
Inclusive cross section and double-helicity asymmetry
for π0 production at midrapidity in p + p collisions at
√s=510 GeV

(PHENIX Collaboration) Adare, A.; ...; Makek, Mihael; ...; Zou, L.

Source / Izvornik: Physical Review D, 2016, 93

Journal article, Published version
Rad u časopisu, Objavljena verzija rada (izdavačev PDF)

https://doi.org/10.1103/PhysRevD.93.011501

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:217:712662

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-10-13

Repository / Repozitorij:

Repository of the Faculty of Science - University of 
Zagreb

https://doi.org/10.1103/PhysRevD.93.011501
https://urn.nsk.hr/urn:nbn:hr:217:712662
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.pmf.unizg.hr
https://repozitorij.pmf.unizg.hr
https://repozitorij.unizg.hr/islandora/object/pmf:7841
https://dabar.srce.hr/islandora/object/pmf:7841


Inclusive cross section and double-helicity asymmetry for π0 production at
midrapidity in pþ p collisions at

ffiffi

s
p ¼ 510 GeV

A. Adare,13 C. Aidala,38,42 N. N. Ajitanand,60 Y. Akiba,55,56 R. Akimoto,12 J. Alexander,60 M. Alfred,22 K. Aoki,31,55

N. Apadula,27,61 Y. Aramaki,55 H. Asano,34,55 E. T. Atomssa,61 T. C. Awes,51 B. Azmoun,7 V. Babintsev,23 M. Bai,6 X. Bai,11

N. S. Bandara,41 B. Bannier,61 K. N. Barish,8 S. Bathe,5,56 V. Baublis,54 C. Baumann,7 S. Baumgart,55 A. Bazilevsky,7

M. Beaumier,8 S. Beckman,13 R. Belmont,13,42,65 A. Berdnikov,58 Y. Berdnikov,58 D. Black,8 D. S. Blau,33 J. S. Bok,49

K. Boyle,56 M. L. Brooks,38 J. Bryslawskyj,5 H. Buesching,7 V. Bumazhnov,23 S. Butsyk,48 S. Campbell,14,27 C.-H. Chen,56

C. Y. Chi,14 M. Chiu,7 I. J. Choi,24 J. B. Choi,10 S. Choi,59 P. Christiansen,39 T. Chujo,64 V. Cianciolo,51 Z. Citron,66

B. A. Cole,14 N. Cronin,43,61 N. Crossette,43 M. Csanád,16 T. Csörgő,67 T.W. Danley,50 A. Datta,48 M. S. Daugherity,1

G. David,7 K. DeBlasio,48 K. Dehmelt,61 A. Denisov,23 A. Deshpande,56,61 E. J. Desmond,7 L. Ding,27 A. Dion,61

P. B. Diss,40 J. H. Do,68 L. D’Orazio,40 O. Drapier,35 A. Drees,61 K. A. Drees,6 J. M. Durham,38 A. Durum,23

T. Engelmore,14 A. Enokizono,55,57 H. En’yo,55,56 S. Esumi,64 K. O. Eyser,7 B. Fadem,43 N. Feege,61 D. E. Fields,48

M. Finger,9 M. Finger, Jr.,9 F. Fleuret,35 S. L. Fokin,33 J. E. Frantz,50 A. Franz,7 A. D. Frawley,18 Y. Fukao,31 T. Fusayasu,45

K. Gainey,1 C. Gal,61 P. Gallus,15 P. Garg,3 A. Garishvili,62 I. Garishvili,37 H. Ge,61 F. Giordano,24 A. Glenn,37 X. Gong,60

M. Gonin,35 Y. Goto,55,56 R. Granier de Cassagnac,35 N. Grau,2 S. V. Greene,65 M. Grosse Perdekamp,24 Y. Gu,60 T. Gunji,12

H. Guragain,19 T. Hachiya,55 J. S. Haggerty,7 K. I. Hahn,17 H. Hamagaki,12 H. F. Hamilton,1 S. Y. Han,17 J. Hanks,61

S. Hasegawa,28 T. O. S. Haseler,19 K. Hashimoto,55,57 R. Hayano,12 X. He,19 T. K. Hemmick,61 T. Hester,8 J. C. Hill,27

R. S. Hollis,8 K. Homma,21 B. Hong,32 T. Hoshino,21 N. Hotvedt,27 J. Huang,7,38 S. Huang,65 T. Ichihara,55,56 Y. Ikeda,55

K. Imai,28 Y. Imazu,55 M. Inaba,64 A. Iordanova,8 D. Isenhower,1 A. Isinhue,43 D. Ivanishchev,54 B. V. Jacak,61 S. J. Jeon,44

M. Jezghani,19 J. Jia,7,60 X. Jiang,38 B. M. Johnson,7 E. Joo,32 K. S. Joo,44 D. Jouan,52 D. S. Jumper,24 J. Kamin,61

S. Kanda,12,31,55 B. H. Kang,20 J. H. Kang,68 J. S. Kang,20 J. Kapustinsky,38 D. Kawall,41 A. V. Kazantsev,33 J. A. Key,48

V. Khachatryan,61 P. K. Khandai,3 A. Khanzadeev,54 K. Kihara,64 K. M. Kijima,21 C. Kim,32 D. H. Kim,17 D. J. Kim,29

E.-J. Kim,10 G.W. Kim,17 H.-J. Kim,68 M. Kim,59 Y.-J. Kim,24 Y. K. Kim,20 B. Kimelman,43 E. Kistenev,7 R. Kitamura,12

J. Klatsky,18 D. Kleinjan,8 P. Kline,61 T. Koblesky,13 M. Kofarago,16 B. Komkov,54 J. Koster,56 D. Kotchetkov,50

D. Kotov,54,58 F. Krizek,29 K. Kurita,57 M. Kurosawa,55,56 Y. Kwon,68 R. Lacey,60 Y. S. Lai,14 J. G. Lajoie,27 A. Lebedev,27

D. M. Lee,38 G. H. Lee,10 J. Lee,17 K. B. Lee,38 K. S. Lee,32 S. Lee,68 S. H. Lee,61 M. J. Leitch,38 M. Leitgab,24 B. Lewis,61

X. Li,11 S. H. Lim,68 M. X. Liu,38 D. Lynch,7 C. F. Maguire,65 Y. I. Makdisi,6 M. Makek,66,69 A. Manion,61 V. I. Manko,33

E. Mannel,7 T. Maruyama,28 M. McCumber,13,38 P. L. McGaughey,38 D. McGlinchey,13,18 C. McKinney,24 A. Meles,49

M. Mendoza,8 B. Meredith,14,24 Y. Miake,64 T. Mibe,31 A. C. Mignerey,40 A. J. Miller,1 A. Milov,66 D. K. Mishra,4

J. T. Mitchell,7 S. Miyasaka,55,63 S. Mizuno,55,64 A. K. Mohanty,4 S. Mohapatra,60 P. Montuenga,24 T. Moon,68

D. P. Morrison,7,* M. Moskowitz,43 T. V. Moukhanova,33 T. Murakami,34,55 J. Murata,55,57 A. Mwai,60 T. Nagae,34

S. Nagamiya,31,55 K. Nagashima,21 J. L. Nagle,13,† M. I. Nagy,16 I. Nakagawa,55,56 H. Nakagomi,55,64 Y. Nakamiya,21

K. R. Nakamura,34,55 T. Nakamura,55 K. Nakano,55,63 C. Nattrass,62 P. K. Netrakanti,4 M. Nihashi,21,55 T. Niida,64

S. Nishimura,12,31 R. Nouicer,7,56 T. Novák,30,67 N. Novitzky,29,61 A. S. Nyanin,33 E. O’Brien,7 C. A. Ogilvie,27 H. Oide,12

K. Okada,56 J. D. Orjuela Koop,13 J. D. Osborn,42 A. Oskarsson,39 H. Ozaki,64 K. Ozawa,31 R. Pak,7 V. Pantuev,25

V. Papavassiliou,49 I. H. Park,17 J. S. Park,59 S. Park,59 S. K. Park,32 S. F. Pate,49 L. Patel,19 M. Patel,27 J.-C. Peng,24

D. V. Perepelitsa,7,14 G. D. N. Perera,49 D. Yu. Peressounko,33 J. Perry,27 R. Petti,7,61 C. Pinkenburg,7 R. Pinson,1

R. P. Pisani,7 M. L. Purschke,7 H. Qu,1 J. Rak,29 B. J. Ramson,42 I. Ravinovich,66 K. F. Read,51,62 D. Reynolds,60

V. Riabov,47,54 Y. Riabov,54,58 E. Richardson,40 T. Rinn,27 N. Riveli,50 D. Roach,65 S. D. Rolnick,8 M. Rosati,27 Z. Rowan,5

J. G. Rubin,42 M. S. Ryu,20 B. Sahlmueller,61 N. Saito,31 T. Sakaguchi,7 H. Sako,28 V. Samsonov,47,54 M. Sarsour,19

S. Sato,28 S. Sawada,31 B. Schaefer,65 B. K. Schmoll,62 K. Sedgwick,8 J. Seele,56 R. Seidl,55,56 Y. Sekiguchi,12 A. Sen,19,62

R. Seto,8 P. Sett,4 A. Sexton,40 D. Sharma,61 A. Shaver,27 I. Shein,23 T.-A. Shibata,55,63 K. Shigaki,21 M. Shimomura,27,46,64

K. Shoji,55 P. Shukla,4 A. Sickles,7,24 C. L. Silva,38 D. Silvermyr,39,51 B. K. Singh,3 C. P. Singh,3 V. Singh,3 M. Skolnik,43

M. Slunečka,9 M. Snowball,38 S. Solano,43 R. A. Soltz,37 W. E. Sondheim,38 S. P. Sorensen,62 I. V. Sourikova,7

P. W. Stankus,51 P. Steinberg,7 E. Stenlund,39 M. Stepanov,41,‡ A. Ster,67 S. P. Stoll,7 M. R. Stone,13 T. Sugitate,21

A. Sukhanov,7 T. Sumita,55 J. Sun,61 J. Sziklai,67 A. Takahara,12 A. Taketani,55,56 Y. Tanaka,45 K. Tanida,56,59

M. J. Tannenbaum,7 S. Tarafdar,3,66 A. Taranenko,47,60 E. Tennant,49 R. Tieulent,19 A. Timilsina,27 T. Todoroki,55,64

M. Tomášek,15,26 H. Torii,12 C. L. Towell,1 M. Towell,1 R. Towell,1 R. S. Towell,1 I. Tserruya,66 H.W. van Hecke,38

M. Vargyas,16,67 E. Vazquez-Zambrano,14 A. Veicht,14 J. Velkovska,65 R. Vértesi,67 M. Virius,15 V. Vrba,15,26

E. Vznuzdaev,54 X. R. Wang,49,56 D. Watanabe,21 K. Watanabe,55,57 Y. Watanabe,55,56 Y. S. Watanabe,12,31 F. Wei,49

S. Whitaker,27 A. S. White,42 S. Wolin,24 C. L. Woody,7 M.Wysocki,51 B. Xia,50 L. Xue,19 S. Yalcin,61 Y. L. Yamaguchi,12,61

A. Yanovich,23 S. Yokkaichi,55,56 J. H. Yoo,32 I. Yoon,59 Z. You,38 I. Younus,36,48 H. Yu,53 I. E. Yushmanov,33

W. A. Zajc,14 A. Zelenski,6 S. Zhou,11 and L. Zou8

(PHENIX Collaboration)

PHYSICAL REVIEW D 93, 011501(R) (2016)

2470-0010=2016=93(1)=011501(8) 011501-1 © 2016 American Physical Society

RAPID COMMUNICATIONS



1Abilene Christian University, Abilene, Texas 79699, USA
2Department of Physics, Augustana University, Sioux Falls, South Dakota 57197, USA

3Department of Physics, Banaras Hindu University, Varanasi 221005, India
4Bhabha Atomic Research Centre, Bombay 400 085, India

5Baruch College, City University of New York, New York, New York 10010 USA
6Collider-Accelerator Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA

7Physics Department, Brookhaven National Laboratory, Upton, New York 11973-5000, USA
8University of California-Riverside, Riverside, California 92521, USA

9Charles University, Ovocný trh 5, Praha 1, 116 36, Prague, Czech Republic
10Chonbuk National University, Jeonju, 561-756, Korea

11Science and Technology on Nuclear Data Laboratory, China Institute of Atomic Energy, Beijing 102413,
People’s Republic of China

12Center for Nuclear Study, Graduate School of Science, University of Tokyo, 7-3-1 Hongo,
Bunkyo, Tokyo 113-0033, Japan

13University of Colorado, Boulder, Colorado 80309, USA
14Columbia University, New York, New York 10027 and Nevis Laboratories,

Irvington, New York 10533, USA
15Czech Technical University, Zikova 4, 166 36 Prague 6, Czech Republic

16ELTE, Eötvös Loránd University, H-1117 Budapest, Pázmány P. s. 1/A, Hungary
17Ewha Womans University, Seoul 120-750, Korea

18Florida State University, Tallahassee, Florida 32306, USA
19Georgia State University, Atlanta, Georgia 30303, USA

20Hanyang University, Seoul 133-792, Korea
21Hiroshima University, Kagamiyama, Higashi-Hiroshima 739-8526, Japan

22Department of Physics and Astronomy, Howard University, Washington, DC 20059, USA
23IHEP Protvino, State Research Center of Russian Federation, Institute for High Energy Physics,

Protvino, 142281, Russia
24University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA

25Institute for Nuclear Research of the Russian Academy of Sciences,
prospekt 60-letiya Oktyabrya 7a, Moscow 117312, Russia

26Institute of Physics, Academy of Sciences of the Czech Republic, Na Slovance 2,
182 21 Prague 8, Czech Republic

27Iowa State University, Ames, Iowa 50011, USA
28Advanced Science Research Center, Japan Atomic Energy Agency, 2-4 Shirakata Shirane, Tokai-mura,

Naka-gun, Ibaraki-ken 319-1195, Japan
29Helsinki Institute of Physics and University of Jyväskylä, P.O.Box 35, FI-40014 Jyväskylä, Finland

30Károly Róberts University College, H-3200 Gyöngyös, Mátraiút 36, Hungary
31KEK, High Energy Accelerator Research Organization, Tsukuba, Ibaraki 305-0801, Japan

32Korea University, Seoul 136-701, Korea
33National Research Center “Kurchatov Institute,” Moscow 123098 Russia

34Kyoto University, Kyoto 606-8502, Japan
35Laboratoire Leprince-Ringuet, Ecole Polytechnique, CNRS-IN2P3,

Route de Saclay, F-91128, Palaiseau, France
36Physics Department, Lahore University of Management Sciences, Lahore 54792, Pakistan

37Lawrence Livermore National Laboratory, Livermore, California 94550, USA
38Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA

39Department of Physics, Lund University, Box 118, SE-221 00 Lund, Sweden
40University of Maryland, College Park, Maryland 20742, USA

41Department of Physics, University of Massachusetts, Amherst, Massachusetts 01003-9337, USA
42Department of Physics, University of Michigan, Ann Arbor, Michigan 48109-1040, USA

43Muhlenberg College, Allentown, Pennsylvania 18104-5586, USA
44Myongji University, Yongin, Kyonggido 449-728, Korea

45Nagasaki Institute of Applied Science, Nagasaki-shi, Nagasaki 851-0193, Japan
46Nara Women’s University, Kita-uoya Nishi-machi Nara 630-8506, Japan

47National Research Nuclear University, MEPhI, Moscow Engineering Physics Institute,
Moscow 115409, Russia

48University of New Mexico, Albuquerque, New Mexico 87131, USA
49New Mexico State University, Las Cruces, New Mexico 88003, USA

50Department of Physics and Astronomy, Ohio University, Athens, Ohio 45701, USA
51Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

A. ADARE et al. PHYSICAL REVIEW D 93, 011501(R) (2016)

011501-2

RAPID COMMUNICATIONS



52IPN-Orsay, Université Paris-Sud, CNRS/IN2P3, Université Paris-Saclay, BP1, F-91406, Orsay, France
53Peking University, Beijing 100871, People’s Republic of China

54PNPI, Petersburg Nuclear Physics Institute, Gatchina, Leningrad region 188300, Russia
55RIKEN Nishina Center for Accelerator-Based Science, Wako, Saitama 351-0198, Japan

56RIKEN BNL Research Center, Brookhaven National Laboratory, Upton, New York 11973-5000, USA
57Physics Department, Rikkyo University, 3-34-1 Nishi-Ikebukuro, Toshima, Tokyo 171-8501, Japan

58Saint Petersburg State Polytechnic University, St. Petersburg, 195251 Russia
59Department of Physics and Astronomy, Seoul National University, Seoul 151-742, Korea

60Chemistry Department, Stony Brook University, SUNY, Stony Brook, New York 11794-3400, USA
61Department of Physics and Astronomy, Stony Brook University,

SUNY, Stony Brook, New York 11794-3800, USA
62University of Tennessee, Knoxville, Tennessee 37996, USA

63Department of Physics, Tokyo Institute of Technology, Oh-okayama, Meguro, Tokyo 152-8551, Japan
64Center for Integrated Research in Fundamental Science and Engineering,

University of Tsukuba, Tsukuba, Ibaraki 305, Japan
65Vanderbilt University, Nashville, Tennessee 37235, USA

66Weizmann Institute, Rehovot 76100, Israel
67Institute for Particle and Nuclear Physics, Wigner Research Centre for Physics,
Hungarian Academy of Sciences (Wigner RCP, RMKI) H-1525 Budapest 114,

P.O. Box 49, Budapest, Hungary
68Yonsei University, IPAP, Seoul 120-749, Korea

69University of Zagreb, Faculty of Science, Department of Physics,
Bijenička 32, HR-10002 Zagreb, Croatia

(Received 8 October 2015; published 7 January 2016)

PHENIX measurements are presented for the cross section and double-helicity asymmetry (ALL) in
inclusive π0 production at midrapidity from pþ p collisions at

ffiffiffi

s
p ¼ 510 GeV from data taken in 2012

and 2013 at the Relativistic Heavy Ion Collider. The next-to-leading-order perturbative-quantum-
chromodynamics theory calculation is in excellent agreement with the presented cross section results.
The calculation utilized parton-to-pion fragmentation functions from the recent DSS14 global analysis,
which prefer a smaller gluon-to-pion fragmentation function. The π0ALL results follow an increasingly
positive asymmetry trend with pT and

ffiffiffi

s
p

with respect to the predictions and are in excellent agreement
with the latest global analysis results. This analysis incorporated earlier results on π0 and jet ALL and
suggested a positive contribution of gluon polarization to the spin of the proton ΔG for the gluon
momentum fraction range x > 0.05. The data presented here extend to a currently unexplored region, down
to x ∼ 0.01, and thus provide additional constraints on the value of ΔG.

DOI: 10.1103/PhysRevD.93.011501

In the late 1980s, the EMC experiment [1] showed that
the spins of quarks and antiquarks might contribute only a
fraction of the proton spin (about 1=3 from the recent
global analyses of world spin polarized scattering data
[2–6]). This sparked several decades of worldwide effort to
understand the proton spin structure in terms of quark and
gluon polarizations and their orbital angular momentum, as
evidenced by experimental programs at CERN, SLAC,
DESY, JLAB, and BNL.
A key component of the Relativistic Heavy Ion Collider

(RHIC) spin program is the determination of the gluon spin
contribution to the spin of the proton. High-energy polar-
ized proton collisions provide direct access to the gluon
polarization ΔG within the proton through several gluon-
dominated hard scattering processes, such as high pT jet

and hadron production [7]. RHIC results on the double
helicity asymmetry ALL in inclusive π0 production at

ffiffiffi

s
p ¼

62.4 and 200 GeV from PHENIX [8–11] and jet production
at

ffiffiffi

s
p ¼ 200 GeV from STAR [12,13] have made a signi-

ficant contribution to the ΔG determination [2,3]. Inclusion
of the recent RHIC results from

ffiffiffi

s
p ¼ 200 GeV data

collected in 2009 [14,15] in the global next-to-leading-order
(NLO) perturbative-quantum-chromodynamics (pQCD)
analysis provided evidence for positive gluon polarization
within the proton, with the integral of ΔGðx;Q2 ¼
10 GeV2Þ in the gluon momentum fraction x > 0.05 being
0.20þ0.06

−0.07 at 90% C.L. [16]. The RHIC high luminosity data
at

ffiffiffi

s
p ¼ 510 GeV allow probing ΔG in the overlapping

x range at higher momentum transfer and extend our
understanding of ΔG to the unexplored lower x region.
In this paper, we present the PHENIX π0 ALL results at
ffiffiffi

s
p ¼ 510 GeV from the RHIC 2012 and 2013 data sets,
with an integrated luminosity of 20 and 108 pb−1, respec-
tively. We also present and discuss our results on π0
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unpolarized cross section measurements, which serve as
an important test for the applicability of the NLO pQCD
theory calculations in the accessed kinematic range. The
theory is used to connect the measured asymmetries to
gluon polarization in the proton [2,3,16].
The PHENIX experimental setup is described elsewhere

[17]. In this analysis, π0 s were reconstructed via π0 → γγ
decays using a highly segmented electromagnetic calorim-
eter (EMCal), covering a pseudorapidity range of
jηj < 0.35. The EMCal comprises two calorimeter types,
a lead-scintillator (PbSc) sampling calorimeter and a lead-
glass (PbGl) Čerenkov calorimeter, with granularity Δη ×
Δϕ ∼ 0.011 × 0.011 and 0.008 × 0.008, respectively. Eight
EMCal sectors (six PbSc and two PbGl) are located in
two nearly back-to-back arms, each covering Δϕ ∼ 90° in
azimuth. The PHENIX EMCal also generates a high pT
photon (HPP) trigger when the deposited energy in any
set of 4 × 4 towers exceeds a pre-defined threshold. Thin
multiwire proportional chambers located in front of the
EMCal were used as a veto to suppress the charged
hadron background in π0 reconstruction [14]. Beam-beam
counters (BBC), positioned at �144 cm from the nominal
interaction point along the beam line and covering
η ¼ �3.0–3.9, defined the minimum-bias (MB) collision
trigger and determined the location of the collision vertex.
Only events with collision vertices within �10 cm
(�30 cm) of the nominal interaction point were used in
the cross section (asymmetry) analysis. The BBCs were
also used to calculate the integrated luminosity of the
collected data sample and relative luminosity between
colliding bunches with different spin configurations.
Zero-degree calorimeters (ZDC), located at �18 m and
covering jηj > 6, were used as another relative luminosity
monitor. Equipped with a shower-maximum detector, the
ZDC also provided monitoring of the transverse polariza-
tion component of colliding bunches in the PHENIX
interaction region, utilizing the azimuthal asymmetry in
forward neutron production in transversely polarized pþ p
collisions [18].
As described in detail in Ref. [9], π0 s were recon-

structed from two-photon invariant mass distributions.
A time-of-flight cut and shower profile evaluation (energy
distribution among EMCal towers) were used for photon
identification. A minimal photon energy cut of 0.3 GeV
and an energy asymmetry between the two photons α ¼
jE1 − E2j=ðE1þ E2Þ < 0.8 were applied. The π0 peak
width in the invariant mass distribution varied between 9
and 12 MeV=c2 over the measured pT range. The resulting
background fraction in the mass window of �25 MeV=c2

around the π0 peak varied from ∼20% at pT ∼ 2 GeV=c to
< 8% at pT > 5 GeV=c. The two decay photons start
merging in the PbSc (PbGl) EMCal at π0 pT > 10 GeV=c
(> 15 GeV=c). A 50% merging probability is reached at
pT ∼ 17 GeV=c (25 GeV=c) in the PbSc (PbGl), as shown
in Fig. 1. For pT > 24 GeV=c, the majority of photon pairs

are merged in the PbSc; in this pT range, only the PbGl data
were used.
The invariant differential cross section for π0 production

is calculated as

E
d3σ
dp3

¼ 1

L
·

1

2πp�
T
·
C · N
ΔpTΔy

; ð1Þ

where N is the number of π0 ’s observed in a ΔpT wide bin
at p�

T defined as the pT for which the cross section equals
its average over the bin;Δy is the rapidity range; C includes
corrections for trigger efficiency, geometrical acceptance,
π0 reconstruction efficiency, and detector resolution effects;
L is the integrated luminosity for the analyzed data sample.
Two data samples were used for the π0 cross section

measurements, one collected with a MB trigger and the
other with the HPP in coincidence with MB trigger. The
MB trigger efficiency was obtained from the data collected
with a dedicated HPP trigger operated without coincidence
with MB trigger, and found to be 0.91� 0.01 independent
of pT . It accounts for the fact that only a fraction of inelastic
pþ p collisions producing π0 meson(s) fires the MB
trigger. The HPP trigger efficiency vs pT was calculated
in each arm separately from a set of events triggered by a
high-energy cluster in the opposite arm. It showed a
characteristic threshold behavior with efficiency increasing
from ∼1% at pT ¼ 2 GeV=c to 93% at pT > 8 GeV=c.
For the cross section calculation, the MB triggered data
sample was used at pT < 6 GeV=c, and HPP triggered data
sample at higher pT.
The reconstructed π0 yields in each pT bin were

corrected for geometrical acceptance, reconstruction effi-
ciencies (e.g. due to the two-photon energy asymmetry
cut), and smearing effects (due to the finite detector
resolutions). The corrections were calculated with a
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FIG. 1. The probability for two photons from π0 decay to be
separated by the PHENIX EMCal clustering algorithm vs π0 pT ;
obtained from GEANT [19] simulation for the two-photon energy
asymmetry cut α < 0.8.
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simulation containing the EMCal geometry, known detec-
tor inefficiencies, and photon energy and position smearing
based on the known EMCal resolutions.
The major systematic uncertainties in the π0 cross

section measurement are the energy scale (1.2% uncer-
tainty in the EMCal energy calibration translates to ∼7%
in cross section uncertainty), energy nonlinearity (up to
10% for cross section depending on pT), and merging
corrections (up to 30% in the bins with the highest
probability for two photons to merge). The large uncer-
tainty at high pT reflects the sensitivity of the merging
correction to shower-shape fluctuations and background
conditions for asymmetric two-photon decays, having
higher probability to survive the merging in the
EMCal. The other uncertainties, contributing < 6% alto-
gether, are related to π0 yield extraction and background
subtraction, trigger efficiencies, geometrical acceptance
calculation, smearing corrections, and photon conversion.
The uncertainties are assigned separately for the PbSc and
the PbGl measurements.
A comparison of the results obtained from the PbSc and

the PbGl is a key cross check, because the two calorimeters
have a different response to hadrons (hence different
background contamination in π0 reconstruction), and con-
siderably different merging corrections versus pT . The π0

cross section results from the PbSc and the PbGl were in
agreement within uncertainties in the overlapping pT range.
The final spectrum was obtained from the combined
PbSc and PbGl results, while for pT > 24 GeV=c the
PbGl results were used. The total systematic uncertainties
associated with the results vary from 8%–10% at
pT < 14 GeV=c to ∼30% at the highest pT .
The integrated luminosity L in Eq. (1) was calculated

from the accumulated number of MB triggers in the
analyzed data sample normalized by the cross section of
the processes firing the MB trigger in pþ p collisions.
Similar to our previous analyses [10,20], the cross section
was defined using a vernier scan technique and found to be
32.5 mb with �10% uncertainty.
In the 2013 RHIC run, the instantaneous luminosity

delivered to PHENIX was so high that up to a third of
all bunch crossings had more than one pþ p collision. To
correct for this multiple-collision effect, we studied the
ratio of the π0 yield to the number of MB triggers [which is
proportional to the measured N=L in Eq. (1)] as a function
of instantaneous MB trigger rate.
Figure 2 shows the π0 cross section versus pT compared

to NLO pQCD calculations performed with MSTW [21]
parton distribution functions (PDF) and DSS14 [22]
fragmentation functions (FF). Compared to earlier FF
analysis [23] the DSS14 recent global fit results preferred
a smaller fraction of pions produced from gluon hadroni-
zation, driven mainly by the latest data from the Large
Hadron Collider. This theoretical calculation is in excellent
agreement with the presented data.

In 2012 and 2013, RHIC provided PHENIX with
colliding bunches of longitudinally polarized protons at
ffiffiffi

s
p ¼ 510 GeV. The bunch spin pattern was predefined in
such a way that the colliding bunch pair helicity state
alternated every bunch crossing, spaced 106 ns apart. This
greatly suppressed the possibility of false asymmetries
between colliding bunches with different helicity configu-
ration, due to variation in detector performance. To remove
possible systematic effects associated with particular bunch
(es) in the process of filling, ramping up, and storing the
beams in RHIC rings, eight bunch spin patterns were used
alternating every RHIC store, typically lasting eight hours.
Beam polarizations were measured by RHIC polarimeters
[24] three to four times during the store. For the two
RHIC collider rings, labeled “Blue” (B) and “Yellow” (Y),
the luminosity-weighted average polarizations in 2012
(2013) were hPBi ¼ 0.55� 0.02 (0.55� 0.02) and hPYi ¼
0.57� 0.02 (0.56� 0.02). The degree of longitudinal
polarization in the PHENIX interaction region was
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FIG. 2. The neutral pion production cross section at midrapidity
in pþ p collisions at

ffiffiffi

s
p ¼ 510 GeV as a function of pT and

NLO pQCD calculations for theory scales μ ¼ pT=2 (dotted
line), pT (solid line) and 2pT (dashed line), with μ representing
equal factorization, renormalization, and fragmentation scales.
Note that the error bars, representing the combined statistical and
point-to-point systematic uncertainties, are smaller than the
points. (bottom panel) Relative difference between the data
and theory for the three theory scales. Experimental uncertainties
are shown for the μ ¼ pT curve.
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monitored by local polarimeters, based on the ZDC and
shower-maximum detectors, which measured the residual
transverse polarization of colliding bunches. The longi-
tudinal component PL=P in both 2012 and 2013 was
> 0.998, for both RHIC rings.
The π0 ALL analysis technique is described in detail in

Ref. [14]. The ALL for inclusive π0 production, defined as
the difference between cross sections for colliding bunches
with the same helicity and opposite helicity, divided by the
sum, is experimentally calculated as

Aπ0
LL ¼ 1

PB · PY
·
Nþþ − R · Nþ−

Nþþ þ R · Nþ−
; R ¼ Lþþ

Lþ−
; ð2Þ

where N is the number of π0 ’s from the colliding bunches
with the same (þþ) and opposite (þ−) helicities, R is the
relative luminosity between bunches with the same and
opposite helicities, and PB and PY are the two RHIC beam
polarizations.
The π0 yields were extracted from the HPP triggered

sample in which the maximal energy photon of each pair
candidate was explicitly required to fire the HPP trigger.
This test, along with a time-of-flight cut, suppressed the
possibility of contamination from the neighboring bunch
crossings to a negligible level. As in the cross section
analysis, the π0 candidates were counted within a
�25 MeV=c2 window around the π0 peak in the two-
photon invariant mass distribution. The ALL was then
corrected for the background ALL measured in the side
bands on either side of the π0 peak; this background
asymmetry was found to be consistent with zero in all
pT bins.
The relative luminosity R was defined from the number

of MB triggers in each bunch crossing, and cross checked
using the number of collisions firing the ZDCs on both
sides of the IR. The pile-up correction due to the high
collision rate had a negligible effect on R. The resulting
contribution of the relative luminosity uncertainty to Aπ0

LL
for the 2012 (2013) data was δAπ0

LLjR ¼ 2.0 × 10−4

(3.8 × 10−4), affecting all pT bins in the same way.
ALL was measured for each PHENIX data-taking seg-

ment (up to 90 min long) to minimize the systematic effects
from variation in R, beam polarization (decreasing during a
store by ΔP ¼ 0.005–0.010 per hour), and HPP trigger
performance. These asymmetries were averaged separately
for the 2012 and 2013 data. Results from 2012 and
2013 were consistent within statistical uncertainties and
the final result presented in this paper is the average of these
data sets.
The resulting π0 ALL systematic uncertainties are

(a) a correlated uncertainty from relative luminosity of
3.6 × 10−4, (b) a correlated uncertainty from polarization
measurements of 6.5% (scale uncertainty), and (c) point-to-
point uncertainty from background fraction determination
under the π0 peak in the two-photon invariant-mass

distribution. The point-to-point uncertainties were found
to be smaller than 10% of the statistical uncertainty in all
pT bins. As in the previous PHENIX analysis [14], the
contribution of other potential sources of systematic
uncertainties was negligible.
Figure 3 shows theπ0 ALL asymmetries at

ffiffiffi

s
p ¼ 510 GeV

compared with the DSSV14 calculation [16] based on a
global fit of the world helicity asymmetry data. Comparing
the data to the DSSV14 curve we obtain χ2=NDF ¼ 8.0=14,
while comparing to the ALL ¼ 0 hypothesis we obtain
χ2=NDF ¼ 18.2=14; the data prefer the DSSV14 curve by
a little more than 3 standard deviations.
Figure 4 shows π0 ALL data from PHENIX at both
ffiffiffi

s
p ¼ 200 GeV [14] and 510 GeV, along with NLO pQCD
analyses from three groups [5,6,16]. All three analyses
predict an increase in π0 ALL at the same xT due to pQCD
evolution, with xT ¼ 2pT=

ffiffiffi

s
p

. Our data are consistent with
such an increase.
In summary, we have presented the unpolarized cross

section and double helicity asymmetry for π0 production at
midrapidity for pþ p collisions at

ffiffiffi

s
p ¼ 510 GeV. The

NLO pQCD calculation is in excellent agreement with the
presented cross section results. The calculation utilized the
recent DSS14 set of fragmentation functions, which prefer
the reduced fraction of pions produced from gluon hadro-
nization. The π0 ALL results follow a positive asymmetry
trend with pT and

ffiffiffi

s
p

predicted by NLO pQCD and are in
excellent agreement with the latest global fit results, which
suggested a nonzero gluon polarization in the proton for the
gluon momentum fraction range x > 0.05. These global fit
results included RHIC π0 ALL data at

ffiffiffi

s
p ¼ 62.4 and

200 GeVand jet ALL data at
ffiffiffi

s
p ¼ 200 GeV. The presented
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FIG. 3. ALL vs pT for π0 production at midrapidity in pþ p
collisions at

ffiffiffi

s
p ¼ 510 GeV. Error bars are combined statistical

and point-to-point systematic uncertainties. The ALL ¼ 0 (yel-
low) line is uncertainty from relative luminosity. The theoretical
curve with 90% C.L. band (green) is from a DSSV14
calculation [16].
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data at
ffiffiffi

s
p ¼ 510 GeV extend the x range probed down to

x ∼ 0.01 and provide an additional constraint on ΔG in this
x range [25], which is a crucial step in the nearly two
decades of worldwide efforts to understand the contribution
of gluon polarization to the spin of the proton. We note the
recent π0 ALL results at

ffiffiffi

s
p ¼ 200 GeV and forward

pseudorapidity 0.8 < η < 2 from STAR covering the gluon
x range down to x ∼ 0.01 (although with large uncertain-
ties) [26]. Data collected by PHENIX with forward EMCal
at pseudorapidity 3.1 < η < 3.9 and

ffiffiffi

s
p ¼ 510 GeV will

further extend the x range probed down to x ∼ 0.001.
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