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We report the measurement of cumulants (Cn,n = 1, . . . ,4) of the net-charge distributions measured within
pseudorapidity (|η| < 0.35) in Au + Au collisions at

√
s

NN
= 7.7–200 GeV with the PHENIX experiment at

the Relativistic Heavy Ion Collider. The ratios of cumulants (e.g., C1/C2, C3/C1) of the net-charge distributions,
which can be related to volume independent susceptibility ratios, are studied as a function of centrality and
energy. These quantities are important to understand the quantum-chromodynamics phase diagram and possible
existence of a critical end point. The measured values are very well described by expectation from negative
binomial distributions. We do not observe any nonmonotonic behavior in the ratios of the cumulants as a
function of collision energy. The measured values of C1/C2 and C3/C1 can be directly compared to lattice
quantum-chromodynamics calculations and thus allow extraction of both the chemical freeze-out temperature
and the baryon chemical potential at each center-of-mass energy. The extracted baryon chemical potentials are
in excellent agreement with a thermal-statistical analysis model.

DOI: 10.1103/PhysRevC.93.011901

One of the main goals in the study of relativistic heavy
ion collisions is to map the quantum chromodynamics (QCD)
phase diagram at finite temperature T and baryon chemical
potential μB [1]. Although the exact nature of the phase
transition at finite baryon density is still not well established,
several models suggest that, at large μB and low T , the phase
transition between the hadronic phase and the quark-gluon-
plasma (QGP) phase is of first order [2,3] and that at high
T and low μB there is a simple cross over from the QGP
to hadronic phase [4–8]. The point at which the first-order

*Deceased.
†PHENIX Co-Spokesperson: morrison@bnl.gov
‡PHENIX Co-Spokesperson: jamie.nagle@colorado.edu

phase transition ends in the T -μB plane is called the QCD
critical end point (CEP), which is one of the central targets
of the Relativistic Heavy Ion Collider (RHIC) beam-energy-
scan program. Several calculations also reported the possible
existence of the CEP in the T -μB phase diagram [6,7,9].

RHIC at Brookhaven National Laboratory has provided a
large amount of data from Au + Au collisions at different
colliding energies, which gives us a unique opportunity to
scan the T -μB plane and investigate the possible existence
and location of the CEP. In the thermodynamic limit, the
correlation length ξ diverges at the CEP [1]. Event-by-event
fluctuations of various conserved quantities, such as net-
baryon number, net charge, and net strangeness are proposed as
possible signatures of the existence of the CEP [10–12]. It has
been shown in lattice QCD that with a next-to-leading-order

011901-3
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Taylor series expansion around vanishing chemical potentials,
the cumulants of charge fluctuations are sensitive indicators for
the occurrence of a transition from the hadronic to QGP phase
[13,14]. Typically, the variances of net-baryon, net-charge,
and net-strangeness distributions are proportional to ξ as
σ 2(= C2) = 〈(δN )2〉 ∼ ξ 2 [9], where N is the multiplicity,
δN = N − μ, and μ(=C1) is the mean of the distribution.

Recent calculations reveal that higher cumulants of the
fluctuations are much more sensitive to the proximity of the
CEP than earlier measurements using second cumulants σ 2

[12,15]. The skewness S and kurtosis κ are related to the third
and fourth moments S (=C3/C

3/2
2 ) = 〈(δN)3〉/σ 3 ∼ ξ 4.5 and

κ(=C4/C2
2 ) = 〈(δN )4〉/σ 4 − 3 ∼ ξ 7. The ratio of the various

order n of cumulants Cn and conventional values (μ, σ , S,
and κ) can be related as follows: μ/σ 2 = C1/C2, Sσ =
C3/C2, κσ 2 = C4/C2, and Sσ 3/μ = C3/C1. Because ξ
diverges at the CEP, the ratios of cumulants Sσ and κσ 2

should rise rapidly when approaching the CEP [16,17]. The
cumulants of conserved quantities of net baryon, net charge,
and net strangeness obtained from lattice QCD calculations
[13,14,17] and a hadron resonance gas (HRG) model [18]
are related to the generalized susceptibilities of nth order χn

associated with the conserved quantum numbers as μ/σ 2 ∼
χ (1)/χ (2), Sσ ∼ χ (3)/χ (2), Sσ 3/μ ∼ χ (3)/χ (1), and κσ 2 ∼
χ (4)/χ (2). One advantage of measuring μ/σ 2, Sσ , Sσ 3/μ,
and κσ 2 is that the volume dependence of μ, σ , S, and κ
cancel out in the ratios; hence theoretical calculations can be
directly compared with the experimental measurements. These
cumulant ratios can also be used to extract the freeze-out
parameters and the location of the CEP [14]. Net-electric
charge fluctuations are more straightforward to measure
experimentally than net-baryon number fluctuations, which are
partially accessible via net-proton measurement [19]. While
net-charge fluctuations are not as sensitive as net-baryon
fluctuations to the theoretical parameters, both measurements
are desirable for a full understanding of the theory.

We report here precise measurements of the energy and
centrality dependence of higher cumulants of net-charge
multiplicity (�Nch = N+ − N−) distributions measured by
the PHENIX experiment at RHIC in Au + Au collisions at√

s
NN

= 7.7, 19.6, 27, 39, 62.4, and 200 GeV. These measure-
ments cover a broad range of μB in the QCD phase diagram.

The PHENIX detector is composed of two central spec-
trometer arms, two forward muon arms, and global detectors
[20]. In this analysis, we use the central arm spectrometers,
which cover a pseudorapidity range of |η| � 0.35. Each of the
two arms subtends π/2 radians in azimuth and is designed
to detect charged hadrons, electrons, and photons. For data
taken at

√
s

NN
= 62.4 and 200 GeV in 2010 and 2007,

respectively, the event centrality is determined using the total
charge deposited in the beam-beam counters (BBC), which are
also used for triggering and vertex determination. For lower
energies (

√
s

NN
= 39 GeV and below) the acceptance of the

BBCs (3.0 < |η| < 3.9) are within the fragmentation region,
so alternate detectors must be employed. For data taken at√

s
NN

= 39 and 7.7 GeV in 2010, centrality is determined using
the total charge deposited in the outer ring of the reaction plane
detector (RXNP), which covers 1.0 < |η| < 1.5 [21]. For data
taken at

√
s

NN
= 19.6 and 27 GeV in 2011, the RXNP was

absent, so centrality is determined using the total energy of
electromagnetic calorimeter (EMCal) clusters to minimize the
correlation with the charge of the tracks measured in the same
acceptance. More details on the procedure are given in [22].
The analyzed events for the above mentioned energies are
within a collision vertex of |Zvertex| < 30 cm. The number of
analyzed events are 2M, 6M, 21M, 154M, 474M, and 1681M
for

√
s

NN
= 7.7, 19.6, 27, 39, 62.4, and 200 GeV Au + Au

collisions, respectively.
The number of positively charged N+ and negatively

charged N− particles measured on an event-by-event basis
are used to calculate the net-charge �Nch distributions for
each collision centrality and energy. The charged-particle
trajectories are reconstructed using information from the drift
chamber and pad chambers (PC1 and PC3). A combination
of reconstructed drift-chamber tracks and matching hits in
PC1 are used to determine the momentum and charge of the
particle. Tracks having a transverse momentum between 0.3
and 2.0 GeV/c are selected for this analysis. The ring imaging
Čerenkov detector is used to reduce the electron background
resulting from conversion photons. To further reduce the
background, selected tracks are required to lie within a 2.5σ
matching window between track projections and PC3 hits, and
a 3σ matching window for the EMCal.

Figures 1(a) and 1(b) show �Nch distributions in Au + Au
collisions for central (0%–5%) and peripheral (55%–60%)
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FIG. 1. Uncorrected net-charge �Nch distributions, within |η| �
0.35 for different energies, from Au + Au collisions for (a) central
(0%–5%) and (b) peripheral (55%–60%) centrality. (c)–(f) are
the efficiency corrected cumulants of net-charge distributions as a
function of 〈Npart〉 from Au + Au collisions at different collision
energies. Systematic uncertainties on moments are shown for central
(0%–5%) collisions.
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collisions at different collision energies. These �Nch distri-
butions are not corrected for reconstruction efficiency. The
centrality classes associated with the average number of
participants, 〈Npart〉, are defined for each 5% centrality bin.
These classes are determined using a Monte-Carlo simulation
based on Glauber model calculations with the BBC, RXNP,
and EMCal detector responses taken into account [22,23].

The �Nch distributions are characterized by cumulants and
related quantities, such as μ, σ , S, and κ , which are calculated
from the distributions. The statistical uncertainties for the
cumulants are calculated using the bootstrap method [24].
Corrections are then made for the reconstruction efficiency,
which is estimated for each centrality and energy using the
HIJING1.37 event generator [25] and then processed through
a GEANT simulation with the PHENIX detector setup. For
all collision energies, the average efficiency for detecting
the particles within the acceptance varies between 65%–72%
and 76%–85% for central (0%–5%) and peripheral (55%–
60%) events, respectively, with a 4%–5% variation as a
function of energy. The efficiency correction applied to the
cumulants is based on a binomial probability distribution for
the reconstruction efficiency [26]. The efficiency corrected
μ, σ , S, and κ as a function of 〈Npart〉 are shown in
Figs. 1(c)–1(f).

The μ and σ for net-charge distributions increase with
increasing 〈Npart〉, while S and κ decrease with increasing
〈Npart〉 for all collision energies. At a given 〈Npart〉 value, μ,
S, and κ of net-charge distributions decrease with increasing
collision energy. However, the width σ of net-charge distribu-
tions increases with increasing collision energy indicating the
increase of fluctuations in the system at higher

√
s

NN
.

The systematic uncertainties are estimated by: (1) varying
the Zvertex cut to less than ±10 cm; (2) varying the matching
parameters of PC3 hits and EMCal clusters with the projected
tracks to study the effect of background tracks originating
from secondary interactions or from ghost tracks; (3) varying
the centrality bin width to study nondynamical contributions
to the net-charge fluctuations due to the finite width of the
centrality bins [27–29]; and (4) varying the lower cut. The total
systematic uncertainties estimated for various cumulants for
all energies are: 10%–24% for μ, 5%–10% for σ , 25%–30%
for S, and 12%–19% for κ . The systematic uncertainties are
similar for all centralities at a given energy and are treated as
uncorrelated as a function of

√
s

NN
. For clarity of presentation,

the systematic uncertainties are only shown for central (0%–
5%) collisions.

Figure 2 shows the 〈Npart〉 dependence of μ/σ 2, Sσ ,
κσ 2, and Sσ 3/μ[= (Sσ )/(μ/σ 2)] extracted from the net-
charge distributions in Au + Au collisions at different

√
s

NN
.

The results are corrected for the reconstruction efficiencies.
Statistical uncertainties are shown along with the data points.
The systematic uncertainties are constant fractional errors
for all centralities at a particular energy; hence they are
presented for the central (0%–5%) collision data point only.
The systematic uncertainties on these ratios across different
energies varies as follows: 20%–30% for μ/σ 2, 15%–34%
for Sσ , 12%–22% for κσ 2, and 17%–32% for Sσ 3/μ. It is
observed in Fig. 2 that the ratios of the cumulants are weakly
dependent on 〈Npart〉 for each collision energy; the values of
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FIG. 2. 〈Npart〉 dependence of efficiency corrected (a) μ/σ 2, (b)
Sσ , (c) κσ 2, and (d) Sσ 3/μ of net-charge distributions for Au + Au
collisions at different collision energies. Statistical errors are shown
along with the data points while systematic uncertainties are shown
for (0%–5%) collisions.

μ/σ 2 and Sσ decrease from lower to higher collision energies,
while the κσ 2 and Sσ 3/μ values are constant as a function of√

s
NN

within systematic uncertainties.
The collision energy dependence of μ/σ 2, Sσ , κσ 2 and

Sσ 3/μ of the net-charge distributions for central (0%–5%)
Au + Au collisions are shown in Fig. 3. The statistical and
systematic uncertainties are shown along with the data points.
The experimental data are compared with negative-binomial-
distribution (NBD) expectations, which are calculated by
computing the efficiency corrected cumulants for the measured
N+ and N− distributions fit with NBD’s respectively, which
also describe total charge (N+ + N−) distributions very well
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FIG. 3. The energy dependence of efficiency corrected (a) μ/σ 2,
(b) Sσ , (c) κσ 2, and (d) Sσ 3/μ of net-charge distributions for
central (0%–5%) Au + Au collisions. The error bars are statistical
and caps are systematic uncertainties. The triangle symbol shows the
corresponding efficiency corrected cumulant ratios for net charge,
from NBD fits to the individual N+ and N− distributions.
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TABLE I. Freeze-out Tf and μB vs
√

s
NN

in the range 27 � √
s

NN
� 200 GeV. The “PHENIX + Refs. [14,36]” values are from this Rapid

Communication using lattice QCD calculations from Refs. [14,36]; the “PHENIX + Ref. [37]” values use the continuum limit calculations
from Ref. [37]. The “STAR + Ref. [35]” values are the μB values from Ref. [35], which used STAR net-charge cumulant measurements from
Ref. [32] for μB with 140 MeV � Tf � 150 MeV, obtained from the STAR net-proton measurement in Ref. [33] by averaging Sσ 3/μ over√

s
NN

= 27, 39, 62.4 and 200 GeV.

√
s

NN
(GeV) PHENIX + Refs. [14,36] PHENIX + Ref. [37] STAR + Ref. [35]

Tf (MeV) μB (MeV) Tf (MeV) μB (MeV) μB (MeV)

27 164 ± 6 181 ± 21 160 ± 6 184 ± 21 136 ± 13.8
39 158 ± 5 114 ± 13 156 ± 5 118 ± 10 101 ± 10
62.4 163 ± 5 71 ± 8 159 ± 5 74 ± 8 66.6 ± 7.9
200 163 ± 8 27 ± 5 159 ± 8 25 ± 7 22.8 ± 2.6

[27,28]. The various order (n = 1, 2, 3, and 4) of net-charge
cumulants from NBD are given as Cn(�Nch) = Cn(N+) +
(−1)nCn(N−), where Cn(N+) and Cn(N−) are cumulants of
N+ and N− distributions, respectively [30,31].

The μ/σ 2 and Sσ values in Figs. 3(a) and 3(b), respectively,
both decrease with increasing

√
s

NN
. The NBD expectation

agrees well with the data. The κσ 2 values in Fig. 3(c)
remain constant and positive, between 1.0 < κσ 2 < 2.0 at
all the collision energies within the statistical and systematic
uncertainties. However, there is ∼25% increase of κσ 2

values at lower energies compared to higher energies above√
s

NN
= 39 GeV, which is within the systematic uncertainties.

These data are in agreement with a previous measurement
[32], but provide a more precise determination of the higher
cumulant ratios, verified by the NBD method of correcting
for efficiency, which is simple and analytical for all cumulant
ratios with the standard binomial correction [26]. The Sσ 3/μ
values in Fig. 3(d) remain constant at all collision energies
within the uncertainties and are well described by the NBD
expectation. From the energy dependence of μ/σ 2, Sσ ,
κσ 2, and Sσ 3/μ, no obvious nonmonotonic behavior is
observed. Although both previous measurements by the STAR
Collaboration [32,33] use the pseudorapidity range |η| � 0.5,
compared to the present measurement spanning |η| � 0.35,
these measurements are all within the central rapidity region
and are expected to be valid for comparison to lattice QCD
calculations. The efficiency corrected results for the cumulant
ratios μ/σ 2, Sσ , and κσ 2 remain the same within statistics
whether each single arm of the PHENIX central spectrometer
(azimuthal aperture δφ = π/2) or both arms (δφ = π ) are
used. This is a clear verification of the insensitivity of measured
cumulant ratios to volume effects.

The precise measurement of both μ/σ 2 and Sσ 3/μ in
the present study allows both μB and Tf to be determined,
unlike a previous calculation in Refs. [35,37], which was
only able to use the μ/σ 2 measurement from Ref. [32]. The
comparison of Sσ 3/μ for different

√
s

NN
with the lattice

calculations {Fig. 3(b) in Refs. [14,36]} enables us to extract
the chemical freeze-out temperature Tf . Furthermore, μB can
be extracted by comparing the measured μ/σ 2 ratios with the
lattice calculations of R12 = μ/σ 2 {Fig. 3(a) in Refs. [14,36]}.
The extracted Tf and μB values are listed in Table I. The Tf and
μB extracted using the lattice calculations in the continuum
limit from Ref. [37] are also depicted in Table I. The extracted

freeze-out parameters using different lattice results agree very
well. However, the extracted Tf are 2–4 MeV lower using
Ref. [37] than with Refs. [14,36], which is well within the
stated uncertainties. The detailed freeze-out parameter extrac-
tion procedure is given in Refs. [14,35,37]. This is a direct
combination of experimental data and lattice calculations to
extract physical quantities. The

√
s

NN
dependence of μB shown

in Fig. 4 is in agreement with the thermal-statistical analysis
model of identified particle yields [34]. The μB extracted in
the present net-charge measurement and the values reported in
[35] are in agreement within stated uncertainties, with some
tension at

√
s

NN
= 27 GeV. Available lattice results allow

extraction of μB and Tf from
√

s
NN

= 27 GeV and higher
using the present net-charge experimental data. Other recent
calculations [38,39] have used both net-proton and net-charge
measurements to estimate the freeze-out parameters.

In summary, fluctuations of net-charge distributions have
been studied using higher cumulants (μ, σ , S, and κ) for
|η| < 0.35 with the PHENIX experiment in Au + Au collisions
ranging from

√
s

NN
= 7.7 to 200 GeV. The ratios of cumulants

(μ/σ 2, Sσ , κσ 2, and Sσ 3/μ) have been derived from the
individual cumulants of the distributions studied as a function
of 〈Npart〉 and

√
s

NN
. The μ/σ 2 and Sσ values decrease with

increasing collision energy and are weakly dependent on
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FIG. 4. The energy dependence of the chemical freeze-out pa-
rameter μB . The dashed line is the parametrization given in Ref. [34],
and the SchwerIonenSynchrotron (SIS), Alternating Gradient Syn-
chrotron (AGS), and Super Proton Synchrotron (SPS) data are from
Ref. [34] and references therein.
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centrality, whereas κσ 2 and Sσ 3/μ values remain constant
over all collision energies within uncertainties. The efficiency
corrected values from the NBD expectation reproduce the
experimental data. These data are in agreement with a previous
measurement [32], but provide more precise determination of
the higher cumulant ratios Sσ and κσ 2. In the present study
we do not observe any significant nonmonotonic behavior
of μ/σ 2, Sσ , κσ 2, and Sσ 3/μ as a function of collision
energies. Comparison of the present measurements together
with the lattice calculations enables us to extract the freeze-out
temperature Tf and baryon chemical potential μB over a range
of collision energies. The extracted μB values are in excellent
agreement with the thermal-statistical analysis model [34].
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