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√
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The size of the particle emission region in high-energy collisions can be deduced using the femtoscopic
correlations of particle pairs at low relative momentum. Such correlations arise due to quantum statistics and
Coulomb and strong final state interactions. In this paper, results are presented from femtoscopic analyses
of π±π±, K±K±, K0

SK0
S, pp, and pp correlations from Pb-Pb collisions at

√
sNN = 2.76 TeV by the ALICE

experiment at the LHC. One-dimensional radii of the system are extracted from correlation functions in terms of
the invariant momentum difference of the pair. The comparison of the measured radii with the predictions from
a hydrokinetic model is discussed. The pion and kaon source radii display a monotonic decrease with increasing
average pair transverse mass mT which is consistent with hydrodynamic model predictions for central collisions.
The kaon and proton source sizes can be reasonably described by approximate mT scaling.

DOI: 10.1103/PhysRevC.92.054908 PACS number(s): 25.75.Dw, 24.10.Nz, 25.75.Ag

I. INTRODUCTION

Two-particle correlations at low relative momenta (com-
monly referred to as femtoscopy), which are sensitive to
quantum statistics (in the case of identical particles) as well as
strong and Coulomb final-state interactions (FSIs), are used to
extract the space-time characteristics of the particle-emitting
sources created in heavy-ion collisions [1–3]. The source radii
extracted from these correlations describe the system at kinetic
freeze-out, i.e., the last stage of particle interactions. Pion
femtoscopy, which is the most common femtoscopic analysis,
has shown signatures of hydrodynamic flow in heavy-ion
collisions, manifesting as a decrease in the source radii
with increasing transverse mass mT =

√
k2

T + m2 [4,5], where
kT = |pT,1 + pT,2|/2 is the average transverse momentum of
the pair. This behavior can be interpreted as one of the
signatures of the formation of deconfined quark matter in these
collisions [6]. However, a necessary condition for collective
behavior is for all particles created in the collision, not just
pions, to experience hydrodynamic flow. Thus, femtoscopic
studies with particles other than pions are also needed. It was
shown that the hydrodynamic picture of nuclear collisions
for the particular case of small transverse flow leads to the
same mT behavior of the longitudinal radii (Rlong) for pions
and kaons [7]. This common mT scaling for π and K is an
indication that the thermal freeze-out occurs simultaneously
for π and K and that these two particle species are subject to the
same Lorentz boost. Previous kaon femtoscopy studies carried
out in Pb-Pb collisions at the SPS by the NA44, NA49, and
CERES Collaborations [8–10] reported the decrease of Rlong

with mT as ∼m−0.5
T as a consequence of the boost-invariant

longitudinal flow. Subsequent studies carried out in Au-Au
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collisions at RHIC [11–13] have shown the same level in
the mT dependencies for π and K radii, consistent with a
common freeze-out hypersurface. Like the SPS analysis, no
exact universal mT scaling for the three-dimensional (3D) radii
was observed at RHIC. In the case of the one-dimensional
correlation radius Rinv, only approximate scaling with mT

is expected as an additional confirmation of hydrodynamic
expansion [4]. In fact, Rinv source sizes as a function of mT for
different particle types (π , K, p...) follow the common curve
with an accuracy of ∼10%.

The motivation for comparing femtoscopic analyses with
different particle species is not limited to studying mT depen-
dence. The kaon analyses also offer a cleaner signal compared
to pions, as they are less affected by resonance decays,
while the proton analysis provides a possibility for checking
if baryons are included in the collective motion. Studying
charged and neutral kaon correlations together provides a
convenient experimental consistency check, since they require
different detection techniques (charged tracks vs decay vertex
reconstruction) and call for different final-state interaction
fitting parametrizations (Coulomb dominated vs strong inter-
action dominated), yet they are predicted to exhibit the same
femtoscopic parameters [14]. In addition to the charged kaon
analyses at the SPS and RHIC, neutral kaon correlations were
studied in Au-Au collisions at RHIC [15], and ALICE has
performed analyses on both charged and neutral kaons in
pp collisions [16,17]. Recent pion femtoscopic results were
obtained at RHIC [18] and the LHC [5,19–21], and proton
femtoscopy has also been previously studied at RHIC [22].

This paper presents the results of femtoscopic studies of
π±π±, K±K±, K0

SK0
S, pp, and pp correlations from Pb-Pb

collisions at
√

sNN = 2.76 TeV by the ALICE experiment at
the LHC. The femtoscopic radii and λ parameters (the latter
describe the decrease of the femtoscopic correlations due
to, e.g., long-lived resonances; see Secs. III A and IV) are
extracted from one-dimensional correlation functions in terms
of the invariant momentum difference for a range of collision
centralities and mT values. A hydrokinetic model [14] is used
to compare the kaon experimental results with hydrodynamic
predictions.
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The organization of the paper is as follows. In Sec. II, we
describe the data selection criteria. In Sec. III, the details of the
correlation functions and the fitting process are discussed. The
results of the analysis are shown in Sec. IV, and a summary is
provided in Sec. V.

II. DATA ANALYSIS

The dataset analyzed in this paper is from Pb-Pb collisions
at

√
sNN = 2.76 TeV at the LHC measured by the ALICE

detector [23]. About 8 million events from 2010 and about
40 million events from 2011 were used (2010 data were ana-
lyzed in the pion and K0

S analyses only). Events were classified
according to their centrality determined using the measured
amplitudes in the V0 detectors [24]. Charged particle tracking
is generally performed using the time projection chamber
(TPC) [25] and the inner tracking system (ITS) [23]. The ITS
allows for high spatial resolution in determining the primary
(collision) vertex. In the pion, charged kaon, and proton
analyses, the determination of the momenta of the tracks was
performed using tracks reconstructed with the TPC only and
constrained to the primary vertex. Primary tracks were selected
based on the distance of closest approach (DCA) to the primary
vertex. Additional track selections based on the quality of the
track reconstruction fit and the number of detected “hit” points
in the TPC were used. Also, all primary pairs sharing more than
5% of TPC clusters were rejected. In the neutral kaon analysis,
the secondary daughter tracks used global (TPC and ITS) track
reconstruction and did not use any cuts based on track recon-
struction quality or number of used or shared TPC clusters. The
secondary vertex finder used to locate the neutral kaon decays
employed the “on-the-fly” reconstruction method [26], which
recalculates the daughter track momenta during the original
tracking process under the assumption that the tracks came
from a decay vertex instead of the primary vertex.

Particle identification (PID) for reconstructed tracks was
carried out using both the TPC and the time-of-flight (TOF)
detector [27] in the pseudorapidity range |η| < 0.8. For
TPC PID, a parametrized Bethe-Bloch formula was used to
calculate the specific energy loss (dE/dx) in the detector
expected for a particle with a given mass and momentum.
For PID with TOF, the particle mass was used to calculate
the expected time-of-flight as a function of track length and
momentum. For each PID method, a value Nσ was assigned
to each track denoting the number of standard deviations
between the measured track information and the calculations
mentioned above. Different cut values of Nσ were chosen
based on detector performance for the various particle types
and track momentum (see Table I for specific values used in
each analysis) [28].

The analysis details specific to each particle species used
in this study are discussed separately below.

A. Pion selection

The main single-particle selection criteria used in the
pion analysis are summarized in Table I. Pion identification
was performed using the TPC only. An overall purity of
the pion candidate sample was estimated using TPC dE/dx

TABLE I. Single-particle selection criteria.

Pion selection

Transverse momentum pT 0.14 < pT <2.0 GeV/c

|η| <0.8
Transverse DCA to primary vertex <0.2 cm
Longitudinal DCA to primary vertex <0.15 cm
Nσ,TPC <3

Charged kaon selection
pT 0.15 < pT <1.5 GeV/c

|η| <0.8
Transverse DCA to primary vertex <2.4 cm
Longitudinal DCA to primary vertex <3.0 cm
Nσ,TPC (for p <0.5 GeV/c) <2
Nσ,TPC (for p > 0.5 GeV/c) <3
Nσ,TOF (for 0.5 <p < 0.8 GeV/c) <2
Nσ,TOF (for 0.8 <p < 1.0 GeV/c) <1.5
Nσ,TOF (for 1.0 <p < 1.5 GeV/c) <1.0

Neutral kaon selection
|η| <0.8
Daughter-daughter DCA3D <0.3 cm
DCA3D to primary vertex <0.3 cm
Decay length <30 cm
Cosine of pointing angle >0.99
Invariant mass 0.480 <mπ+π−

<0.515 GeV/c2

Daughter pT >0.15 GeV/c

Daughter |η| <0.8
Daughter DCA3D to primary vertex >0.4 cm
Daughter Nσ,TPC <3
Daughter Nσ,TOF (for p > 0.8 GeV/c) <3

Proton selection
pT 0.7 < pT <4.0 GeV/c

|η| <0.8
Transverse DCA to primary vertex <2.4 cm
Longitudinal DCA to primary vertex <3.2 cm
Nσ,TPC (for p < 0.8 GeV/c) <3√

N 2
σ,TPC + N 2

σ,TOF (for p >0.8 GeV/c) < 3

distributions of the data and was found to be above 95%. The
main source of contamination comes from e± in the region
where the dE/dx curves for pions and electrons intersect.

Femtoscopic correlation functions of identical particles are
sensitive to the two-track reconstruction efficiency because
the correlated particle pairs (i.e., those with small relative
momentum) generally have close trajectories. The main two-
track issues are splitting (two tracks reconstructed from one
particle) and merging (one track reconstructed from two
particles), which are generally avoided using a track separation
cut. For pions, pairs were required to have a separation
of |�η| > 0.016 or

√
�η2 + �ϕ∗2 > 0.045 measured at the

radial distance 1.2 m. Here, η is the pseudorapidity, and ϕ∗
is the azimuthal coordinate taking into account track bending
due to the magnetic field.

B. Charged kaon selection

The main single-particle selection criteria used in the
charged kaon analysis are listed in Table I. K± identification
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FIG. 1. (Color online) Single K± purity (a) and K± pair purity (b) for different centralities. In (b) the kT values for different centrality
intervals are slightly offset for clarity.

was performed using the TPC (for all momenta) and TOF (for
p > 0.5 GeV/c) detectors. Figure 1(a) shows the momentum
dependence of the single kaon purity, defined as the fraction of
accepted kaon tracks that correspond to true kaon particles. The
purity values were obtained from TPC dE/dx distributions
of the data and by studying HIJING [29] simulations using
GEANT3 [30] to model particle transport through the detector.
Like the pions, the dominant contamination for charged
kaons in the momentum region 0.4 < p < 0.5 GeV/c comes
from e±. The pair purity is calculated as a product of two
single-particle purities, where the momenta are taken from the
experimental distribution. The K± pair purity as a function of
kT for three different centralities is shown in Fig. 1(b).

Regarding two-track selection criteria, charged kaon pairs
were required to have a separation of |�η| > 0.02 or |�ϕ∗| >
0.017 measured at the radial distance 1.6 m.

C. Neutral kaon selection

The decay channel K0
S → π+π− was used for the identifi-

cation of neutral kaons. The single-particle cuts for parents
(K0

S) and daughters (π±) used in the decay-vertex recon-
struction are shown in Table I. PID for the pion daughters
was performed using both TPC (for all momenta) and TOF
(for p > 0.8 GeV/c). Figure 2 shows an example of the
π+π− invariant mass distribution where the K0

S peak is
seen. The cuts used in this analysis were chosen to balance
statistics and signal purity. The neutral kaon purity (defined
as Sig./[Sig.+Bkg.] for 0.480 < mπ+π− < 0.515 GeV/c2) was
found to be greater than 0.95.

Two main two-particle cuts were used in the neutral kaon
analysis. To resolve two-track inefficiencies associated with
the daughter tracks, such as the splitting or merging of
tracks discussed above, a separation cut was employed in
the following way. For each kaon pair, the spatial separation
between the same-sign pion daughters was tabulated at several
points throughout the TPC (every 20 cm radially from 85
to 245 cm) and averaged. If the average separation of either
pair of tracks was below 5 cm, the kaon pair was not used.
Another cut was used to prevent two reconstructed kaons
from using the same daughter track. If two kaons shared a
daughter track, one of them was cut using a procedure which
compared the two K0

S candidates and kept the candidate whose

reconstructed parameters best matched those expected of a
true K0

S particle in two of three categories (smaller K0
S DCA to

primary vertex, smaller daughter-daughter DCA, and K0
S mass

closer to the PDG value [31]). This procedure was shown,
using HIJING+GEANT3 simulations, to have a success rate of
about 95% in selecting a true K0

S particle over a fake one. More
details about K0

SK0
S analysis can be found in Refs. [16,32].

D. Proton selection

The single-particle cuts used in the proton analysis are
summarized in Table I. The proton analysis used tracks
with 0.7 < pT < 4.0 GeV/c . The lower pT cut is used to
suppress protons coming from weak decays and interactions
with the detector material. Particle identification for p and p
was performed using both TPC (for all momenta) and TOF
(for p > 0.8 GeV/c). The proton purity was estimated using
HIJING+GEANT3 simulations and was found to be greater
than 95%. The used DCA criteria do not fully discriminate
between primary protons and protons from weak decays. This
may lead to a significant contamination from protons from
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FIG. 2. (Color online) Invariant mass distribution of π+π− pairs
showing the K0

S peak for two centrality intervals. The 45–50%
centrality is scaled so that both distributions have the same integral
in the range 0.480 < mπ+π− < 0.515 GeV/c2.
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λ particles. The effect of this contamination is discussed in
Sec. III D.

Regarding two-track selection criteria, pairs were required
to have a separation of |�η| > 0.01 or |�ϕ∗| > 0.045 mea-
sured at the radial distance 1.2 m.

III. CONSTRUCTION OF THE CORRELATION
FUNCTIONS AND FITTING PROCEDURES

The experimental two-particle correlation function is de-
fined as C(q) = A(q)/B(q), where A(q) is the measured
distribution of same-event pair momentum difference, q =
p1 − p2, and B(q) is the reference distribution of pairs from
mixed events. The pairs in the denominator distribution B(q)
are constructed by taking a particle from one event and pairing
it with a particle from another event with a similar centrality
and primary vertex position along the beam direction. Each
event is mixed with five (ten) others for the K0

S (π±, K±, p)
analysis. The available statistics of proton pairs with low q
(<0.2 GeV/c) allowed us to perform the analyses only for
the one-dimensional correlation function C(q), where q = |q|
in the pair rest frame (PRF). In the case of pions and kaons,
the statistics were high enough for three-dimensional studies,
but these are beyond the scope of this paper; here, only the
one-dimensional analysis is presented in order to compare
results with heavier particles. The numerator and denominator
are normalized such that C(q) → 1 as q → ∞. Pair cuts have
been applied in exactly the same way for the same-event
(signal) and mixed-event (background) pairs.

All correlation functions have been corrected for momen-
tum resolution effects. The correction factors were determined
using HIJING events to build simulated correlation functions
using theoretical correlation functions as weights. The ratio of
the correlation functions using HIJING generated momenta to
those using HIJING+GEANT3 reconstructed momenta forms
the correction factor.

For the analyses presented in this paper, the theoretical
femtoscopic correlation function is defined as the square of the
two-particle wave function averaged over the relative distance
r∗ of the emitters in the PRF. This is performed using the
Koonin-Pratt equation [33,34]

C(q) =
∫

S(r∗)|�(q,r∗)|2d3r∗. (1)

For the one-dimensional analysis, we assume a spherically
symmetric Gaussian distribution of the particle emitter spatial
separation r∗ in the PRF with size Rinv [35],

S(r∗) ∼ exp
( − r∗2/4R2

inv

)
. (2)

The two-particle wave function is (anti)symmetrized for iden-
tical bosons (fermions) and may include terms incorporating
Coulomb or strong final-state interactions, depending on the
type of particles being studied.

The methods used in constructing and fitting the various
correlation functions are discussed separately below.

)c (GeV/q
0 0.05 0.1 0.15 0.2 0.25

)
q

C
(

1

1.1

1.2

1.3  = 2.76 TeVNNsALICE Pb-Pb 

c<0.4 GeV/Tk, 5-10%, 0.3<+π+π

Fit

FIG. 3. (Color online) Example correlation function with fit for
π+π+ for centrality 5–10% and 〈kT〉 = 0.35 GeV/c. Statistical
uncertainties are shown as thin lines.

A. Pions

Pion correlation functions were fitted using the Bowler-
Sinyukov formula [36,37]:

C(q) = N
{
1 − λ + λK(q)

[
1 + exp

(−R2
invq

2
)]}

, (3)

where N is the normalization factor. The λ parameter (also
used in the other analyses) can be affected by long-lived
resonances, coherent sources [19,38,39], and non-Gaussian
features of the particle-emission distribution. K(q) is a
symmetrized K factor calculated according to Refs. [19,37]
as

K(q) = C(QS + Coulomb)/C(QS), (4)

where C(QS) and C(QS + Coulomb) are the theoretical
correlation functions calculated with THERMINATOR 2 [40]
using the quantum statistics (“QS”) and “QS+Coulomb”
weights (i.e., squared wave function), respectively [41]. The
effect of the strong interaction is neglected here, since for like-
sign pions, the contribution is small for the expected source
sizes [41]. Figure 3 shows an example π+π+ correlation
function with the corresponding line of best fit. More details
about the pion analysis may be found in Ref. [42].

B. Charged kaons

Figure 4 shows an example K±K± correlation function with
the corresponding line of best fit. A purity correction was
applied to the correlation function according to

Ccorrected = (Craw − 1 + P )/P, (5)

where the pair purity P is taken from Fig. 1. K±K± correlation
functions were fitted using the Bowler-Sinyukov formula of
Eq. (3); the procedure is essentially the same as for pions. There
are no available experimental data for K±K± strong FSI. The
influence of the strong interaction to the correlation function
was estimated with the s-wave scattering length calculated
within the fully dynamical lattice QCD [43]. The systematic
uncertainty assigned to this effect was determined to be 4%.

054908-4



ONE-DIMENSIONAL PION, KAON, AND PROTON . . . PHYSICAL REVIEW C 92, 054908 (2015)

)c (GeV/q
0 0.05 0.1 0.15 0.2 0.25

)
q

C
(

0.9

1

1.1

1.2  = 2.76 TeVNNsALICE Pb-Pb 

c<0.4 GeV/Tk, 0-10%, 0.3<±K±K

Fit

FIG. 4. (Color online) Example correlation function with fit for
K±K± for centrality 0–10% and 〈kT〉 = 0.35 GeV/c. Systematic
uncertainties (boxes) are shown; statistical uncertainties are within
the data markers. The main sources of systematic uncertainty are the
momentum resolution correction and PID selection.

C. Neutral kaons

Figure 5 shows an example K0
SK0

S correlation function with
the corresponding line of best fit. K0

SK0
S correlation functions

were fitted with a parametrization which includes Bose-
Einstein statistics as well as strong final-state interactions
(FSIs) [15,35],

C(q) = [1 − λ + λC ′(q)](a + bq), (6)

where

C ′(q) = 1 + e−q2R2 + CstrongFSI(q,R), (7)

CstrongFSI(q,R) = 1

2

[∣∣∣∣f (q)

R

∣∣∣∣
2

+ 4Ref (q)√
πR

F1(qR)

− 2Imf (q)

R
F2(qR)

]
, (8)

and

F1(z) =
∫ z

0
dx

ex2−z2

z
; F2(z) = 1 − e−z2

z
. (9)

f (q) is the s-wave scattering amplitude for the K0K 0 system;
we neglect the scattering for K0K0 and K 0K 0 due to small
scattering lengths ≈0.1 fm [15]. The factor of 1/2 in Eq. (8) is
due to the fact that half of the K0

SK0
S pairs come from K0K 0. The

strong FSI have a significant effect on the K0K 0 contribution
to the K0

SK0
S correlation function due to the near-threshold

resonances, f0(980) and a0(980). For the scattering amplitude,
only s-wave contributions were taken into account; the higher-
order corrections were small and therefore neglected [44]. The
scattering amplitude f (q) is calculated using a two-channel
parametrization which accounts for the elastic transition
K0K 0 → K0K 0 and the inelastic transition K+K− → K0K 0

(see Ref. [15] for more detailed expressions describing the fit
function). Equation (6) also includes an additional factor to

)c (GeV/q
0 0.05 0.1 0.15 0.2 0.25

)
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(
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1.4
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c<0.6 GeV/Tk, 0-10%, 0.2<S
0KS

0K

Fit

FIG. 5. (Color online) Example correlation function with fit for
K0

SK0
S for centrality 0–10% and 〈kT〉 = 0.48 GeV/c. Statistical (thin

lines) and systematic (boxes) uncertainties are shown. The main
source of systematic uncertainty is the variation of single-particle
cuts.

account for nonfemtoscopic background correlations at large
q, with a and b being free parameters in the fit.

D. Protons

Figure 6 shows an example pp correlation function with the
corresponding line of best fit. The femtoscopic correlations
of pp and pp pairs are due to a combination of Fermi-Dirac
statistics, Coulomb, and strong FSIs. A distinct maximum
is seen at q ≈ 40 MeV/c [35]; this enhancement is due
to the strong interaction, as both quantum statistics and
Coulomb interaction present a negative correlation. Due to
the fact that feeddown from weak decays cannot be neglected
in high-energy heavy-ion collisions, the effects of residual
correlations related to the p	 system are taken into account.
The proton daughter of a 	 decay has similar momentum to the

)c (GeV/q
0 0.05 0.1 0.15 0.2 0.25

)
q

C
(

0.95

1

1.05

1.1

 = 2.76 TeVNNsALICE Pb-Pb 

c<5.0 GeV/Tk, 0-10%, 0.01<pp

Full fit
 contributionpp
 contributionΛp

FIG. 6. (Color online) Example correlation function with fit for
pp for centrality 0–10% and 〈kT〉 = 1.0 GeV/c. Statistical (thin lines)
and systematic (boxes) uncertainties are shown. The main source of
systematic uncertainty is the variation of two-track cuts.
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	 itself and may survive the experimental selection for primary
protons. Thus, it may contribute to the measured correlations
by forming a pair with a primary proton. As can be seen in
Fig. 6, attempting to fit the measured correlation functions
with the theoretical pp (pp) functions alone was unsuccessful
due to the additional positive correlation observed in the range
60 < q < 160 MeV/c. Thus, a method of simultaneous fitting
of pp (pp) and p	 (p	) correlations was applied. Contributions
from heavier baryon-baryon pairs are not taken into account
since the original correlation between the parent particles is not
known due to unknown interaction parameters, for example
for the 		 pair. Moreover such residual correlations are
more smeared compared with p	 because of larger decay
momentum. In addition, the fraction of baryons heavier than
	 decaying to protons is smaller than the fraction of 	’s.
Finally, comparing with baryon-antibaryon pairs analyzed in
Ref. [45], the width of the correlation for baryon-baryon pairs
is much smaller, and therefore the effect is much more smeared
due to decay kinematics.

The experimental correlation function of pp and pp systems
were fitted with [45]

Cmeas(qpp) = 1 + λpp[Cpp(qpp; R) − 1]

+ λp	[Cp	(qpp; R) − 1], (10)

where λpp is the fraction of correlated pp pairs where both
particles are primary, and λp	 is the fraction of correlated pp
pairs where one particle is primary and the other is a daughter
of 	 decay. The theoretical proton-proton correlation function
was calculated as

C(qpp) = 1

4

⎡
⎣∫

S(r∗) 1
2

∣∣�S
−qpp

(r∗) + �S
+qpp

(r∗)
∣∣2∫

S(r∗)

⎤
⎦

+ 3

4

⎡
⎣∫

S(r∗) 1
2

∣∣�T
−qpp

(r∗) − �T
+qpp

(r∗)
∣∣2∫

S(r∗)

⎤
⎦. (11)

This formulation takes into account the necessary
(anti)symmetrization of the wave function for a pp pair in
the singlet (triplet) spin state with a corresponding weight of
1/4 (3/4). The pp pair wave function may be written as [44]

�−qpp (r∗) = eiδc

√
Ac(η)

[
e−iqpp·r∗/2F (−iη,1,iξ )

+ fc(qpp)
G̃(ρ,η)

|r∗|
]
, (12)

where r∗ is the spatial separation of particle emitters at
generally different emission moments in the PRF, δc =
arg (1 + iη) is the Coulomb s-wave phase shift, Ac(η) =
2πη(e2πη − 1)−1 is the Gamow factor (also referred to as the
Coulomb penetration factor), η = ( 1

2aqpp)−1, a = (μz1z2e
2)−1

is the two-particle Bohr radius taking into account the sign of
the interaction (a = 57.6 fm for pp pair), F is the confluent
hypergeometric function, ξ = 1

2qppr
∗(1 + cos θ∗), θ∗ is the

angle between qpp and r∗, G̃ is the combination of the regular
and singular s-wave Coulomb functions, and ρ = 1

2qppr
∗. The

amplitude of the low-energy s-wave elastic scattering due to

the short range interaction fc(qpp) may be expressed as

fc(qpp) =
[

1

f0
+ d0q

2
pp

8
− 1

2
iqppAc(η) − 2

a
h(η)

]−1

, (13)

where f0 is the scattering length, d0 is the effective radius of the
interaction, h(η) = [ψ(iη) + ψ(−iη) − ln(η2)]/2, and ψ is
the digamma function. For the pp system in the singlet (triplet)
state, f0 and d0 are 7.77 fm (−5.4 fm) and 2.77 fm (1.7 fm).

For the feeddown term, the theoretical p	 correlation
function for a given Rp	 transformed into the pp momentum
space is obtained from the Lednicky-Lyuboshitz model [35]
and calculated as

Cp	(qpp; Rp	)

=
∑
qp	

Cp	(qp	; Rp	)T (qpp,qp	)/
∑
qp	

T (qpp,qp	), (14)

where Cp	(qp	; Rp	) = 1 + CstrongFSI(qp	; Rp	), and
T (qpp,qp	) are the transformation factors related to 	 decay
kinematics, calculated with THERMINATOR 2 [40]. Here, a
spin-dependent version of Eq. (8) is used [35]:

CstrongFSI(q,R) =
∑

S

ρS

[
1

2

∣∣∣∣f S(q)

R

∣∣∣∣
2(

1 − dS
0

2
√

πR

)

+ 2Ref S(q)√
πR

F1(qR) − Imf S(q)

R
F2(qR)

]
,

(15)

where f S(q) is the spin-dependent scattering amplitude, ρs is
the fraction of pairs in each total spin state S, and dS

0 is the
effective radius of the interaction. It is assumed that the radii
of pp and p	 sources are equal. Therefore, there are three
free fit parameters in Eq. (10): λpp, λp	, and R. Theoretical
pp and p	 correlation functions were calculated using several
values of the free parameters, and the fit function (for the set
of parameters given during each fit iteration) was formed by a
quadratic interpolation of the calculated correlation functions.

E. Systematic uncertainties

The effects of various sources of systematic uncertainty
on the extracted fit parameters were studied as functions
of centrality and kT. Table II shows the minimum and
maximum uncertainties from each source. The values of the
total uncertainty are not necessarily equal to the sum of the
individual uncertainties, as the latter can come from different
centrality or kT bins. All four analyses studied the effects
of changing the selection criteria for the events, particles,
and pairs used (variation of cut values up to ±25%) and
varying the range of q values over which the fit is performed
(variation of q limits up to ±25%). Uncertainties associated
with momentum resolution corrections are included in the π ,
K±, and p analyses; the K0

S analysis also studied this and
found the uncertainties to be negligible. The K±, K0

S, and p
analyses encountered uncertainties associated with the nonflat
background seen at large-q for high-kT pairs in peripheral col-
lisions [estimated by using different parametrizations (linear or
polynomial) to fit the large-q region]. Strong FSI uncertainties
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TABLE II. Minimal and maximal uncertainty values for various sources of systematic uncertainty (in percent). The λ for the proton analysis
refers to the sum of λpp and λp	. Please note that each value is the minimum (maximum) uncertainty from a specific source, but each can be
from a different centrality or kT bin. Thus, the minimum (maximum) total uncertainties are greater (smaller) than (or equal to) the sum of the
minimum (maximum) individual uncertainties. “n/a” denotes that the given descriptor of the systematic uncertainty is not applicable for the
specific pair type, and “–” means that the contribution from the given source is negligible.

π± K± K0
S p

Rinv λ Rinv λ Rinv λ Rinv λ

Event/particle/pair selection 2–13 6 3–5 3–5 1–4 2–10 2–27 12–58
Non-flat background − − 0.2–5 0.2–5 0–5 0–4 2–3 1–9
Fit range 10 33 1–5 1–5 0–4 0–3 3–26 3–57
Strong FSI − − 4 4 1–2 5–10 n/a n/a
Coulomb function 3 3 2 4 n/a n/a n/a n/a
PID and purity − − − 5–28 − − 4–18 13–41
Momentum resolution 2 3 3–5 5–10 − − 3 1–8
Fixing λpp n/a n/a n/a n/a n/a n/a 1–29 n/a
Rpp/Rp	 ratio n/a n/a n/a n/a n/a n/a 1–13 20–52
Total (quad. sum) 11–21 34 6–9 10–32 2–7 7–15 10–40 30–80

affect both kaon analyses. For K0
S, the strong FSI uncertainty

comes from the fact that several sets of f0(980) and a0(980)
parameters are available [46–49]; each set is used to fit the
data, the results are averaged, and the maximum difference
was taken as the systematic error. The π and K± analyses
have uncertainties associated with the choice of the Coulomb
function used in the fitting procedure. The K± analysis
had additional uncertainties due to the misidentification of
particles and the associated purity correction. The p analysis
also had uncertainties associated with the uncertainty in the
Rpp/Rp	 ratio and attempts to fix the λpp parameter using
the single-particle purity. All of the analyses were performed
separately for the two different signs of the ALICE dipole
magnetic field, but the resulting systematic uncertainty was
found to be negligible in all cases.

Systematic uncertainties on correlation functions (Figs. 4–
6) were derived from the variation of single- and two-particle
cuts.

IV. RESULTS

Figures 7 and 8 present the extracted fit parameters
from π±π±, K±K±, K0

SK0
S, and pp correlations for several

intervals of centrality and transverse mass. Both statistical
and systematic uncertainties are shown. The quality of the fits
used to extract the shown parameters can be assessed using
the χ2/NDF values, which are in the ranges 1.2–5.0, 0.8–3.5,
0.6–1.5, and 0.8–3.2 for the pion, charged kaon, neutral kaon,
and proton analyses, respectively.

Figure 7 shows the extracted λ parameters vs mT for several
centralities. The proton λ is the sum of λpp and λp	 from
Eq. (10). The values for all species measured lie mostly in the
range 0.3–0.7 and show no significant centrality dependence.
The values of λ are less than unity due to long-lived resonances
which dilute the correlation functions and also lead to non-
Gaussian shapes of the correlation functions, especially in
the one-dimensional case [20]. Results for kaons and protons
are consistent with each other at similar mT. Values of λ for
pions are lower than for kaons due to the stronger influence of

resonances; an additional cause could be a partial coherence
of pions [19].

Figure 8 shows the extracted Rinv parameters vs mT for
several centralities. For overlapping mT, the radius parameters
are mostly consistent with each other within uncertainties,
though the pion radii are generally larger than the kaon
radii. The K0

S radii are slightly higher than K± radii for
central collisions, but the difference is less than the systematic
uncertainties. The radius parameters show increasing size
with increasing centrality as would be expected from a
simple geometric picture of the collisions. They also show
a decreasing size with increasing mT as would be expected
in the presence of collective radial flow [6]. Both of these
dependencies can be seen in previous π±π± femtoscopic
measurements [4,5] and also reinforce the interpretation that
collective flow is present in these collisions for pions, kaons
(neutral and charged), and protons alike. Deviations from exact
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0
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± K±K
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FIG. 7. (Color online) λ parameters [λpp + λp	 in the case of
(anti)proton pairs] vs mT for the three centralities considered
for π±π±, K±K±, K0

SK0
S, pp, and pp. Statistical (thin lines) and

systematic (boxes) uncertainties are shown. The mT values for
different centrality intervals are slightly offset for clarity.
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FIG. 8. (Color online) Rinv parameters vs mT for the three cen-
tralities considered for π±π±, K±K±, K0

SK0
S, pp, and pp. Statistical

(thin lines) and systematic (boxes) uncertainties are shown.

mT scaling of Rinv can be explained as a consequence of
the increase of the Lorentz factor with decreasing particle
mass. In a hydrodynamic model [50], scaling is observed
for the three-dimensional radii measured in the longitudinally
comoving system (LCMS). The transformation from LCMS to
PRF involves a boost along the outward direction only, where
the boost value is proportional to the transverse velocity of the
pair and inversely proportional to the particle mass (for similar
mT). Thus, a smaller mass leads to an increase in the boosted
Rout and, subsequently, Rinv in the PRF. Indeed, we observe
such an effect in the data, as pion radii are systematically
higher than kaon radii at the same mT.

A comparison of a hydrodynamic flow+kinetics model,
HKM [14], with the measured Rinv and λ parameters for 0–5%
centrality is shown in Fig. 9. The HKM values in Fig. 9 are
specifically from K±K±, but the predictions for K0

SK0
S and

K±K± are consistent with each other. For Rinv, the charged
kaon data show very good agreement with the predictions.
The experimental data for the neutral kaons are again slightly
higher than for the charged kaons, but this difference is still
within systematic uncertainties. For λ, both sets of kaon data
match the decreasing trend with increasing kT exhibited by the
HKM points, but the model slightly overpredicts the data. It is
shown in Ref. [14] that the most important resonances for KK

pairs, K*(890) and φ(1020), do not significantly influence the λ
parameter (due to their low contribution), and the discrepancy
between the model and experimental data can be explained
by the lower experimental kaon purity and deviations of
the experimental correlation function shape from a Gaussian
distribution. For protons, the HKM prediction is compatible
with the data. HKM calculations for one-dimensional pion
radii are currently not available, but three-dimensional radii
were reasonably reproduced by this model [51].

V. SUMMARY

Results from femtoscopic studies of π±π±, K±K±,
K0

SK0
S, pp, and pp correlations from Pb-Pb collisions at√

sNN = 2.76 TeV with ALICE at the LHC have been
presented. The femtoscopic radii and λ parameters were
extracted from one-dimensional correlation functions in terms
of the invariant momentum difference. It was found that
the emission source sizes of kaons and protons measured
in these collisions exhibit transverse mass scaling within
uncertainties, which is consistent with hydrodynamic model
predictions assuming collective flow. The deviation from the
scaling for the pions can be explained as a consequence of the
increase of the Lorentz factor with decreasing particle mass
during the transformation from LCMS to PRF systems [50].
The extracted λ parameters are found to be less than unity,
as is expected due to long-lived resonances and non-Gaussian
correlation functions. The predictions of the hydrokinetic
model (HKM) for the one-dimensional femtoscopic radii for
charged and neutral kaons and protons coincide well with the
observations.
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C. Pajares,17 S. K. Pal,132 J. Pan,135 A. K. Pandey,48 D. Pant,48 P. Papcun,115 V. Papikyan,1 G. S. Pappalardo,107 P. Pareek,49

W. J. Park,97 S. Parmar,87 A. Passfeld,54 V. Paticchio,104 R. N. Patra,132 B. Paul,101 T. Peitzmann,57 H. Pereira Da Costa,15

E. Pereira De Oliveira Filho,120 D. Peresunko,100,76 C. E. Pérez Lara,81 E. Perez Lezama,43 V. Peskov,53 Y. Pestov,5
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10Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain

11Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City and Mérida, Mexico
12Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche “Enrico Fermi,” Rome, Italy

13Chicago State University, Chicago, Illinois, USA
14China Institute of Atomic Energy, Beijing, China
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31Dipartimento di Fisica ‘E.R. Caianiello’ dell’Università and Gruppo Collegato INFN, Salerno, Italy
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133Vinča Institute of Nuclear Sciences, Belgrade, Serbia

134Warsaw University of Technology, Warsaw, Poland
135Wayne State University, Detroit, Michigan, USA

136Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest, Hungary
137Yale University, New Haven, Connecticut, USA

138Yonsei University, Seoul, South Korea
139Zentrum für Technologietransfer und Telekommunikation (ZTT), Fachhochschule Worms, Worms, Germany

*Deceased.
†Also at University of Kansas, Lawrence, KS, United States.

054908-15




