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We present the first measurement of elliptic (v2) and triangular (v3) flow in high-multiplicity 3Heþ Au
collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV. Two-particle correlations, where the particles have a large separation in

pseudorapidity, are compared in 3Heþ Au and in pþ p collisions and indicate that collective effects
dominate the second and third Fourier components for the correlations observed in the 3Heþ Au system.
The collective behavior is quantified in terms of elliptic v2 and triangular v3 anisotropy coefficients
measured with respect to their corresponding event planes. The v2 values are comparable to those
previously measured in dþ Au collisions at the same nucleon-nucleon center-of-mass energy. Compar-
isons with various theoretical predictions are made, including to models where the hot spots created by the
impact of the three 3He nucleons on the Au nucleus expand hydrodynamically to generate the triangular
flow. The agreement of these models with data may indicate the formation of low-viscosity quark-gluon
plasma even in these small collision systems.

DOI: 10.1103/PhysRevLett.115.142301 PACS numbers: 25.75.Dw

The study of high-energy heavy ion collisions at the
Relativistic Heavy Ion Collider (RHIC) and the Large
Hadron Collider has produced abundant evidence for the
formation of quark-gluon plasma (QGP). Observation of
strong elliptic and triangular flow in these Aþ A collisions
indicates that the QGP has a very small viscosity and
behaves like a nearly perfect fluid [1–3]. Recently, mea-
surements at the Large Hadron Collider in very high
multiplicity events from collisions of pþ p and pþ Pb
have revealed similar particle emission patterns [4–8]. Such
features have also been detected in dþ Au collisions at
RHIC [9–11]. Explanations of the data in terms of the
formation of small droplets of QGP, which then expand
hydrodynamically [12], compete with alternatives involv-
ing novel initial-state effects (e.g., glasma models [13]).
RHIC is uniquely suited to test these competing theories by
its ability to engineer the size and shape of the initial
reaction zone through collisions of pþ Au, dþ Au, and
3Heþ Au, as proposed in Ref. [14]. In the case when
small QGP droplets are formed, the latter two systems
should have the strongest elliptic and triangular flow
patterns, respectively.
The azimuthal anisotropy of produced particles

can be quantified by the Fourier coefficients vn in the
expansion of the particles’ distribution as dN=dϕ ∝ 1þP

n¼12vn cosðnðϕ −ΨnÞÞ [15], where n is the order of the
harmonic, ϕ is the azimuthal angle of particles of a given
type, and Ψn is the azimuthal angle of the nth-order event
plane. In this Letter, the elliptic (v2) and triangular (v3)
flow for inclusive charged hadrons produced at
midrapidity jηj < 0.35 in high-multiplicity 3Heþ Au
collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV are measured in the
PHENIX experiment with respect to Ψ2 and Ψ3 event

planes. The signatures of collective motion beyond known
nonflow correlation effects (e.g., jets, resonances, etc.) are
also examined by comparing long-range correlations
between 3Heþ Au and pþ p collisions.
A full description of the PHENIX experimental setup is

given in Ref. [16]. Charged particles are reconstructed in
the two PHENIX central-arm tracking systems comprising
drift chambers (DC) and multiwire proportional pad cham-
bers (PC) [17]. Each arm covers π=2 in azimuth and
jηj < 0.35. The DC tracks are matched to hits in the
outermost PC layer (PC3), reducing the contribution of
tracks originating from decays and photon conversions.
The observed event-plane angles ΨObs

n are measured in
different pseudorapidity ranges by the beam-beam counters
[18] (BBC) and forward-silicon-vertex [19] (FVTX) detec-
tors. The PHENIX experiment has two BBCs, each
comprising 64 quartz Čerenkov radiators read out by
photomultiplier tubes (PMTs), subtending pseudorapidity
(3.0 < jηj < 3.9). The FVTX [19] detector comprises two
identical end cap assemblies, located symmetrically in the
north and south directions. Charged particles can be
detected with a high efficiency (>95%) using a cluster
of ministrip hits. The event planes are measured by the
BBC in the Au-going (south) direction (BBC-S), which
covers −3.9 < η < −3.0, and by the reconstructed clusters
in the FVTX in the Au-going (south) end cap (FVTX-S),
which covers −3.0 < η < −1.0.
The 3Heþ Au data for this analysis were obtained in the

2014 run of the PHENIX experiment and include 1.6 billion
minimum-bias (MB) triggered events and 480 million high-
multiplicity (HM) triggered events. The MB trigger is
defined as a coincidence between the north and south BBCs
requiring one or more photomultiplier tubes firing in each,
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capturing 88� 4% of the total inelastic 3Heþ Au cross
section. The HM trigger is based on the MB trigger, but
additionally requires more than 48 photomultiplier tubes
firing in the BBC-S.
The event centrality class in 3Heþ Au collisions is

determined as a percentile of the total charge
P

QBBC-S

measured in the BBC-S [18,20–22]. The distribution of
BBC-S PMT charge sum is shown in Fig. 1 for both MB
and HM triggered events. The distribution for HM events
has been scaled down by the relative online trigger prescale
factor. For the MB sample, a threshold on the BBC-S
charge sum shown in Fig. 1 is applied to select the top 5%
central 3Heþ Au collisions. In total, 400 million events
have been used for the measurement of v2 and v3 including
both HM and MB triggered events having BBC-S charge
sum above the threshold.
Events with high BBC-S sum charge have been simu-

lated with a Monte Carlo Glauber model [23,24], following
the procedure detailed in Ref. [18]. The average number of
binary collisions (Ncoll), participants (Npart), and initial-
state eccentricities (ε2, ε3) were found to be consistent,
within uncertainties, between the MB with the 0%–5%
central selection and the HM events being used here. Note
that in this Glauber calculation, the spatial distribution from
each participant is smeared with a two-dimensional
Gaussian, σr ¼ 0.4 fm [18]. The simulation results for
central 3Heþ Au and dþ Au are listed in Table I with the
dþ Au values from Ref. [18].

To estimate the contribution to the flow measurements
from elementary processes, such as jets and resonance decay,
we first examine azimuthal correlations in minimum bias
pþ p and central 3Heþ Au events across a long range in
pseudorapidity, with jΔηj ∼ 3.5 between tracks in the
PHENIX central arm at a given pT and charge measured
in the BBC PMTs. We use the BBCs for these
correlation functions because the detector configuration
and performance is uniform over many years, which enables
us to combine data for pþ p collisions at

ffiffiffi
s

p ¼ 200 GeV
from running in 2005, 2006, 2008, and 2009. This results in
2.7 billion total minimum bias pþ p events.
Using track-BBC pairs, we construct the distribution

over relative azimuth, and from that the normalized
correlation function:

SðΔϕ; pTÞ ¼
d(wPMTN

trackðpTÞ-PMT
Same event )

dΔϕ
; ð1Þ

CðΔϕ; pTÞ ¼
SðΔϕ; pTÞ
MðΔϕ; pTÞ

R
2π
0 MðΔϕ; pTÞdΔϕR
2π
0 SðΔϕ; pTÞdΔϕ

: ð2Þ

The weighting wPMT for each pair is taken as the PMT
charge. The signal distribution S is over pairs in the same
event; the mixed distribution M is over pairs from different
events in the same event centrality and z vertex bin, and serves
to correct for any nonuniformity in acceptance over Δϕ.
Figure 2 shows the correlation functions CðΔϕ; pTÞ

for different pT bins, for HM 3Heþ Au collisions using
BBC-S, as shown in panels (a)–(c), and minimum-bias
pþ p collisions using both BBCs, as shown in panels
(d)–(f). We analyze these shapes by fitting each CðΔϕ; pTÞ
to a four-term Fourier cosine expansion, fðΔϕÞ ¼
1þP

4
n¼1 2cnðpTÞ cosðnΔϕÞ. The sum function and each

individual cosine component are plotted in Fig. 2 for each
distribution. Central 3Heþ Au collisions show a clearly
visible enhancement of near-side pairs, producing a local
maximum in the distribution at Δϕ ∼ 0. In contrast, pþ p
collisions can be described almost completely by the dipole
term cos(Δϕ), as expected generically from back-to-back
jets and transverse momentum conservation.
As in our dþ Au analysis [10], we estimate quantita-

tively the correlation strength that would be observed in a
class of 3Heþ Au collisions purely from elementary
processes, such as in pþ p collisions. Approximating
the 3Heþ Au collisions as superpositions of some number
N of pþ p collisions, we would then expect the correlation
strengths cn from the superposition to be the same as in
pþ p, but diluted by a factor of 1=N. We then approximate
this dilution factor as simply the ratio of total charge
observed in the BBC-S detector in pþ p versus 3Heþ Au:

cHeAu elementary
n ðpTÞ≃ cpþp

n ðpTÞ
ðPQBBC-SÞpþp

ðPQBBC-SÞHeAu
ð3Þ

TABLE I. Monte Carlo Glauber characterization results.

System Npart Ncoll ε2 ε3

0%–5% 3HeþAu 25.0�1.6 26.1�2.0 0.50�0.02 0.28�0.02
0%–5% dþ Au 17.3�1.2 18.1�1.2 0.54�0.04 0.19�0.01

Charge of BBC(Au-going) (a.u.)
0 50 100 150 200 250 300

dN
/d

Q

1

10

210

310

410

510 top 5% He+Au 200 GeV3PHENIX

M.B. Trigger

H.M. Trigger  0.096×

FIG. 1 (color online). The BBC-S charge distribution in
minimum bias 3Heþ Au events and in high-multiplicity
triggered events, scaled appropriately. The dashed line indicates
the threshold selecting the 0%–5% most central events.
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with a numerical value of 1=ð20.6� 0.4Þ. Figure 3(a)
shows the cn’s from the 3Heþ Au correlation functions
and from the pþ p with the dilution factor applied. The
cpp2 is found to be positive and the cpp3 to be negative. This
indicates that the correlation of elementary processes
contributes positively to the v2 but negatively to the v3.
The ratios in Fig. 3(b) show that the relative correlation
strength in 3Heþ Au from elementary processes grows
with pT , as might be expected from jet processes, for
example, but does not exceed 7% (15%) for c2 (c3).
We now quantify the strength of collective behavior

through the vn coefficients. The vn coefficients for charged
hadrons at midrapidity are measured in central 3Heþ Au
events via the event-plane method [25] as vnðpTÞ ¼
hcos n(ϕParticleðpTÞ −ΨObs

n )i=ResðΨObs
n Þ, where the average

is over particles in the same pT bin and events of the same
centrality. The nth-order event-plane direction ΨObs

n is
determined in each event with the BBC-S or FVTX-S
detectors. The ΨObs

n are corrected for each detector with a
standard event-plane flattening technique [25–28] to remove
the effect of any small, residual nonuniformities in the
detector response. As a cross-check, we use event planes
from both the full FVTX-S covering−3.0 < η < −1.0 and a
subsection covering−2.5<η<−1.5. The choice of the latter
is to avoid edge effects and still retain good FVTX-S
acceptance.
We calculate the resolutions ResðΨObs

n Þ for each detector
at each n using the standard three-event-plane method
[10,25], combining two event planes with the nth order

event plane determined from central-arm tracks, restricted
to low pT (0.2 < pT < 2.0 GeV=c) to minimize contribu-
tion from jet fragments. In the case of the n ¼ 2 event
plane, the resolution is also estimated using the first-order
event plane measured with spectator neutrons in the
shower-maximum detector of the zero-degree calorimeter
[28,29] on the Au-going side (η < −6.5). The values for the
resolution obtained in both methods are found to be
consistent within uncertainties.
The event plane resolutions for each detector and order

are shown in Table II. The v2 and v3 measured using the
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FIG. 3 (color online). (a) The cnðpTÞ coefficients for track-BBC
pairs from high multiplicity 3Heþ Au collisions (filled, denoted
“cA”) and cnðpTÞ for pairs in minimum bias pþ p collisions
times the dilution factor ðPQBBC-SÞpþp=ð

P
QBBC-SÞHeAu (open,

denoted “cB”). (b) The ratio cB=cA is shown with statistical
error bars. (c) Comparison of extracted values of v2 and v3 for
midrapidity tracks in central 3Heþ Au using event plane measure-
ments with detectors in different pseudorapidity intervals (see text).
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FIG. 2 (color online). The azimuthal correlation functions
CðΔϕ; pTÞ, as defined inEq. (2), for track-BBCpairswith different
track pT selections in (a)–(c) HM 3Heþ Au collisions and
(d)–(f) minimum bias pþ p collisions both at

ffiffiffiffiffiffiffiffi
sNN

p ¼200GeV.
The track pT bins are (a),(d) 0.4–1.0, (b),(e) 1.0–2.0, and (c),(f)
2.0–3.0 GeV=c. Each correlation function is fit with a four-term
Fourier cosine expansion; the individual components n ¼ 1 to
n ¼ 4 are drawn on each panel, together with the fit function sum.

TABLE II. The resolution of nth-order event-plane angles
measured by the BBC-S and FVTX-S detectors.

Subsystem ResðΨObs
2 Þ ResðΨObs

3 Þ
BBC-S (−3.9 < η < −3.0) 0.110 0.034
FVTX-S (−2.5 < η < −1.5) 0.232 0.052
FVTX-S (−3.0 < η < −1.0) 0.274 0.070
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three event planes described above are shown in Fig. 3(c),
and are consistent between detectors to within 5%(15%) for
v2ðv3Þ over the whole pT range.
The main sources of systematic uncertainty for the vn

measurements are (1) track backgrounds from weak decays
and photon conversions, (2) multiple 3Heþ Au collisions
in a bunch crossing (pileup), (3) biases in event plane
determination, (4) the effect of detector alignment and
performance on the vn measurement, and (5) elementary
process or nonflow correlations; we assign the following
values to account for these systematic uncertainties. (1) We
estimate the track background contribution by reducing the
spatial matching windows in PC3 from 3σ to 2σ and find a
change of less than 2%(5%) fractionally in v2ðv3Þ. (2) We
expect the vn from pileup events to be modestly reduced.
Conservatively assuming that pileup events that contami-
nate the sample at the level of 4%–5% have a negligible vn,
this results in a þ0

−5% systematic uncertainty. (3) Event plane
effects are estimated from vn measurements using different
event plane detectors as shown in Fig. 3(c). They are no
more than 5%(15%) for v2ðv3Þ. (4) The difference of vn for
charged hadrons measured by the east and west DC arms
are found to be less than 2%(15%) for v2ðv3Þ. (5) The
contribution from nonflow correlations at each pT is
estimated from Fig. 3(b), reaching a maximum of 7%
(15%) for v2ðv3Þ. We do not attempt to correct for this
contribution and instead treat it as a systematic uncertainty.
All of these contributions are summed in quadrature.
The final vn results are determined using the event plane

measured in the FVTX-S covering −3.0 < η < −1.0, and
these are shown in Fig. 4, with the systematic uncertainties as
described above. We observe sizable v2 and v3 anisotropies
that both rise as a function ofpT . It is notable that the v2ðpTÞ
values for central 3Heþ Au collisions arevery similarwithin
uncertainties with those reported earlier in central dþ Au
collisions [10]. In scenarios where these anisotropies reflect
the initial geometry, this similarity would be expected as the
initial eccentricities ε2 for central dþ Au and 3Heþ Au are
essentially identical, as shown in Table I. The same calcu-
lations indicate amuch larger ε3 in 3Heþ Au comparedwith
dþ Au collisions. However, the dþ Au data used in [10]
were taken in 2008, without a central trigger and before the
FVTX was installed, and did not allow extraction of a
statistically significant v3 in dþ Au.
We now compare the experimental data with theory

predictions in the literature. Four such predictions shown
in Fig. 4 employ viscous hydrodynamics with η=s at or near
the conjectured lower bound 1=4π [30]. The Glauber þ
Hydro [31] (IP-Glasmaþ Hydro [32]) utilize Glauber
(IP-Glasma) initial conditions, and both overpredict the
magnitude of the v2 and v3 data. Improved agreement
may be achieved by utilizing a larger value of η=s or by
the inclusion of a transition fromQGP to a hadronic cascade,
which has much larger viscous effects and thus decreases the
overall flow. The SONIC calculation [14] employs Glauber

initial conditions, viscous hydrodynamics, and then at
T ¼ 170 MeV, a transition to a hadronic cascade. The
SUPERSONIC calculation [33] additionally includes preequi-
librium dynamics that boosts the initial velocity fields at the
earliest times. The impact of preequilibrium is modest on the
v2 values and both calculations agree with the data within
uncertainties. The effect of preequilibrium on v3 is signifi-
cantly larger as the triangular flow takes longer to develop
[14]. The SUPERSONIC prediction agrees well with the
experimental data for pT < 1.5 GeV=c, and then the data
trend towards the SONIC prediction at higher pT.
Lastly, we compare to calculations utilizing the

a-multiphase-transport (AMPT) model [34], which incorpo-
rates both partonic and hadronic scattering, and has
recently been compared with anisotropies in central pþ
Pb and dþ Au collisions [35,36]. AMPT results for 3Heþ
Au agree reasonably with the experimental v2 and v3 data
for pT < 1 GeV and then significantly underpredict the
data. Possible underlying causes of the anisotropies within
the AMPT model are discussed in Ref. [37].
We have presented first results on azimuthal anisotropies

v2 and v3 in central 3Heþ Au collisions at
ffiffiffiffiffiffiffiffi
sNN

p ¼
200 GeV. Calculations including hydrodynamic expansion
of the initial hot spots created in 3Heþ Au collisions
qualitatively describe the data. Further comparison with
different theoretical models should be informative in terms
of the contributions from the initial geometry and each time
stage in the medium evolution including preequilibrium.
Forthcoming results from pþ Au collisions at RHIC will
provide a full suite of geometries with highly asymmetric
collisions to constrain the origin of the observed anisotropies.
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FIG. 4 (color online). Results for v2 (circles) and v3 (squares) as
a function of pT for inclusive charged hadrons at midrapidity in
0%–5% central 3Heþ Au collisions at
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p ¼ 200 GeV; error
bars are statistical and shaded bars are systematic uncertainties
as described in the text. Also shown are various theoretical
calculations, see text for details and references.
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