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The production of electrons from heavy-flavour hadron decays was measured as a function of transverse 
momentum (pT) in minimum-bias p–Pb collisions at √sNN = 5.02 TeV using the ALICE detector at the 
LHC. The measurement covers the pT interval 0.5 < pT < 12 GeV/c and the rapidity range −1.065 <
ycms < 0.135 in the centre-of-mass reference frame. The contribution of electrons from background 
sources was subtracted using an invariant mass approach. The nuclear modification factor RpPb was 
calculated by comparing the pT-differential invariant cross section in p–Pb collisions to a pp reference at 
the same centre-of-mass energy, which was obtained by interpolating measurements at 

√
s = 2.76 TeV

and 
√

s = 7 TeV. The RpPb is consistent with unity within uncertainties of about 25%, which become 
larger for pT below 1 GeV/c. The measurement shows that heavy-flavour production is consistent with 
binary scaling, so that a suppression in the high-pT yield in Pb–Pb collisions has to be attributed to 
effects induced by the hot medium produced in the final state. The data in p–Pb collisions are described 
by recent model calculations that include cold nuclear matter effects.

© 2015 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V. This is an open 
access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The Quark-Gluon Plasma (QGP) [1,2], a colour-deconfined state 
of strongly-interacting matter, is predicted to exist at high tem-
perature according to lattice Quantum Chromodynamics (QCD) cal-
culations [3]. These conditions can be reached in ultra-relativistic 
heavy-ion collisions [4–10]. Charm and beauty (heavy-flavour) 
quarks are mostly produced in initial hard scattering processes 
on a very short time scale, shorter than the formation time of 
the QGP medium [11], and thus experience the full temporal and 
spatial evolution of the collision. While interacting with the QGP 
medium, heavy quarks lose energy via elastic and radiative pro-
cesses [12–14]. Heavy-flavour hadrons are therefore well-suited 
probes to study the properties of the QGP. The effect of energy loss 
on heavy-flavour production can be characterised via the nuclear 
modification factor (RAA) of heavy-flavour hadrons. The RAA is de-
fined as the ratio of the heavy-flavour hadron yield in nucleus–
nucleus (A–A) collisions to that in proton–proton (pp) collisions 
scaled by the average number of binary nucleon–nucleon colli-
sions. The RAA is studied differentially as a function of transverse 
momentum (pT), rapidity (y) and collision centrality. It was mea-
sured at the Relativistic Heavy Ion Collider (RHIC) [15–18] and 
at the Large Hadron Collider (LHC) [19–22]. At RHIC, in central 

� E-mail address: alice-publications@cern.ch.

Au–Au collisions at 
√

sNN = 200 GeV the RAA of charmed mesons 
and of electrons from heavy-flavour hadron decays shows that 
their production is strongly suppressed by a factor of about 5 for 
pT > 3 GeV/c at mid-rapidity. For the most central Pb–Pb colli-
sions at 

√
sNN = 2.76 TeV at the LHC, a suppression by a factor 

of 5–6 is observed for charmed mesons for pT > 5 GeV/c at mid-
rapidity [22].

The interpretation of the measurements in A–A collisions re-
quires the study of heavy-flavour production in p–A collisions, 
which provides access to cold nuclear matter (CNM) effects. These 
effects are not related to the formation of a colour-deconfined 
medium, but are present in case of colliding nuclei (or proton–
nucleus). An important CNM effect in the initial state is parton-
density shadowing or saturation, which can be described using 
modified parton distribution functions (PDF) in the nucleus [23]
or using the Color Glass Condensate (CGC) effective theory [24]. 
Further CNM effects include energy loss [25] in the initial and fi-
nal states and a Cronin-like enhancement [26] as a consequence of 
multiple scatterings [25,27].

The influence of the CNM effects can be studied by measur-
ing the nuclear modification factor RpA. Like the RAA, the RpA is 
defined such that it is unity if there are no nuclear effects. For 
minimum-bias p–A collisions, it can be expressed as [28]

RpA = 1

A

dσpA/dpT

dσpp/dpT
, (1)
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where dσpA/dpT and dσpp/dpT are the pT-differential production 
cross sections of a given particle species in p–A and pp collisions, 
respectively, and A is the number of nucleons in the nucleus.

Cold nuclear matter effects were recently investigated at the 
RHIC and the LHC [29–44]. At RHIC, the nuclear modification 
factor of electrons from heavy-flavour hadron decays in central 
d–Au collisions (0–20%) at 

√
sNN = 200 GeV is larger than unity 

at mid-rapidity in the transverse momentum interval 1.5 < pT <

5 GeV/c [42]. The corresponding measurement for muons from 
heavy-flavour hadron decays in central d–Au collisions shows a 
suppression at forward rapidity and an enhancement at backward 
rapidity [43]. Theoretical models that include the modification of 
the PDF in the nucleus can neither explain the enhancement nor 
the large difference between forward and backward rapidity. Possi-
ble explanations include the Cronin-like enhancement [26] due to 
radial flow of heavy mesons [45]. At the LHC, the pT-differential 
nuclear modification factor RpPb of D mesons measured in p–Pb 
collisions at 

√
sNN = 5.02 TeV [44] is consistent with unity for 

pT > 1 GeV/c and is described by theoretical calculations that in-
clude gluon saturation effects. Both at RHIC and at the LHC, the 
p/d–A measurements indicate that initial-state effects alone cannot 
explain the strong suppression seen at high-pT in nucleus–nucleus 
collisions.

In this Letter, the pT-differential invariant cross section and 
the nuclear modification factor RpPb of electrons from heavy-
flavour hadron decays measured in minimum-bias p–Pb collisions 
at 

√
sNN = 5.02 TeV with ALICE at the LHC are presented. The mea-

surement covers the rapidity range −1.065 < ycms < 0.135 in the 
centre-of-mass system (cms) for electrons with transverse momen-
tum 0.5 < pT < 12 GeV/c. This rapidity coverage results from the 
same rigidity of the p and Pb beams at the LHC, leading to a rapid-
ity shift of |yNN| = 0.465 between the nucleon–nucleon cms and 
the laboratory reference frame, in the direction of the p beam. At 
low pT, the measurement probes the production of charm-hadron 
decays [46], providing sensitivity to the gluon PDF in the regime of 
Bjorken-x of the order of 10−4 [47], where a substantial shadowing 
effect is expected [48].

To obtain the nuclear modification factor RpPb of electrons from 
heavy-flavour hadron decays, the pT-differential invariant cross 
section in p–Pb collisions at 

√
sNN = 5.02 TeV was compared to 

a pp reference multiplied by 208, the Pb mass number. The pp 
reference was obtained by interpolating the pT-differential cross 
section measurements at 

√
s = 2.76 TeV and 7 TeV.

The Letter is organised as follows. The experimental appara-
tus, data sample and event selection are described in Section 2. 
The electron reconstruction strategy and the pp reference spec-
trum are explained in Sections 3 and 4, respectively. The measured 
pT-differential invariant cross section, the nuclear modification fac-
tor RpPb of electrons from heavy-flavour hadron decays and com-
parison of RpPb to model calculations are reported in Section 5.

2. Experimental apparatus, data sample and event selection

A detailed description of the ALICE apparatus can be found 
in [49,50]. Electrons are reconstructed at mid-rapidity using the 
central barrel detectors (described below) located inside a solenoid 
magnet, which generates a magnetic field B = 0.5 T along the 
beam direction.

The Inner Tracking System (ITS), the closest detector to the in-
teraction point, includes six cylindrical layers of silicon detectors 
with three different technologies (pixel, drift and strip) at radii be-
tween 3.9 cm and 43 cm with a pseudorapidity coverage in the 
laboratory reference frame in the full azimuth between |ηlab| < 2.0 
at small radii and |ηlab| < 0.9 at large radii [49,51]. The two inner-
most layers form the Silicon Pixel Detector (SPD), which plays a 

key role in primary and secondary vertex reconstruction. At an in-
cident angle perpendicular to the detector surfaces, the total mate-
rial budget of the ITS corresponds on average to 7.7% of a radiation 
length [51]. The main tracking device in the central barrel is the 
Time Projection Chamber (TPC) [52], which surrounds the ITS and 
covers a pseudorapidity range of |ηlab| < 0.9 in the full azimuth. 
The track reconstruction proceeds inward from the outer radius of 
the TPC to the innermost layer of the ITS [50]. The TPC provides 
particle identification via the measurement of the specific energy 
loss dE/dx. The Time-Of-Flight array (TOF), based on Multi-gap Re-
sistive Plate Chambers, covers the full azimuth and |ηlab| < 0.9 at 
a radial distance of 3.7 m from the interaction point [53]. Using 
the particle time-of-flight measurement, electrons can be distin-
guished from hadrons for pT ≤ 2.5 GeV/c. The collision time, used 
for the calculation of the time-of-flight to the TOF detector, is mea-
sured by an array of Cherenkov counters, the T0 detector, located 
at +350 cm and −70 cm from the interaction point along the 
beam direction [54]. The Electromagnetic Calorimeter (EMCal), sit-
uated behind the TOF, is a sampling calorimeter based on Shashlik 
technology [55]. Its geometrical acceptance is 107◦ in azimuth and 
|ηlab| < 0.7. In this analysis, the azimuthal angle and η coverage 
were limited to 100◦ and 0.6, respectively, to ensure uniform de-
tector performance.

The minimum-bias (MB) p–Pb data sample used in this anal-
ysis was collected in 2013. The trigger condition required a co-
incidence of signals between the two V0 scintillator hodoscopes, 
placed on either side of the interaction point at 2.8 < ηlab < 5.1
and −3.7 < ηlab < −1.7, synchronised with the passage of bunches 
from both beams [54]. The background due to interactions of one 
of the two beams and residual particles in the beam vacuum tube 
was rejected in the offline event selection by correlating the time 
information of the V0 detectors with that from the two Zero De-
gree Calorimeters (ZDC) [50], that are located 112.5 m away from 
the interaction point along the beam pipe, symmetrically on ei-
ther side. The primary vertex was reconstructed with tracks in the 
ITS and the TPC [50]. Events with a primary vertex located farther 
than ±10 cm from the centre of the interaction region along the 
beam direction were rejected. About 10% of the events do not fulfil 
this selection criterion. A sample of 100 million events passed the 
offline event selection, corresponding to an integrated luminosity 
Lint = 47.8 ± 1.6 μb−1, given the cross section σ V0

MB = 2.09 ± 0.07 b
for the minimum-bias V0 trigger condition [56]. The efficiency for 
the trigger condition and offline event selection is larger than 99%
for non-single-diffractive (NSD) p–Pb collisions [57].

3. Analysis

A combination of electron identification (eID) strategies with 
different detectors offers the largest pT reach for the measure-
ment of electrons from heavy-flavour hadron decays. In particular, 
it ensures that the systematic uncertainties and the hadron con-
tamination are small over the whole transverse momentum range. 
Throughout the paper, the term ‘electron’ is used for electrons and 
positrons. The capability of the TPC to identify electrons via spe-
cific energy loss dE/dx in the detector was used over the whole 
momentum range 0.5 < pT < 12 GeV/c. However, it is subject to 
ambiguous identification of hadrons (pions, kaons, protons and 
deuterons) below 2.5 GeV/c and above 6 GeV/c in transverse mo-
mentum. At low transverse momentum (0.5 < pT < 2.5 GeV/c), 
these ambiguities were resolved by measuring the time-of-flight 
of the particle from the interaction region to the TOF detector and 
combining it with the momentum measurement, to determine the 
particle mass. In the high momentum region (6 < pT < 12 GeV/c), 
the EMCal was used to reduce the hadron contamination. Electrons 
are separated from hadrons by calculating the ratio of the energy 
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Fig. 1. (a): Measured dE/dx in the TPC as function of momentum p expressed as a deviation from the expected energy loss of electrons, normalised by the energy-loss 
resolution (σTPC) after eID with TOF. The solid lines indicate the nTPC

σ selection criteria for the TPC and TOF eID strategy. (b): E/p distribution of electrons (−1 < nTPC
σ < 3) 

and hadrons (nTPC
σ < −3.5) in the transverse momentum interval 6 < pT < 8 GeV/c. The E/p distribution of hadrons was normalised to that of electrons in the lower E/p

range (0.4–0.6), where hadrons dominate. The solid lines indicate the applied electron selection criteria. (For interpretation of the references to color in this figure legend, 
the reader is referred to the web version of this article.)
deposited (E) in the EMCal to the momentum (p). Since electrons 
deposit all of their energy in the EMCal, the ratio E/p is around 
unity for electrons, while the ratio for charged hadrons is much 
smaller on average.

The selection criteria for charged-particle tracks are similar to 
those applied in previous analyses measuring the production of 
electrons from heavy-flavour hadron decays in pp collisions [58,
59]. In order to have optimal eID performance with the TPC, the 
analysis was restricted to the pseudorapidity range |ηlab| < 0.6
in the laboratory frame for electrons with transverse momentum 
0.5 < pT < 12 GeV/c. Up to a pT of 6 GeV/c, a signal in the in-
nermost layer of the SPD was required in order to reduce the 
background from photon conversions. In addition, this selection 
was further constrained by requiring hits in both SPD layers, to 
reduce the number of incorrect matches between candidate tracks 
and hits reconstructed in the first layer of the SPD. At high pT, 
where the EMCal was used, tracks with hits in either of the SPD 
layers were selected in order to minimise the effect of dead areas 
of the first SPD layer within the acceptance region of the EMCal, 
as in previous analyses [58,59].

The electron identification with TPC and TOF was based on the 
number of standard deviations (nTPC

σ or nTOF
σ ) for the specific en-

ergy loss and time-of-flight measurements, respectively. The nσ

variable is computed as a difference between the measured sig-
nal and the expected one for electrons divided by the energy 
loss (σTPC) or time-of-flight (σTOF) resolution. The expected sig-
nal and resolution originate from parametrisations of the detec-
tor signal, which are described in detail in [50]. In the trans-
verse momentum interval 0.5 < pT < 2.5 GeV/c, particles were 
identified as electrons if they satisfied −0.5 < nTPC

σ < 3, which 
yields an identification efficiency of 69%. In the transverse mo-
mentum interval 2.5 < pT < 6 GeV/c, a tighter selection criterion 
of 0 < nTPC

σ < 3 was applied (with an eID efficiency of 50%) to 
reduce the hadron contamination at higher transverse momen-
tum. To resolve the aforementioned ambiguities at low transverse 
momentum (pT ≤ 2.5 GeV/c), only tracks with |nTOF

σ | < 3 were 
accepted. Fig. 1(a) shows the measured dE/dx in the TPC with 
respect to the expected dE/dx for electrons normalised to the ex-
pected resolution σTPC after the eID with TOF. The solid lines indi-
cate the selection criteria used for the transverse momentum inter-

val 0.5 < pT < 2.5 GeV/c, indicating that the hadron contamination 
within the resulting electron candidate sample is small. In the high 
momentum region (6 < pT < 12 GeV/c), electrons were selected if 
they satisfied −1 < nTPC

σ < 3 and 0.8 < E/p < 1.2 (see Fig. 1(b)).
The hadron contamination in the electron candidate sample 

was determined by parametrising the TPC signal in momentum 
slices for pT ≤ 6 GeV/c as done in previous analyses [58,59]. In the 
transverse momentum interval 6 < pT < 12 GeV/c, the E/p dis-
tribution for hadrons identified via the specific energy loss mea-
sured in the TPC (nTPC

σ < −3.5) was normalised in the lower E/p
range (0.4–0.6) to the corresponding E/p distribution for identified 
electrons (−1 < nTPC

σ < 3) (see Fig. 1(b)). The number of hadrons 
with an E/p ratio between 0.8 and 1.2 was thus determined in 
momentum slices. The hadron contamination ranged from 2% at 
5 < pT < 6 GeV/c to 15% at 10 < pT < 12 GeV/c and was corre-
spondingly subtracted. For pT < 5 GeV/c, the contamination was 
found to be negligible.

The resulting electron candidate sample, also referred to as the 
‘inclusive electron sample’ in the following, still contains electrons 
from sources other than heavy-flavour hadron decays. The majority 
of the remaining background originates from photon conversions 
in the detector material (γ → e+e−) and Dalitz decays of neutral 
mesons, e.g. π0 → γ e+e− and η → γ e+e− . These electrons are 
hereafter denoted as ‘photonic electrons’.

In previous analyses of electrons from heavy-flavour hadron de-
cays in pp collisions by the ALICE Collaboration, the contribution of 
electrons from background sources was estimated via a data-tuned 
Monte Carlo cocktail and subtracted from the inclusive electron 
sample [58,59]. The pion input to the cocktail was based on pion 
measurements with ALICE [60,61], while heavier mesons were im-
plemented via mT scaling [62], and photons from hard scattering 
processes (direct γ , γ ∗) were obtained from next-to-leading order 
(NLO) calculations [63]. The resulting systematic uncertainty of the 
sum of all background sources was large, in particular at low pT, 
where the signal-to-background ratio is small [58,59]. In order to 
reduce this uncertainty, in this analysis an invariant mass tech-
nique [16] was used to estimate the number of electrons coming 
from background sources.

Photonic electrons are produced in e+e− pairs and can thus be 
identified using an invariant mass technique (photonic method). 
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Fig. 2. Invariant mass distributions of unlike-sign and like-sign electron pairs for 
the inclusive electron pT interval 0.5 < pT < 0.6 GeV/c. The difference between the 
distributions yields the photonic contribution.

All inclusive electrons were paired with other tracks in the same 
event passing looser track selection and electron identification cri-
teria (e.g. −3 < nTPC

σ < 3). Looser selection criteria were applied to 
increase the efficiency to find the photonic partner. Fig. 2 shows 
the invariant mass distributions of unlike-sign and like-sign elec-
tron pairs for the inclusive electron in the interval 0.5 < pT <

0.6 GeV/c. The like-sign distribution estimates the uncorrelated 
pairs. Subtracting these from the unlike-sign pairs yields the num-
ber of electrons with a photonic partner Nraw

phot (see Fig. 2). An 
invariant mass smaller than 0.14 GeV/c2 was required. Accord-
ing to simulations, the peak around zero in the photonic elec-
tron pair distribution is due to photon conversions; the exponen-
tial tail to higher values originates from Dalitz decays of neutral 
mesons.

The efficiency εphot to find photonic electron pairs was esti-
mated using Monte Carlo simulations. A sample of p–Pb collisions 
was generated with HIJING v1.36 [64]. To increase the statistical 
precision at high pT, one cc or bb pair decaying semileptoni-
cally using the generator PYTHIA v6.4.21 [65] with the Perugia-0
tune [66] was added in each event. The generated particles were 
propagated through the apparatus using GEANT3 [67] and a real-
istic detector response was applied to reproduce the performance 
of the detector system during data taking period. The simulated 
transverse momentum distributions of the π0 and η mesons were 
weighted to match the measured shapes, where the π0 input 
was based on the measured charged-pion spectra [68,69] assum-
ing Nπ0 = 1/2(Nπ+ + Nπ−) and the η input was derived via mT
scaling. The efficiency εphot is defined as the fraction of electrons 
from photonic origin for which the partner could be found within 
the defined acceptance of the analysis, i.e. the geometrical ac-
ceptance of the ALICE apparatus together with the superimposed 
track selection and electron identification criteria. The efficiency 
εphot increases sharply with pT from 35% to 80% between 0.5 and 
3 GeV/c and remains at 80% up to 12 GeV/c. The raw photonic 
electron distribution Nraw

phot was then corrected by the efficiency 
εphot as Nphot(pT) = Nraw

phot(pT)/εphot(pT) and subtracted from the 
inclusive electron yield to obtain the yield of electrons from heavy-
flavour hadron decays. The signal-to-background ratio (ratio of 
non-photonic to photonic yield) ranges from 0.2 at 0.5 GeV/c to 
4 at 10 GeV/c.

The remaining electrons are then those from semileptonic 
heavy-flavour hadron decays (Nraw

hfe ), besides a small residual back-
ground contribution originating from semileptonic kaon decays 

and dielectron decays of J/ψ mesons. The latter is the only non-
negligible contribution from quarkonia. These contributions were 
subtracted from the corrected invariant cross section, as described 
later on in this section.

The pT-differential invariant cross section σhfe of electrons from 
heavy-flavour hadron decays, 1/2(e+ + e−), was calculated as

1

2π pT

d2σhfe

dpTdy

= 1

2

1

	ϕpcentre
T

1

	y	pT

cunfoldNraw
hfe

(εgeo × εreco × εeID)

σ V0
MB

NMB
, (2)

where pcentre
T are the centres of the pT bins with widths 	pT, and 

	ϕ and 	y denote the geometrical acceptance in azimuth and ra-
pidity to which the analysis was restricted, respectively. NMB is the 
number of events that pass the selection criteria described in Sec-
tion 2 and σ V0

MB is the p–Pb cross section for the minimum-bias 
V0 trigger condition. The raw spectrum of electrons from heavy-
flavour hadron decays (Nraw

hfe ) was corrected for the acceptance of 
the detectors in the selected geometrical region of the analysis 
(εgeo), the track reconstruction and selection efficiency (εreco), and 
the eID efficiency (εeID). These corrections were computed using 
the aforementioned Monte Carlo simulations. Only the efficiency of 
the TPC electron identification selection criterion for pT < 6 GeV/c
was determined using a data-driven approach based on the nTPC

σ
distribution [59]. The measurement of the electron pT is affected 
by the finite momentum resolution and by electron energy loss 
due to bremsstrahlung in the detector material [49], which is not 
corrected for in the track reconstruction algorithm. These effects 
distort the shape of the pT distribution, which falls steeply with 
increasing momentum. To determine this correction (cunfold), an it-
erative unfolding procedure based on Bayes’ theorem was applied 
[70,71].

The aforementioned residual background contributions, elec-
trons from semileptonic kaon decays and dielectron decays of J/ψ
mesons, were estimated as an invariant cross section with Monte 
Carlo simulations and found to be less than 3% per pT bin and sub-
tracted from the corrected invariant cross section of non-photonic 
electrons. More specifically, the contribution from J/ψ mesons was 
implemented by using a parametrisation for pp collisions based 
on the interpolation of J/ψ measurements from RHIC at 

√
s =

200 GeV, Tevatron at 
√

s = 1.96 TeV, and the LHC at 
√

s = 7 TeV
according to [72]. Decays of J/ψ mesons within |ylab| < 1.0 were 
considered. The parametrisation and its associated systematic un-
certainty were scaled from pp to p–Pb collisions assuming binary 
collision scaling. Potential deviations from binary collision scaling 
were considered by assigning a 50% systematic uncertainty on the 
normalisation. The parametrisation with its uncertainties used as 
input for the Monte Carlo simulations is consistent with the mea-
sured J/ψ cross section in p–Pb collisions [38].

The systematic uncertainties were estimated as a function of 
pT by repeating the analysis with different selection criteria. The 
systematic uncertainties were evaluated for the spectrum obtained 
after the subtraction of the photonic yield Nphot from the inclusive 
spectrum and before removing the remaining background contri-
butions originating from semileptonic kaon decays and dielectron 
decays of J/ψ mesons. The sources of systematic uncertainty for 
the inclusive analysis and the determination of the electron back-
ground are listed in Table 1.

The systematic uncertainties for tracking and eID are pT de-
pendent due to the usage of the various detectors in the different 
momentum intervals. The latter also includes the uncertainties due 
to the determination of the hadron contamination. The 3% system-
atic uncertainty for the matching between ITS and TPC was taken 
from [73], where the matching efficiency of charged particles in 
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Table 1
Systematic uncertainties for the different momentum intervals.

Variable 0.5 < pT < 2.5 GeV/c 2.5 < pT < 6 GeV/c 6 < pT < 12 GeV/c

Tracking 4.3% 2.2% 3%
Matching 4.2% 3% 3.2%

eID 3.6% 3.6% 3.2% (6–8 GeV/c)
5.1% (8–10 GeV/c)
15.1% (10–12 GeV/c)

Photonic 
method

6.9% (0.5–1 GeV/c) 2.4% 4.5%
3.7% (1–2.5 GeV/c)

Unfolding 1% 1% <1%

Total 9.9% (0.5–1 GeV/c) 5.8% 7.1% (6–8 GeV/c)
8.0% (1–2.5 GeV/c) 8.1% (8–10 GeV/c)

16.4% (10–12 GeV/c)

data was compared to Monte Carlo simulations. The uncertainty 
of the TOF-TPC matching efficiency was estimated by comparing 
the matching efficiency in data and Monte Carlo simulations us-
ing electrons from photon conversions, which were identified via 
topological cuts. The uncertainty amounts to 3%. The TPC-EMCal 
matching uncertainty was assigned to be 1%, as determined by 
varying the size of the matching window in η and azimuth ϕ for 
charged-particle tracks that were extrapolated to the calorimeter. 
The resulting matching uncertainties were combined in quadrature 
for the various pT intervals shown in Table 1.

The listed uncertainties for the photonic method include the 
uncertainties on eID and tracking. In addition, the Monte Carlo 
sample was divided into two halves. The first was treated as 
real data and the second was used to correct the resulting spec-
trum. Deviations from the expected pT spectrum of electrons from 
heavy-flavour hadron decays resulted in a 2% systematic uncer-
tainty for pT ≤ 6 GeV/c and 4% above. The uncertainty on the 
re-weighting of the π0- and η-meson pT distributions in Monte 
Carlo simulations was estimated by changing the weights by ±10%. 
The variation yielded a 2% uncertainty for pT ≤ 2.5 GeV/c on 
the pT-differential invariant cross section of electrons from heavy-
flavour hadron decays. This source of uncertainty is negligible at 
higher pT. The invariant mass technique gives a systematic uncer-
tainty smaller by a factor of ≥ 4 and of about 1.4 for pT ≤ 1 GeV/c
and 3 < pT < 12 GeV/c, respectively, compared to the one of the 
cocktail subtraction method [59]. The reduction in uncertainty, in 
particular at low pT, proves the advantage of using the invariant 
mass technique for the estimation of electrons from background 
sources.

The uncertainty of the pT unfolding procedure was determined 
by employing an alternative unfolding method (matrix inversion) 
and, as described in [59], by correcting the data with two different 
Monte Carlo samples corresponding to different pT distributions. In 
addition to the aforementioned signal-enhanced Monte Carlo sam-
ple, a minimum-bias sample was used. The comparison of the re-
sulting pT spectra revealed an uncertainty of 1% for pT ≤ 6 GeV/c, 
and smaller than 1% above 6 GeV/c. The systematic uncertainties 
of the heavy-flavour electron yield due to the subtraction of the 
remaining background originating from semileptonic kaon decays 
and dielectron decays from J/ψ mesons are smaller than 0.5%. This 
was estimated by changing the particle yields by ±50% and ±100%
for the J/ψ meson and the semileptonic kaon decays, respectively.

The individual sources of systematic uncertainties are uncor-
related. Therefore, they were added in quadrature to give a total 
systematic uncertainty ranging from 5.8% to 16.4% depending on 
the pT bin. The normalisation uncertainty on the luminosity is 
of 3.7% [56].

Fig. 3 shows the interval 2.5 < pT < 8 GeV/c of the pT-differen-
tial invariant cross section of electrons from heavy-flavour hadron 
decays in minimum-bias p–Pb collisions at 

√
sNN = 5.02 TeV, com-

Fig. 3. The pT-differential invariant cross section of electrons from heavy-flavour 
hadron decays in minimum-bias p–Pb collisions at √sNN = 5.02 TeV, comparing 
the results of the eID strategies in the two transition regions at 2.5 and 6 GeV/c. 
The centre values are slightly shifted along the pT-axis in the transition regions for 
better visibility. The results agree within 1%. Details on the eID strategies can be 
found in the text.

paring the results of the various eID strategies in the two transition 
regions at 2.5 GeV/c and 6 GeV/c. A consistency within 1% is 
found.

4. pp reference

In order to calculate the nuclear modification factor RpPb, 
a reference cross section for pp collisions at the same centre-of-
mass energy is needed. Since pp data at 

√
s = 5.02 TeV are cur-

rently not available, the reference was obtained by interpolating 
the pT-differential cross sections of electrons from heavy-flavour 
hadron decays measured in pp collisions at 

√
s = 2.76 TeV and at √

s = 7 TeV [58,59]. The analysis described in this paper requires 
a reference in the interval 0.5 < pT < 12 GeV/c. While the 

√
s =

2.76 TeV analysis was carried out in this pT range, the 
√

s = 7 TeV
measurement is limited to the pT interval 0.5 < pT < 8 GeV/c. 
Thus, to extend the pT interval up to 12 GeV/c a measurement 
by the ATLAS Collaboration in the pT interval 7 < pT < 12 GeV/c
was used [74]. The published ATLAS measurement, dσ/dpT, was 
divided by 1/(2π pcentre

T 	y), where pcentre
T denotes the central val-

ues of the pT bins, and 	y the rapidity range covered by the 
measurement. In the overlap interval 7 < pT < 8 GeV/c the ALICE
and ATLAS measurements, which agree within uncertainties, were 
combined as a weighted average. The inverse quadratic sum of 
statistical and systematic uncertainties of the two spectra were 
used as weights. Perturbative QCD (pQCD) calculations at fixed 
order with next-to-leading-log (FONLL) resummation [75–77] de-
scribe all aforementioned pp results [58,59] within experimental 
and theoretical uncertainties. The pp references are measured in 
a symmetric rapidity window (|ycms| < 0.8 at 

√
s = 2.76 TeV and 

|ycms| < 0.5 at 
√

s = 7 TeV). The effect due to the different asym-
metric rapidity window in this analysis was estimated with FONLL 
and is much smaller than the systematic uncertainties of the data, 
therefore is was neglected.

An assumption about the 
√

s dependence of the heavy-flavour 
production cross sections is required for the interpolation. Calcu-
lations based on pQCD are consistent with a power-law scaling of 
the heavy-flavour production cross section with 

√
s [78]. Therefore, 
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Fig. 4. The pT-differential invariant cross section of electrons from heavy-flavour 
hadron decays in minimum-bias p–Pb collisions at √sNN = 5.02 TeV. The pp refer-
ence obtained via the interpolation method is shown, not scaled by A, for compar-
ison. The statistical uncertainties are indicated for both spectra by error bars, the 
systematic uncertainties are shown as boxes.

this scaling was used to calculate the interpolated data points. The 
statistical uncertainties of the spectra at 

√
s = 2.76 TeV and 

√
s =

7 TeV were added in quadrature with weights according to the √
s interpolation. The weighted correlated systematic uncertainties 

(tracking, matching and eID) of the spectra at 
√

s = 2.76 TeV and √
s = 7 TeV were added linearly, while the weighted uncorrelated 

uncertainties (ITS layer conditions, unfolding and cocktail system-
atics) were added in quadrature. The weights were determined 
according to the 

√
s interpolation. The uncorrelated and correlated 

uncertainties were then added in quadrature.
The systematic uncertainty of the bin-by-bin interpolation pro-

cedure was added in quadrature to the previous ones. It was esti-
mated by using a linear or exponential dependence on 

√
s instead 

of a power law. The ratios of the resulting pT spectra to the base-
line pp reference were used to estimate a systematic uncertainty 
of + 5

−10%.
The resulting pp reference cross section is well described by 

FONLL calculations. The systematic uncertainties of the normalisa-
tions related to the determination of the minimum-bias nucleon–
nucleon cross sections of the input spectra were likewise inter-
polated, yielding a normalisation uncertainty of 2.3% for the pp 
reference spectrum, assuming that they are uncorrelated.

5. Results

The pT-differential invariant cross section of electrons from 
heavy-flavour hadron decays in the rapidity range −1.065 <
ycms < 0.135 for p–Pb collisions at 

√
sNN = 5.02 TeV is shown in 

Fig. 4 and compared with the pp reference cross section. The ver-
tical bars represent the statistical uncertainties, while the boxes 
indicate the systematic uncertainties. The systematic uncertain-
ties of the p–Pb cross section are smaller than those of the pp 
cross section, in particular at low transverse momentum, mainly 
as a consequence of the estimation of the electron background 
via the invariant mass technique. For the pp analysis, the back-
ground was subtracted via the cocktail method. At low pT, the 
electrons mainly originate from charm-hadron decays, while for 
pT ≥ 4 GeV/c beauty-hadron decays are the dominant source in 
pp collisions [46].

Fig. 5. Nuclear modification factor RpPb of electrons from heavy-flavour hadron de-
cays as a function of transverse momentum for minimum-bias p–Pb collisions at √

sNN = 5.02 TeV, compared with theoretical models [25,27,45,48,75], as described 
in the text. The vertical bars represent the statistical uncertainties, and the boxes 
indicate the systematic uncertainties. The systematic uncertainty from the normali-
sation, common to all points, is shown as a filled box at high pT.

The nuclear modification factor RpPb of electrons from heavy-
flavour hadron decays as a function of transverse momentum is 
shown in Fig. 5. The statistical and systematic uncertainties of the 
spectra in p–Pb and pp were propagated as independent uncer-
tainties. The normalisation uncertainties of the pp reference and 
the p–Pb spectrum were added in quadrature and are shown as a 
filled box at high transverse momentum in Fig. 5.

The RpPb is consistent with unity within uncertainties over the 
whole pT range of the measurement. The production of electrons 
from heavy-flavour hadron decays is thus consistent with binary 
collision scaling of the reference spectrum for pp collisions at the 
same centre-of-mass energy. The suppression of the yield of heavy-
flavour production in Pb–Pb collisions at high-pT is therefore a 
final state effect induced by the produced hot medium.

Given the large systematic uncertainties, our measurement is 
also compatible with an enhancement in the transverse momen-
tum interval 1 < pT < 6 GeV/c as seen at mid-rapidity in d–Au 
collisions at 

√
sNN = 200 GeV [42]. Such an enhancement might be 

caused by radial flow as suggested by studies on the mean pT as a 
function of the identified particle multiplicity [68].

The data are described within the uncertainties by pQCD cal-
culations including initial-state effects (FONLL [75] + EPS09NLO
[48] nuclear shadowing parametrisation). The results suggest that 
initial-state effects are small at high transverse momentum in 
Pb–Pb collisions. Calculations by Sharma et al. which include CNM 
energy loss, nuclear shadowing and coherent multiple scattering 
at the partonic level also describe the data [27]. Calculations based 
on incoherent multiple scatterings by Kang et al. predict an en-
hancement at low pT [25]. The formation of a hydrodynamically 
expanding medium and consequently flow of charm and beauty 
quarks are expected to result in an enhancement in the nuclear 
modification factor RpPb [45]. To quantify the possible effect on 
RpPb, a blast wave calculation with parameters extracted from fits 
to the pT spectra of light-flavour hadrons [68] measured in p–Pb 
collisions was employed. The model calculation agrees with the 
data. However, the present uncertainties of the measurement do 
not allow us to discriminate among the aforementioned theoreti-
cal approaches.
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6. Summary and conclusions

The pT-differential invariant cross section for electrons from 
heavy-flavour hadron decays in minimum-bias p–Pb collisions at √

sNN = 5.02 TeV was measured in the rapidity range −1.065 <
ycms < 0.135 and the transverse momentum interval 0.5 < pT <

12 GeV/c using the combination of three electron identification 
methods. The application of the invariant mass technique to sub-
tract electrons not originating from open heavy-flavour hadron de-
cays largely reduced the systematic uncertainties with respect to 
the cocktail subtraction method, in particular at low transverse 
momentum. The pp reference for the nuclear modification factor 
RpPb was obtained by interpolating the measured pT-differential 
cross sections of electrons from heavy-flavour hadron decays at √

s = 2.76 TeV and 
√

s = 7 TeV. The RpPb is consistent with unity 
within uncertainties of about 25%, which become larger for pT be-
low 1 GeV/c. The presented calculations describe the data within 
uncertainties. The results suggest that heavy-flavour production in 
minimum-bias p–Pb collisions scales with the number of binary 
collisions, although within uncertainties the data are also consis-
tent with an enhancement above this scaling. The consistency with 
unity of the RpPb at high pT indicates that the suppression of 
heavy-flavour production in Pb–Pb collisions is of different origin 
than cold nuclear matter effects.
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