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The production of the hypertriton nuclei 3
�H and 3

�̄
H has been measured for the first time in Pb–Pb

collisions at √sNN = 2.76 TeV with the ALICE experiment at LHC. The pT-integrated 3
�H yield in one 

unity of rapidity, dN/dy × B.R.(3
�H→3He,π−) = (3.86 ± 0.77(stat.) ± 0.68(syst.)) × 10−5 in the 0–10% most 

central collisions, is consistent with the predictions from a statistical thermal model using the same 
temperature as for the light hadrons. The coalescence parameter B3 shows a dependence on the 
transverse momentum, similar to the B2 of deuterons and the B3 of 3He nuclei. The ratio of yields 
S3 = 3

�H/(3He×�/p) was measured to be S3 = 0.60 ±0.13(stat.) ±0.21(syst.) in 0–10% centrality events; 
this value is compared to different theoretical models. The measured S3 is compatible with thermal 
model predictions. The measured 3

�H lifetime, τ = 181+54
−39(stat.) ± 33(syst.) ps is in agreement within 1σ

with the world average value.
© 2016 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V. This is an open 

access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction and physics motivations

High-energy heavy-ion collisions offer a unique way to study 
the behaviour of nuclear matter under conditions of extreme en-
ergy densities. At LHC energies, particles carrying strangeness are 
abundantly produced and light clusters of nucleons and hyper-
ons, called hypernuclei, are expected to be formed [1]. Since their 
first observation [2], there has been a constant interest in search-
ing for new hypernuclei as they offer an experimental way to 
study the hyperon–baryon (Y N) and the hyperon–hyperon (Y Y ) 
interactions, which are relevant for nuclear physics and nuclear 
astrophysics. For instance, the Y N interaction plays a key role 
in understanding the structure of neutron stars [3–6]. The pro-
duction of hypernuclei in heavy-ion collisions has been proposed 
and studied for a long time [7,8] and at ultrarelativistic energies 
it is possible to produce particles otherwise inaccessible, such as 
anti-hypernuclei. In fact, while many �-hypernuclei have been ob-
served, the first observation of an anti-hypernucleus is rather re-
cent and was reported from the analysis of Au–Au collisions at √

sNN = 200 GeV by the STAR Collaboration at RHIC [9]. Since hy-
pernuclei are weakly bound nuclear systems, they are sensitive 
probes of the final stages of the evolution of the fireball formed 
in the heavy-ion collisions [10]. The yield of hypernuclei can dis-
tinguish between different production scenarios, usually described 
using two different theoretical approaches. The first one is based 
on a coalescence model [11], while the second one is based on the 

� E-mail address: alice-publications@cern.ch.

assumption that all the particle species can be described using a 
statistical thermal model [12]. In the statistical thermal model a 
constant entropy over baryon ratio [13] could explain why objects 
with such a small binding energy (few MeV) could survive the 
high temperature (≈ 170 MeV) expanding fireball. On the other 
hand, if hypernuclei are produced through coalescence of protons, 
neutrons and hyperons at freeze-out [14], they will provide a mea-
surement of the local correlation between baryons and hyperons 
(strangeness) [15].

This letter presents a study of hypertriton and anti-hypertriton 
production at 

√
sNN = 2.76 TeV Pb–Pb collisions by the ALICE Col-

laboration. The paper is organised as follows. In Section 2 the 
ALICE detector is briefly described. The data sample, analysis de-
tails and systematic uncertainties are presented in Section 3. In 
Section 4 the obtained results are compared with theoretical mod-
els. Finally the conclusions are drawn in Section 5.

2. The ALICE detector

A detailed description of the ALICE detector can be found 
in [16] and references therein. For the present analysis the main 
sub-detectors used are the V0 detectors, the Inner Tracking System 
(ITS) and the Time Projection Chamber (TPC), which are located 
inside a 0.5 T solenoidal magnetic field. The V0 [17] detectors 
are placed around the beam-pipe on either side of the interaction 
point: one covering the pseudorapidity range 2.8 < η < 5.1 (V0-A)
and the other one covering −3.7 < η < −1.7 (V0-C). The collision 
centrality is estimated by using the multiplicity measured in the 
V0 detectors along with a Glauber model simulation to describe 

http://dx.doi.org/10.1016/j.physletb.2016.01.040
0370-2693/© 2016 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V. This is an open access article under the CC BY license 
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the multiplicity distribution as a function of the impact parameter 
[18,19]. The ITS [20] has six cylindrical layers of silicon detectors 
with radii between 3.9 and 43 cm from the beam axis, covering 
the full azimuthal angle and the pseudorapidity range of |η| < 0.9. 
The same pseudorapidity range is covered by the TPC [21], which 
is the main tracking detector. Hits in the ITS and found clusters in 
the TPC are used to reconstruct charged-particle tracks. These are 
used to determine the primary collision vertex with a resolution of 
about 10 μm in the direction transverse to the beams for heavy-
ion collisions. The TPC is used for particle identification through 
the dE/dx (specific energy loss) in the TPC gas.

3. Analysis

The (anti-)hypertriton (3
�̄

H) 3
�H is the lightest observed hy-

pernucleus and is a bound state formed by a (anti-)proton, 
a (anti-)neutron and a (anti-)�. The 3

�H and 3
�̄

H production 
yields were measured by detecting their mesonic decay (3

�H →
3He + π−) and (3

�̄
H →3 He + π+) via the topological identifica-

tion of secondary vertices and the analysis of the invariant mass 
distributions of (3He + π−) and (3He + π+) pairs.

The analysis was done using Pb–Pb collisions at 
√

sNN =
2.76 TeV taken in 2011. The events were collected with an in-
teraction trigger requiring a signal in both V0-A and V0-C. Only 
events with a primary vertex reconstructed within ±10 cm, along 
the beam axis, from the nominal position of the interaction point 
were selected. The analysed sample, collected with two different 
centrality trigger configurations corresponding to the 0–10% and 
10–50% centrality intervals, contained approximately 20 × 106 and 
17 × 106 events, respectively.

The 3
�H can be identified via the invariant mass of its de-

cay products and, since it has a lifetime similar to the free �

(cτ ∼ 8 cm), in most cases it is possible to identify its decay up 
to a few cm away from the primary vertex. The decay vertex was 
determined by exploiting a set of geometrical selections: i) the dis-
tance of closest approach (DCA) between the two particle tracks 
identified using dE/dx in the TPC as 3He and π , ii) the DCA of 
the π± tracks from the primary vertex, iii) the cosine of the angle 
between the total momentum of the decay pairs at the secondary 
vertex and a vector connecting the primary vertex and the sec-
ondary vertex (pointing angle), and iv) a selection on the proper 
lifetime (cτ ) of the candidate. An additional selection on the 3

�H
(3
�̄

H) rapidity (|y| < 0.5) was applied.

Fig. 1 shows the invariant mass distribution of (3He, π−) on 
the left and (3He, π+) on the right for events with 10–50% cen-

trality in the pair transverse momentum range 2 ≤ pT < 10 GeV/c. 
In order to estimate the background, for each event the π track 
detected at the secondary vertex was rotated 20 times by a ran-
dom azimuthal angle. The shape of the corresponding (3He, π ) 
invariant mass distribution was found to reproduce the observed 
background outside the signal region. The data points were fitted 
with a function which is the sum of a Gaussian and a third degree 
polynomial, used to describe the signal and the background, re-
spectively. The background was normalized to the measured values 
in the 3.01–3.08 GeV/c2 region. The fit to the background distri-
bution was used to fix the parameters of the polynomial in the 
combined fit.

In the 0–10% most central collisions, a signal was extracted 
in three transverse momentum intervals (2 ≤ pT < 4 GeV/c, 4 ≤
pT < 6 GeV/c, 6 ≤ pT < 10 GeV/c), for both 3

�H and 3
�̄

H. In the 
10–50% centrality class a signal both for 3

�H and 3
�̄

H was ob-
tained for the full pT range under study (2 ≤ pT < 10 GeV/c). 
From the combined fit results the mean value, the width and the 
yield of the signal were extracted. The mean invariant mass (μ =
2.991 ± 0.001(stat.) ± 0.003(syst.) GeV/c2) is compatible within 
uncertainties with the mass from the literature [22]. The signal 
width, σ = (3.01 ± 0.24(stat.)) × 10−3 GeV/c2 obtained as the 
mean value of all the measured widths, is reproduced by Monte 
Carlo simulations and is driven by detector resolution. The raw 
yield of the signal was defined as the integral of the Gaussian func-
tion in a ±3σ region around the mean value. The significance of 
both matter and anti-matter signals varies in the different pT bins 
in the range of 3.0–3.2 σ for the most central collisions (0–10%) 
and ranges from 3 to 3.5 σ for the semi-central ones (10–50%).

A correction factor which takes into account the detector ac-
ceptance, the reconstruction efficiency, and the absorption of 3

�H
(3
�̄

H) by the material crossed was determined as a function of pT. 
Detector acceptance and reconstruction efficiency were evaluated 
using a dedicated HIJING Monte Carlo simulation [23], where the 
only allowed decay was the two-body decay to charged particles, 
(3
�H → 3He + π−) and (3

�̄
H → 3He + π+). The simulated particles 

were propagated through the detector using the GEANT3 transport 
code [24] and then processed with the same reconstruction chain 
as for the data.

Since the absorption of (anti-)(hyper)nuclei is not properly im-
plemented in GEANT3, a correction based on the p (p) absorption 
was applied in order to take into account the absorption of 3

�H
(3
�̄

H) and 3He (3He) by the material of the ALICE detector. In this 
approach, the 3He and 3

�H were treated as states of three indepen-
dent p (p). The 3He was considered as a bound state of 3 protons 
Fig. 1. Invariant mass of (3He, π−) (left) and (3He, π+) (right) for events with 10–50% centrality in the pair 2 ≤ pT < 10 GeV/c interval. The data points are shown as filled 
circles, while the squares represent the background distribution as described in the text. The curve represents the function used to perform the fit and used to evaluate the 
background and the raw signal. The significance in ±3σ around the peak is 3.5 and 3.0 for the invariant mass distribution of (3He, π−) and (3He, π+), respectively.
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Table 1
Summary of systematic uncertainties for the three pT intervals and in the full range (F.R.) considered. These uncertainties are the same for events with 0–10% and 10–50% 
centrality. For the final systematic uncertainty evaluation they were added in quadrature.

3
�H 3

�̄
H

pT intervals (GeV/c) pT intervals (GeV/c)

2–4 4–6 6–10 F.R. 2–4 4–6 6–10 F.R.

Absorption 5.4% 5.3% 5.4% 5.4% 13% 10% 8.9 % 10.6%
Tracking efficiency 10% 10% 10% 10% 10% 10% 10% 10%
3
�H lifetime 8.5% 8.5% 8.5% 8.5% 8.5% 8.5% 8.5% 8.5%
Signal extraction method 9% 9% 9% 9% 9% 9% 9% 9%
Extrapolation at low pT – – – 5% – – – 5%
Total 16.8% 16.8% 16.8% 17.5% 20.5% 18.8% 18.2% 19.8%

Fig. 2. Left: Transverse momentum spectra multiplied by the B.R. of the 3
�H → 3He + π− decay for 3

�H (filled circles) and 3
�̄

H (squares) for the most central (0–10%) Pb–Pb 
collisions at √sNN = 2.76 TeV for |y| < 0.5. Symbols are displaced for better visibility. The dashed lines are the blast-wave curves used to extract the particle yields integrated 
over the full pT range. In order to take into account the large binning used in the analysis and the limited number of bins, the centre of each bin was evaluated weighting 
the actual bin centre with the blast-wave function. Right: 3

�̄
H to 3

�H ratio as a function of pT. In both panels statistical uncertainties are represented by bars and systematic 
uncertainties are represented by open boxes.
because the proton absorption correction in the ALICE detector was 
measured [25]. The direct measurement offers the advantage of 
having a probability density which takes into account the effective 
material of the detector crossed by a charged particle. The effect 
of using protons instead of neutrons was tested with deuterons, 
which were considered as a bound state of 2 protons and the ab-
sorption correction was evaluated with the same model used for 
3He. The result was compared with the one obtained with the 
absorption correction of GEANT3 patched with hadronic cross sec-
tions for d and d. The two calculated absorption corrections where 
found to be consistent within uncertainties. To take into account 
the small � separation energy (B�(3

�H) = 0.13 ± 0.05 MeV [26]), 
the absorption cross section of the 3

�H was increased by 50% with 
respect to the one of the 3He. This choice was based on the theo-
retical calculation of 3

�H absorption cross-section [27] on 238U and 
its ratio with the extrapolation of 3He cross section on the same 
target [28]. Using the same extrapolation it was possible to eval-
uate the same ratio on ALICE materials. The correction applied to 
the extracted yield was about 12% for 3

�H and about 22% for 3
�̄

H. 
The total systematic uncertainty takes into account, as lower and 
upper limits of the 3

�H (3
�̄

H) absorption cross section, values re-
spectively equal to or two times higher than the absorption cross 
section of 3He (3He). This uncertainty is pT dependent, and its 
values are reported in Table 1. Other sources of systematic uncer-
tainties in the yield evaluation were estimated:

– The systematic uncertainty due to the single-track efficiency, 
and the different choices of the track quality selections was 
taken from [29]. A 10% uncertainty is quoted for the two body 
decay of 3

�H.

– 3
�H lifetime: since the 3

�H lifetime is not accurately known, the 
influence of varying the 3

�H lifetime on the efficiency was eval-
uated by variation of the proper lifetime of the injected 3

�H
in the Monte Carlo simulation. The associated uncertainty was 
estimated using two additional dedicated Monte Carlo simula-
tions with different lifetimes. The injected lifetime of 3

�H (3
�̄

H) 
was varied (±1σ ) with respect to the result obtained in this 
analysis, leading to an uncertainty of 8.5%.

– The uncertainty related to the signal extraction procedure was 
evaluated by constraining fit parameters (μ and σ ) in different 
ways. This source led to a 9% uncertainty.

The systematic uncertainty due to the uncertainty of the ALICE de-
tector material budget and pT distribution in the Monte Carlo used 
for the efficiency estimation led to a 1% systematic uncertainty.

The 3
�H and 3

�̄
H spectra are shown in Fig. 2 (left panel), mul-

tiplied by the branching ratio (B.R.) of the 3
�H → 3He + π− decay. 

The anti-hypertriton to hypertriton ratio as a function of pT is 
shown in Fig. 2 (right panel). It is consistent with unity over the 
whole considered pT range, as expected from zero net baryon den-
sity at LHC energies. In the ratio, the common systematic uncer-
tainties (tracking efficiency, lifetime, and signal extraction method) 
cancel out and have therefore been removed.

In order to take into account the unmeasured pT region and 
to extract the particle yields integrated over the full pT range, the 
spectra were fitted using a blast-wave function [30] whose param-
eter values were taken from the deuteron analysis [31] leaving the 
normalization free. The function fits the data with a χ2/NDF of 
0.92. The extrapolation in the pT < 2 GeV/c region contributes 28% 
to the final yield for both 3

�H and 3
�̄

H, while the contribution for 



ALICE Collaboration / Physics Letters B 754 (2016) 360–372 363

Table 2
Summary of systematic uncertainties for the determi-
nation of the proper lifetime of 3

�H +3
�̄

H.

Source Value

Signal extraction method 9%
Tracking efficiency 10%
Absorption 12%
Total 18%

Fig. 3. Measured dN/d(ct) distribution and an exponential fit used to determine 
the lifetime. The bars and boxes are the statistical and systematic uncertainties, 
respectively.

pT > 10 GeV/c is negligible. Different transverse momentum dis-
tributions were used to evaluate the systematic uncertainty related 
to the extrapolation, which was found to be 5%.

To determine the lifetime, the (3
�H +3

�̄
H) sample was divided 

into four intervals in ct = MLc/p, where M is the mass, L the 
decay length, c is the speed of light, and p is the total mo-
mentum. The mass was fixed to the value from the literature 
M = 2.991 GeV/c2 [22]. For the determination of the lifetime, both 
centrality classes 0–10% and 10–50% were used. The signal was 
extracted in the intervals: 1 ≤ ct < 4 cm, 4 ≤ ct < 7 cm, 7 ≤ ct <

10 cm and 10 ≤ ct < 28 cm. To estimate the lifetime, the raw sig-
nal was corrected by the detector acceptance, the reconstruction 
efficiency and the absorption of 3

�H (3
�̄

H) in the material. The same 
dedicated HIJING Monte Carlo simulation and the same procedure 
used to determine the pT dependence of the efficiency were used. 
The sources of systematic uncertainty are shown in Table 2.

An exponential fit was performed to determine the lifetime. The 
dN/d(ct) distribution and the exponential fit are shown in Fig. 3. 
The vertical bars show the statistical uncertainties and the boxes 
represent the systematic uncertainties. The slope of the fit results 
in a proper decay length of cτ =

(
5.4+1.6

−1.2(stat.) ± 1.0(syst.)
)

cm.

The lifetimes of light �-hypernuclei (A ≤ 4) are expected to be 
very similar to that of the free �, if the � in the hypernucleus 
is weakly bound [33]. The measured lifetimes of light hypernuclei 
such as 3

�H [9,34–40] are not known as precisely as the � lifetime, 
and theoretical predictions [33,41–48] are scattered over a large 

Fig. 4. 3
�H lifetime (τ ) measured by in this analysis (red diamond) compared with 

published results. The band represents the world average of 3
�H lifetime mea-

surements 
(
τ = 215+18

−16

)
ps, while the dashed line represent the lifetime of � as 

reported by the Particle Data Group [32]. (For interpretation of the references to 
colour in this figure legend, the reader is referred to the web version of this arti-
cle.)

range, too. Recently, a statistical combination of the experimental 
lifetime estimations of 3

�H available in literature was published, 
resulting in an average value τ =

(
216+19

−18

)
ps [49].

With the present data, a lifetime of τ =
(

181+54
−39(stat.) ±

33(syst.)
)

ps has been obtained. It is compared with the previ-

ously published results in Fig. 4. Our result, together with the 
previous ones, was used to re-evaluate the world average of the 
existing results using the same procedure as described in [49]. The 
obtained value, τ =

(
215+18

−16 ps
)

, is shown as a band in Fig. 4. The 
result obtained in this analysis is compatible with the computed 
average.

4. Comparison between experimental yields and theoretical 
models

The product of the pT-integrated yield and the B.R. of the 
3
�H → (3He + π−) decay for 3

�H and 3
�̄

H for two centrality classes 
(0–10% and 10–50%) are reported in Table 3. The systematic uncer-
tainties also include the contribution due to the low pT extrapola-
tion as described in Section 3.

It is possible to compare the pT-integrated 3
�H yield at differ-

ent centralities by scaling them according to the charged-particle 
densities 〈dNch/dη〉. For central (0–10%) collisions 〈dNch/dη〉 =
1447 ± 39, while for semi-central (10–50%) 〈dNch/dη〉 = 575 ± 12. 
The ratio( (

3
�H+3

�̄
H

)
(0−10%)(

3
�H+3

�̄
H

)
(10−50%)

)
( 〈dNch/dη〉(0−10%)

〈dNch/dη〉(10−50%)

) = 1.34 ± 0.35(stat.) ± 0.24(syst.) (1)

is compatible with unity within 1σ . The 3
�H (3

�̄
H) production 

scales with centrality like the charged-particle production.
Table 3
pT-integrated 3

�H yield times the B.R. of the 3
�H → (3He + π−) decay, for 3

�H and 3
�̄

H in Pb–Pb collisions at √
sNN = 2.76 TeV for different centrality classes in |y| < 0.5. For each centrality interval the average 〈dNch/dη〉 is 

also reported [18].

Centrality 〈dNch/dη〉 3
�H dN/dy × B.R. × 105 3

�̄
H dN/dy × B.R. × 105

0–10% 1447±39 3.86 ± 0.77(stat.) ± 0.68(syst.) 3.47 ± 0.81(stat.) ± 0.69(syst.)
10–50% 575±12 1.31 ± 0.37(stat.) ± 0.23(syst.) 0.85 ± 0.29(stat.) ± 0.17(syst.)
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Fig. 5. pT-integrated 3
�H yield times branching ratio as a function of branching ratio 

(dN/dy × B.R. vs B.R.). The horizontal line is the measured value and the band 
represents statistical and systematic uncertainties added in quadrature. Lines are 
different theoretical expectations as explained in the text.

4.1. Comparison between thermal models and experimental yields

Since the decay branching ratio of the 3
�H → 3He + π− was 

estimated only relative to the charged-pion channels [39], the cor-
responding value (B.R. = 35%) provides an upper limit for the 
absolute branching ratio. On the other hand, a theoretical esti-
mation for the 3

�H → 3He + π− decay branching ratio, which 
also takes into account decays with neutral mesons decays, gave 
a B.R. = 25% [33]. Assuming a possible variation on the B.R. in 
the range 15–35%, we show in Fig. 5 a comparison of our re-
sult with different theoretical model calculations [1,50,51]. The 
measured dN/dy × B.R. is shown as a horizontal line, where the 
band represent statistical and systematic uncertainties added in 
quadrature while the different theoretical models are shown as 
lines. The data are compared with the following models: two ver-
sions of the statistical hadronization model [1,50] and the hy-
brid UrQMD model [51], which combines the hadronic transport 
approach with an initial hydrodynamical stage for the hot and 
dense phase of a heavy-ion collision. The two versions of the sta-
tistical hadronization model used are the equilibrium statistical 
model (GSI-Heidelberg), described in [1] and references therein, 
with a temperature Tch = 156 MeV and the non-equilibrium ther-
mal model (SHARE), described in [50] and references therein, with 
Tch = 138.3 MeV, γq = 1.63 and γs = 2.08, where γq and γs rep-
resent the quark and strangeness phase space occupancy of the 
system created after the collision, respectively.

The non-equilibrium thermal model (SHARE) [50] overestimates 
the (anti-)hypertriton pT-integrated yield by a factor from 2 to 5 
depending on the branching ratio (B.R.). For the branching ra-
tio expected following [33] (B.R. = 25%) the equilibrium thermal 
model [1] (GSI-Heidelberg) and the hybrid UrQMD model [51] de-
scribe the data best.

A fit, based on the thermal fit described in [1], was performed 
to the hypertriton yield and to yields from other light flavour 
hadrons, except K∗ , previously measured by our Collaboration at √

sNN = 2.76 TeV [31,52–55]. The inclusion of the deuteron, 3He 
[31] and 3

�H in the thermal fit [56] in addition to lighter parti-
cles, does not change the resulting freeze-out temperature (Tch =
156 ±2 MeV) and the measured yields of the nuclei and the hyper-
triton agree with the model predictions within 1σ . The results on 
the hypertriton yields discussed above were also used to determine 
the 3

�H/3He and 3
�̄

H/3He ratios, which are shown in Table 4. In or-

der to compute the ratios, our previous measurement of 3He and 

Table 4
Ratios of 3

�H/3He and 3
�̄

H/3He assuming a B.R. = 25% for the 3
�H → 3He + π de-

cay [33]. The results from 3He and 3He analysis measured by the ALICE experiment 
were used [31].

Centrality 3
�H/3He 3

�̄
H/3He

0–10% 0.47 ± 0.10(stat.) ± 0.13(syst.) 0.42 ± 0.10(stat.) ± 0.13(syst.)
10–50% 0.40 ± 0.11(stat.) ± 0.11(syst.) 0.26 ± 0.09(stat.) ± 0.08(syst.)

Fig. 6. The ratios 3
�H/3He and 3

�̄
H/3He determined by the present analysis (filled 

circles) for matter and anti-matter compared with STAR results (squares) [9] and 
theoretical predictions (lines) [1,50,57,58] as described in the legend.

3He yields [31] were used. These results were compared with dif-
ferent theoretical models [50,57,58] and results from the STAR ex-
periment [9] at 

√
sNN = 200 GeV, which use the same B.R. = 25%. 

The comparison is shown in Fig. 6. STAR results are higher than 
ALICE results, but still compatible within uncertainties.

4.2. Data comparison to coalescence models and S3 ratio

At the moment no prediction of the 3
�H and 3

�̄
H yields in a 

non-trivial dynamical coalescence model is available at LHC ener-
gies. Nevertheless within a simple coalescence model it is possible 
to evaluate some parameters which are sensitive to the existence 
of coalescence mechanisms for hypernuclei formation. In the em-
pirical coalescence model [11] the cross section for the production 
of a cluster with mass number A is related to the probability that 
A nucleons have relative momenta less than p0, which is a free pa-
rameter of the model. This provides the following relation between 
the production cross sections of the nuclear cluster emitted with a 
momentum p A and the nucleon emitted with a momentum pp

E A
d3N A

d3 p A
= B A

(
Ep

d3Np

d3 pp

)A

, (2)

where p A = App. For a given nucleus, the coalescence parameter 
B A should not depend on the momentum since it depends only on 
the cluster parameters:

B A =
(

4π

3
p3

0

)(A−1) M

mA
(3)

where M and m are the nucleus and the proton mass, respectively 
and p0 is the relative momentum between the constituent nu-
cleons of the nucleus. The parameter B3 was computed for 3

�H
according to Equation (2) using the spectrum shown in Fig. 2 and 
our previous measurement of the proton [52] and � [54] spectra.
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Fig. 7. Left: B2 as a function of pT/A for d (filled circles) [31], 3He (empty circles) [31], and 3
�H (filled squares). The B

(d,3
�H)

2 and B(d,3 He)
2 were evaluated as explained in 

the text. k1 = m2
d

m3 Hemp
, and k2 = m2

dm�

m2
pm3

�
H

. Right: S3 ratio measured in this analysis compared with previous experimental results (E864 [8] and STAR [9] (triangle and star, 
respectively)) and different theoretical models as indicated in the legend.
Parameters Bd
2 and B

3He
3 obtained in [31] are compared with 

the hypertriton B
3
�H
3 from this analysis using the relations

B
3He
2 =

√
m2

d

m3Hemp
B

3He
3 , (4)

B
3
�H
3 = B

3He
3

mpm3
�H

m3Hem�

, (5)

and finally

B
3
�H
2 =

√√√√ m2
dm�

m2
pm3

�H

B
3
�H
3 . (6)

In a simple coalescence model the B A parameter for all the 
light nuclei should have the same behaviour. The coalescence pa-
rameter of deuteron (Bd

2) and the coalescence parameters of 3He 

and 3
�H (B

3He
3 and B

3
�H
3 ) can be directly compared deriving the 

B
3He
2 and the B

3
�H
2 using equation (4), equation (5) and equa-

tion (6). The comparison of the three coalescence parameters is 
shown in the left panel of Fig. 7. The 3

�H coalescence parameter is 
not flat as a function of pT contrary to the prediction of the simple 
coalescence model [11], which does not take into account the char-
acteristics of the emitting source. This is the same behaviour as ob-
served for deuterons and 3He nuclei [31]. At low pT the B2 values 
are compatible, suggesting that p0 is similar for A = 2 and A = 3.

Using the measured 3
�H yield the ratio S3 = 3

�H/(3He × �/p), 
also known as the strangeness population factor [59], was evalu-
ated. This ratio was first suggested by the authors of [8] in the 
expectation that dividing the strange to non-strange baryon yield 
should result in a value near unity in a simple coalescence model. 
According to the authors of [59], S3 should be also a valuable tool 
to probe the nature of the matter created in the collision, since 
it is sensitive to the local baryon-strangeness correlation [60–62]: 
a value of S3 close to unity would indicate that the phase-space 
populations for strange and light quarks are similar and would 
support the formation of high-temperature matter of deconfined 
quarks. In the thermal model approach the S3 ratio does not de-
pend on the chemical potential of particles and was found to be 
almost energy independent [1,63], while in a dynamical coales-
cence picture it increases with decreasing beam energy and is in 
general larger than the thermal model predictions [63]. This leads 
to the conclusion that the information on correlations of baryon 

Table 5
S3 for matter and anti-matter. To compute the ratio a B.R. of 25% was assumed for 
the 3

�H → 3He + π decay.

Centrality
3
�H
3He

× p
�

3
�H
3He

× p
�

0–10% 0.60 ± 0.13(stat.) ± 0.21(syst.) 0.54 ± 0.13(stat.) ± 0.19(syst.)

number and strangeness is lost in the thermal calculation because 
S3 essentially depends only on the temperature. The �/p ratio 
used in the present analysis was taken from [52] and [54]. The 
S3 values obtained for particles (anti-particles) are summarised in 
Table 5 and the average of the two measurements is shown in the 
right panel of Fig. 7. These values were compared with different 
theoretical models and to the results from experiments at BNL-AGS 
[8] and RHIC [9].

The models used for the comparison are the statistical hadroni-
zation model [1], the hybrid UrQMD model [63] and its extension 
at the LHC energy [51], the DCM (Dubna Cascade Model) coales-
cence model (described in [63]) and two versions – default and 
string melting – of the AMPT (A Multi-Phase Transport Model for 
Relativistic Heavy Ion Collisions) [64] plus coalescence described 
in [59]. The present result at 

√
sNN = 2.76 TeV is comparable to 

that measured at E864 experiment [8] at 
√

sNN ∼ 5 GeV, while it 
does not confirm the rising behaviour shown by STAR [9] and by 
the AMPT with string melting plus coalescence model [59]. This re-
sult is consistent with the thermal model approach, which predicts 
a constant S3 value from 

√
sNN above a few GeV.

5. Conclusions

Measurements of 3
�H and 3

�̄
H in Pb–Pb collisions at 

√
sNN =

2.76 TeV were presented in this letter. The 3
�H lifetime was mea-

sured and was found to agree with previous measurements within 
uncertainties. The measured value was included in the computa-
tion of the world average of the 3

�H lifetime. Transverse momen-
tum yields at mid-rapidity for central (0–10%) Pb–Pb collisions at √

sNN = 2.76 TeV were measured in three pT intervals. The yields 
of particles and anti-particles were measured in two centrality 
classes (0–10% and 10–50%) and compared with different theoret-
ical models. The ratio 3

�̄
H/3

�H is consistent with unity, as expected 
at the LHC energy. The measured yields indicate that hypernu-
clei in high-energy heavy-ion collisions are produced within an 
equilibrated thermal environment in which the temperature is the 
same as for the other particles produced at the LHC. The 3

�H/3He
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(3
�̄

H/3He) ratio was also measured and compared with different 
theoretical models and results from the STAR experiment. STAR 
results are higher than ALICE results, but compatible within un-
certainties. The 3

�H coalescence parameter was also evaluated. Its 
value increases with pT, and within the uncertainties, is consistent 
with those extracted for deuteron and 3He nuclei [31]. The ratio 
S3 = 3

�H/(3He × �/p) was evaluated and compared with different 
theoretical models and measurements from previous experiments. 
The value of S3 suggests that the production of nuclei and hy-
pernuclei at the LHC can be described with a thermodynamic ap-
proach, and is similar to the one calculated by the Hybrid UrQMD 
model [51]. No conclusions can be drawn about the AMPT + coa-
lescence model [59], since no prediction of dynamical coalescence 
models is available at the LHC energy. The measured S3 value ex-
cludes the rising trend in AMPT seen up to RHIC energies extends 
to LHC energies. The S3 measured at AGS, RHIC and LHC are com-
patible within uncertainty with a value which is independent of 
the centre of mass energy of the collision.
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