76 TeV with the ATLAS detec-
tor, arXiv:1411.2357 [hep-ex].

[11] ATLAS Collaboration, G. Aad, et al., Measurement of inclusive jet charged-
particle fragmentation functions in Pb + Pb collisions at √sNN = 2.76 TeV with 
the ATLAS detector, Phys. Lett. B 739 (2014) 320–342, arXiv:1406.2979 [hep-
ex].

[12] CMS Collaboration, S. Chatrchyan, et al., Measurement of jet fragmentation in 
PbPb and pp collisions at √sNN = 2.76 TeV, Phys. Rev. C 90 (2) (2014) 024908, 
arXiv:1406.0932 [nucl-ex].

[13] CMS Collaboration, S. Chatrchyan, et al., Modification of jet shapes in PbPb col-
lisions at √sNN = 2.76 TeV, Phys. Lett. B 730 (2014) 243–263, arXiv:1310.0878 
[nucl-ex].

[14] CMS Collaboration, S. Chatrchyan, et al., Studies of dijet transverse momentum 
balance and pseudorapidity distributions in pPb collisions at √sNN = 5.02 TeV, 
Eur. Phys. J. C 74 (7) (2014) 2951, arXiv:1401.4433 [nucl-ex].

[15] ALICE Collaboration, J. Adam, et al., Centrality dependence of particle produc-
tion in p–Pb collisions at √sNN = 5.02 TeV, arXiv:1412.6828 [nucl-ex].

[16] ALICE Collaboration, B. Abelev, et al., Pseudorapidity density of charged parti-
cles in p–Pb at √sNN = 5.02 TeV, Phys. Rev. Lett. 110 (2013) 032301, arXiv:
1210.3615 [nucl-ex].

[17] ALICE EMCal Collaboration, U. Abeysekara, et al., ALICE EMCal physics perfor-
mance report, arXiv:1008.0413 [physics.ins-det].

[18] ALICE Collaboration, K. Aamodt, et al., Alignment of the ALICE Inner Tracking 
System with cosmic-ray tracks, J. Instrum. 5 (2010) P03003, arXiv:1001.0502 
[physics.ins-det].

[19] J. Alme, Y. Andres, H. Appelshauser, S. Bablok, N. Bialas, et al., The ALICE TPC, a 
large 3-dimensional tracking device with fast readout for ultra-high multiplic-
ity events, Nucl. Instrum. Methods Phys. Res., Sect. A, Accel. Spectrom. Detect. 
Assoc. Equip. 622 (2010) 316–367, arXiv:1001.1950 [physics.ins-det].

[20] ALICE Collaboration, B. Abelev, et al., Performance of the ALICE experiment at 
the CERN LHC, Int. J. Mod. Phys. A 29 (2014) 1430044, arXiv:1402.4476 [nucl-
ex].

[21] ALICE Collaboration, B. Abelev, et al., Multiplicity dependence of jet-like two-
particle correlations in p–Pb collisions at √sNN = 5.02 TeV, Phys. Lett. B 741 
(2014) 38–50, arXiv:1406.5463 [nucl-ex].

[22] M. Cacciari, G.P. Salam, G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 
1896, arXiv:1111.6097 [hep-ph].

[23] M. Cacciari, G.P. Salam, Dispelling the n3 myth for the kt jet-finder, Phys. Lett. 
B 641 (2006) 57–61, arXiv:hep-ph/0512210.

[24] ALICE Collaboration, B. Abelev, et al., Measurement of event background fluc-
tuations for charged particle jet reconstruction in Pb–Pb collisions at √sNN =
2.76 TeV, J. High Energy Phys. 1203 (2012) 053, arXiv:1201.2423 [hep-ex].

[25] ALICE Collaboration, B. Abelev, et al., Measurement of the inclusive differential 
jet cross section in pp collisions at √s = 2.76 TeV, Phys. Lett. B 722 (2013) 
262–272, arXiv:1301.3475 [nucl-ex].

[26] CMS Collaboration, S. Chatrchyan, et al., Measurement of the underlying event 
activity in pp collisions at √s = 0.9 and 7 TeV with the novel jet-area/median 
approach, J. High Energy Phys. 1208 (2012) 130, arXiv:1207.2392 [hep-ex].

[27] ALICE Collaboration, J. Adam, et al., Measurement of charged jet production 
cross sections and nuclear modification in p–Pb collisions at √sNN = 5.02 TeV, 
arXiv:1503.00681 [nucl-ex].

[28] A. Angelis, et al., A measurement of the transverse momenta of partons, and 
of jet fragmentation as a function of √s in p–p collisions, Phys. Lett. B 97 (1) 
(1980) 163–168.



ALICE Collaboration / Physics Letters B 746 (2015) 385–395 391

[29] T. Sjostrand, S. Mrenna, P. Skands, PYTHIA 6.4 physics and manual, J. High En-
ergy Phys. 05 (2006) 026, arXiv:hep-ph/0603175.

[30] T. Sjostrand, S. Mrenna, P.Z. Skands, A brief introduction to PYTHIA 8.1, Comput. 
Phys. Commun. 178 (2008) 852–867, arXiv:0710.3820 [hep-ph].

[31] P.Z. Skands, Tuning Monte Carlo generators: the Perugia tunes, Phys. Rev. D 82 
(2010) 074018, arXiv:1005.3457 [hep-ph].

[32] R. Brun, F. Carminati, S. Giani, GEANT detector description and simulation tool, 
CERN-W5013, CERN-W-5013, 1994.

[33] ALICE Collaboration, B. Abelev, et al., Measurement of charged jet suppression 
in Pb–Pb collisions at √sNN = 2.76 TeV, J. High Energy Phys. 1403 (2014) 013, 
arXiv:1311.0633 [nucl-ex].

[34] ALICE Collaboration, B.B. Abelev, et al., Charged jet cross sections and prop-
erties in proton–proton collisions at √

s = 7 TeV, arXiv:1411.4969 [nucl-
ex].

[35] ATLAS Collaboration, G. Aad, et al., Observation of a centrality-dependent di-
jet asymmetry in lead–lead collisions at √

sNN = 2.77 TeV with the ATLAS 
detector at the LHC, Phys. Rev. Lett. 105 (2010) 252303, arXiv:1011.6182 [hep-
ex].

[36] CMS Collaboration, S. Chatrchyan, et al., Observation and studies of jet quench-
ing in PbPb collisions at nucleon–nucleon center-of-mass energy = 2.76 TeV, 
Phys. Rev. C 84 (2011) 024906, arXiv:1102.1957 [nucl-ex].

ALICE Collaboration

J. Adam 39, D. Adamová 82, M.M. Aggarwal 86, G. Aglieri Rinella 36, M. Agnello 110, N. Agrawal 47, 
Z. Ahammed 130, S.U. Ahn 67, I. Aimo 93,110, S. Aiola 135, M. Ajaz 16, A. Akindinov 57, S.N. Alam 130, 
D. Aleksandrov 99, B. Alessandro 110, D. Alexandre 101, R. Alfaro Molina 63, A. Alici 104,12, A. Alkin 3, 
J. Alme 37, T. Alt 42, S. Altinpinar 18, I. Altsybeev 129, C. Alves Garcia Prado 118, C. Andrei 77, A. Andronic 96, 
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