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Direct photon production at mid-rapidity in Pb–Pb collisions at √sNN = 2.76 TeV was studied in the 
transverse momentum range 0.9 < pT < 14 GeV/c. Photons were detected with the highly segmented 
electromagnetic calorimeter PHOS and via conversions in the ALICE detector material with the e+e−
pair reconstructed in the central tracking system. The results of the two methods were combined and 
direct photon spectra were measured for the 0–20%, 20–40%, and 40–80% centrality classes. For all three 
classes, agreement was found with perturbative QCD calculations for pT � 5 GeV/c. Direct photon spectra 
down to pT ≈ 1 GeV/c could be extracted for the 20–40% and 0–20% centrality classes. The significance 
of the direct photon signal for 0.9 < pT < 2.1 GeV/c is 2.6σ for the 0–20% class. The spectrum in this 
pT range and centrality class can be described by an exponential with an inverse slope parameter of 
(297 ± 12stat ± 41syst) MeV. State-of-the-art models for photon production in heavy-ion collisions agree 
with the data within uncertainties.

© 2016 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V. This is an open 
access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The theory of the strong interaction, Quantum ChromoDynam-
ics (QCD), predicts a transition from ordinary nuclear matter to a 
state where quarks and gluons are no longer confined to hadrons 
[1,2]. The creation and study of this deconfined partonic state, the 
Quark–Gluon Plasma (QGP), is the major objective in the exper-
imental program of heavy-ion collisions at the Relativistic Heavy 
Ion Collider (RHIC) [3–6] and the Large Hadron Collider (LHC) 
[7–15].

Direct photons, defined as photons not originating from hadron 
decays, are a valuable tool to study details of the evolution of 
the medium created in heavy-ion collisions. Unlike hadrons, di-
rect photons are produced at all stages of the collision and es-
cape from the hot nuclear matter basically unaffected [16], de-
livering direct information on the conditions at the time of pro-
duction: prompt direct photons produced in hard scatterings of 
incoming partons provide information on parton distributions in 
nuclei; deconfined quark–gluon matter as well as hadronic matter 
created in the course of the collision emit thermal direct pho-
tons, carrying information about the temperature, collective flow 
and space–time evolution of the medium [17]. Different trans-
verse momentum (pT) regions are dominated by photons emitted 
at different stages of the collision. Prompt direct photons follow a 
power law spectrum and dominate at high transverse momentum 
(pT � 5 GeV/c). At lower transverse momenta (pT � 4 GeV/c) one 

� E-mail address: alice-publications@cern.ch.

expects contributions from the thermalized partonic and hadronic 
phases with an approximately exponential spectrum [18,19]. In 
addition, other direct photon production mechanisms, like the in-
teraction of hard scattered partons with the medium (“jet-photon 
conversion”) [20,21], may be important for pT � 10 GeV/c.

The direct photon spectrum at low pT, therefore, contains in-
formation on the initial temperature and space–time evolution of 
the thermalized medium created in heavy-ion collisions. The ob-
served thermal direct photon spectrum is a sum of contributions 
from all stages of the collision after thermalization, where the 
earliest, hottest stage and later, cooler stages can make compara-
ble contributions [22]. High photon emission rates at the largest 
temperatures in the early stage are compensated by an expanded 
space–time volume and blue-shift due to radial flow in the later 
stage. This complicates the interpretation of inverse slope parame-
ters of direct photon spectra, but a correlation between the slope 
and the initial temperature still exists [23].

The first measurement of a direct photon spectrum in relativis-
tic A–A collisions was presented by the WA98 Collaboration [24]. 
The direct photon yield was measured at the CERN SPS in cen-
tral Pb–Pb collisions at 

√
sNN = 17.3 GeV in the range 1.5 < pT <

4 GeV/c. The signal can be interpreted either as thermal photon 
radiation from a quark–gluon plasma and hadronic gas or as the 
effect of multiple soft scatterings of the incoming partons without 
the formation of a QGP [19]. The PHENIX experiment measured the 
direct photon spectrum in Au–Au collisions at 

√
sNN = 200 GeV in 

the range 1 � pT � 20 GeV/c [25,26]. It was found that at high 
pT (5 � pT � 21 GeV/c) the direct photon spectrum measured in 
Au–Au collisions agrees with the one measured in pp collisions at 
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0370-2693/© 2016 CERN for the benefit of the ALICE Collaboration. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

http://dx.doi.org/10.1016/j.physletb.2016.01.020
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/4.0/
mailto:alice-publications@cern.ch
http://dx.doi.org/10.1016/j.physletb.2016.01.020
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2016.01.020&domain=pdf


236 ALICE Collaboration / Physics Letters B 754 (2016) 235–248

the same energy after scaling with the number of binary nucleon–
nucleon collisions (Ncoll). Scaling of high-pT direct photon produc-
tion with Ncoll in Pb–Pb collisions at LHC energy was confirmed 
by the ATLAS [27] and CMS [28] experiments in the measure-
ment of isolated photons, i.e., photons with little hadronic energy 
in a cone around them, in the ranges 22 < pT < 280 GeV/c and 
20 < pT < 80 GeV/c, respectively. The absence of suppression of 
high pT isolated photons in A–A collisions with respect to Ncoll
scaled pp collisions, in contrast to the observed suppression of 
hadrons, is consistent with the latter being due to energy loss of 
hard scattered quarks and gluons in the medium.

Direct photon production at low pT (� 3 GeV/c) in Au–Au col-
lisions at 

√
sNN = 200 GeV was studied by the PHENIX experiment 

in the measurement of virtual photons (e+e− pairs from internal 
conversions) [29] and with real photons [30]. A clear excess of di-
rect photons above the expectation from scaled pp collisions was 
observed. The excess was parameterized by an exponential func-
tion with inverse slope parameters Teff = 221 ± 19stat ± 19syst MeV
(virtual photon method [29]) and Teff = 239 ± 25stat ± 7syst MeV
(real photon method [30]) for the 0–20% most central collisions. 
The measured spectrum can be described by models assuming 
thermal photon emission from hydrodynamically expanding hot 
matter with initial temperatures in the range 300–600 MeV [31]. 
The measurement of a direct-photon azimuthal anisotropy (elliptic 
flow), which was found to be similar in magnitude to the pion el-
liptic flow at low pT in Au–Au collisions at 

√
sNN = 200 GeV [32], 

provides a further important constraint for models. The simultane-
ous description of the spectra and elliptic flow of direct photons 
currently poses a challenge for hydrodynamic models [33].

In this letter, the first measurement of direct photon produc-
tion for pT � 14 GeV/c in Pb–Pb collisions at 

√
sNN = 2.76 TeV is 

presented.

2. Detector setup

Photons were measured using two independent methods: by 
the Photon Conversion Method (PCM) and with the electromag-
netic calorimeter PHOS. In the conversion method, the electron and 
positron tracks from a photon conversion were measured with the 
Inner Tracking System (ITS) and/or the Time Projection Chamber 
(TPC).

The ITS [34] consists of two layers of Silicon Pixel Detectors 
(SPD) positioned at a radial distance of 3.9 cm and 7.6 cm, two 
layers of Silicon Drift Detectors (SDD) at 15.0 cm and 23.9 cm, and 
two layers of Silicon Strip Detectors (SSD) at 38.0 cm and 43.0 cm. 
The two innermost layers cover a pseudorapidity range of |η| < 2
and |η| < 1.4, respectively. The TPC [35] is a large (85 m3) cylindri-
cal drift detector filled with a Ne–CO2–N2 (90–10–5) gas mixture. 
It covers the pseudorapidity range |η| < 0.9 over the full azimuthal 
angle with a maximum track length of 159 reconstructed space 
points. With the magnetic field of B = 0.5 T, e+ and e− tracks 
can be reconstructed down to pT ≈ 50 MeV/c, depending on the 
position of the conversion point. The TPC provides particle iden-
tification via the measurement of the specific energy loss (dE/dx) 
with a resolution of 5.2% in pp collisions and 6.5% in central Pb–Pb 
collisions [36]. The ITS and the TPC were aligned with respect to 
each other to the level of less than 100 μm using cosmic-ray and 
pp collision data [37]. Particle identification is furthermore pro-
vided by the Time-of-Flight (TOF) detector [38] located at a radial 
distance of 370 < r < 399 cm. This detector consists of Multigap 
Resistive Plate Chambers (MRPC) and provides timing information 
with an intrinsic resolution of 50 ps.

PHOS [39] is an electromagnetic calorimeter which consists of 
three modules installed at a distance of 4.6 m from the interac-
tion point. It subtends 260◦ < ϕ < 320◦ in azimuth and |η| < 0.13

in pseudorapidity. Each module consists of 3584 detector cells ar-
ranged in a matrix of 64 × 56 lead tungstate crystals each of 
size 2.2 × 2.2 × 18 cm3. The signal from each cell is measured 
by an avalanche photodiode (APD) associated with a low-noise 
charge-sensitive preamplifier. To increase the light yield, reduce 
electronic noise, and improve energy resolution, the crystals, APDs, 
and preamplifiers are cooled to a temperature of −25 ◦C. The re-
sulting energy resolution is σE/E = (1.3%/E) ⊕ (3.3%/

√
E) ⊕ 1.12%, 

where E is in GeV. The PHOS channels were calibrated in pp colli-
sions by aligning the π0 peak position in the two-photon invariant 
mass distribution.

Two scintillator hodoscopes (V0-A and V0-C) [40] subtending 
2.8 < η < 5.1 and −3.7 < η < −1.7, respectively, were used in the 
minimum bias trigger in the Pb–Pb run. The sum of the amplitudes 
of V0-A and V0-C served as a measure of centrality in the Pb–Pb 
collisions.

3. Data analysis

This analysis is based on data recorded by the ALICE exper-
iment in the first LHC heavy-ion run in the fall of 2010. The 
detector readout was triggered by the minimum bias interaction 
trigger based on trigger signals from the V0-A, V0-C, and SPD 
detectors. The efficiency for triggering on a Pb–Pb hadronic interac-
tion ranged between 98.4% and 99.7%, depending on the minimum 
bias trigger configuration. The events were divided into central-
ity classes according to the V0-A and V0-C summed amplitudes. 
Only events in the centrality range 0–80% were used in this analy-
sis. To ensure a uniform track acceptance in pseudorapidity η, only 
events with a primary vertex within ±10 cm from the nominal 
interaction point along the beam line (z-direction) were used. Af-
ter offline event selection, 13.6 × 106 events were available for the 
PCM analysis and 17.7 × 106 events for the PHOS analysis.

The direct photon yield is extracted on a statistical basis from 
the inclusive photon spectrum by comparing the measured pho-
ton spectrum to the spectrum of photons from hadron decays. The 
yield of π0s, which contribute about 80–85% of the decay photons 
(cf. Fig. 1), was measured simultaneously with the inclusive pho-
ton yield. Besides photons from π0 decays, the second and third 
most important contributions to the decay photon spectrum come 
from η and ω decays.

An excess of direct photons above the decay photon spectrum 
can be quantified by the pT dependent double ratio

Rγ ≡ γincl

π0
param

/
γdecay

π0
param

= γincl

γdecay
, (1)

where γincl is the measured inclusive photon spectrum, π0
param a 

parameterization of the measured π0 spectrum, and γdecay the cal-
culated decay photon spectrum. The PCM and PHOS π0 measure-
ments are described in [41]. The double ratio has the advantage 
that some of the largest systematic uncertainties cancel partially 
or completely. Using the double ratio, the direct photon yield can 
be calculated from the inclusive photon yield as

γdirect = γincl − γdecay = (1 − 1

Rγ
) · γincl. (2)

The PCM and PHOS analyses were performed independently. Com-
bined direct photon spectra were determined based on combined 
double ratios and combined inclusive photon spectra. In contrast 
to taking the average of the PCM and PHOS direct-photon spectra, 
this approach allowed us to use the information from both mea-
surements also when one measurement of Rγ fluctuated below 
unity.
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In the PCM analysis, photons are reconstructed via a sec-
ondary vertex finding algorithm which provides displaced vertices 
with two opposite-charge daughters. The positively and negatively 
charged daughter tracks are required to contain reconstructed clus-
ters in the TPC. Only tracks with a transverse momentum above 
50 MeV/c and a ratio of the number of reconstructed TPC clus-
ters over the number of findable TPC clusters (accounting for track 
length, spatial location and momentum) larger than 0.6 were con-
sidered. To identify e+ and e− , the specific energy loss in the TPC 
[36] was required to be within a band of [−3σ , 5σ ] around the 
average electron dE/dx, and be more than 3σ above the aver-
age pion dE/dx (where the second condition is only applied for 
tracks with pT > 0.4 GeV/c). Tracks with an associated signal in 
the TOF detector were only accepted as electron candidates if they 
were consistent with the electron hypothesis within a ±5σ band. 
The vertex finding algorithm uses the Kalman filter technique for 
the decay/conversion point and four momentum determination of 
the neutral parent particle (V 0) [42]. V 0s result from γ conver-
sions but also from strange particle decays (K 0

s , 	 or 	̄). Further 
selection was performed on the level of the reconstructed V 0. 
V 0s with a decay point with radius r < 5 cm were rejected to 
remove π0 and η Dalitz decays. The transverse momentum com-
ponent qT = pe sin θV 0,e [43] of the electron momentum, pe , with 
respect to the V 0 momentum was restricted to qT < 0.05 GeV/c. 
Based on the invariant mass of the e+e− pair and the pointing of 
the V 0 to the primary vertex, the vertex finder calculates a χ2(γ )

value which reflects the level of consistency with the hypothesis 
that the V 0 comes from a photon originating from the primary 
vertex. A selection based on this χ2(γ ) value was used to further 
reduce contamination in the photon sample. Random associations 
of electrons and positrons were further reduced by making use of 
the small opening angle of the e+e− pair from photon conversions 
at the conversion point.

The raw photon spectrum, constructed from the secondary ver-
tex candidates passing the selection described above, was cor-
rected for the reconstruction efficiency, the acceptance and the 
contamination. The detector response was simulated for Pb–Pb col-
lisions using HIJING [44] together with the GEANT 3.21 transport 
code [45]. The resulting efficiency correction is dominated by the 
conversion probability of photons in the ALICE material. The inte-
grated material budget of the beam pipe, the ITS and the TPC for 
r < 1.8 m corresponds to (11.4 ±0.5)% of a radiation length X0, re-
sulting in a photon conversion probability that saturates at about 
8.5% for pT � 2 GeV/c [36,42]. The photon finding efficiency for 
converted photons is of the order of 50–65% over the measured 
pT range for all centralities. The purity of the photon candidate 
sample for pT < 3 GeV/c extracted from simulation is 98–99% 
in peripheral and 91–97% in the most central collisions. Further-
more, secondary photon candidates, mainly photons from the de-
cay K 0

s → 2π0 → 4γ , not removed by the χ2(γ ) selection, were 
subtracted statistically based on the measured K 0

s spectrum [46]. A 
correction of less than 2% for photons from pile-up collisions was 
applied for the 40–80% class for pT < 2 GeV/c. At higher pT and 
for more central classes this correction is negligible.

In the PHOS analysis, clusters (each cell of the cluster must have 
at least one common edge with another cell of the cluster) were 
used as photon candidates. To estimate the photon energy, the en-
ergies of cells with centers within a radius Rcore = 3.5 cm from the 
cluster center of gravity were summed. Compared to the full clus-
ter energy, this core energy (Ecore) is less sensitive to overlaps with 
low-energy clusters in a high multiplicity environment. The non-
linearity in the conversion of the reconstructed to the true pho-
ton energy introduced by this approach is reproduced by GEANT3 
Monte Carlo simulations. The contribution of hadronic clusters was 
reduced by requiring Ecluster > 0.3 GeV, Ncells > 2 and by accept-

ing only clusters above a minimum lateral cluster dispersion [41]. 
The latter selection rejects hadrons punching though the crystal 
and producing a large signal in the photodiode of a single cell. 
With a minimum time between bunch crossings of 525 ns, pos-
sible pile-up contributions from other bunch crossings is removed 
by a loose cut on the cluster arrival time |t| < 150 ns. For sys-
tematic uncertainty studies, photons were also reconstructed with 
a pT-dependent dispersion cut and with a charged particle veto 
(CPV) cut on the distance between the PHOS cluster position and 
the position of extrapolated charged tracks on the PHOS surface to 
suppress clusters from charged particles [41]. Both dispersion and 
CPV cuts were tuned using pp collision data to provide a photon 
efficiency at the level of 96–99%.

The product of acceptance and efficiency (A · ε) was estimated 
by embedding simulated photon clusters into real events and ap-
plying the standard reconstruction. PHOS properties (energy and 
position resolutions, residual de-calibration, absolute calibration, 
non-linear energy response) were tuned in the simulation to re-
produce the pT dependence of the π0 peak position and width 
[41]. In peripheral events, A · ε for the default selection (no disper-
sion cut, no CPV cut) has a value of about 0.022 at pT = 1 GeV/c. 
For higher pT, A · ε decreases and saturates at about 0.018 for 
pT � 5 GeV/c. The decrease of A · ε with pT results from the use 
of Ecore. In central collisions, A · ε increases by up to about 10% 
due to cluster overlaps. Applying the dispersion and CPV cuts, the 
efficiency is reduced by 5–10% in peripheral collisions and the cen-
trality dependence becomes negligible.

The contamination of the photon spectrum measured with 
PHOS originates mainly from π± and p̄, n̄ annihilation in PHOS, 
with other contributions being much smaller. Application of the 
dispersion and CPV cuts reduces the overall contamination at 
pT ≈ 1.5 GeV/c from about 15% to 2–3% and down to 1–2% at 
pT ∼ 3–4 GeV/c. The subtraction of contamination is based on a 
data driven approach: the probability to pass the CPV and dis-
persion cuts and the calorimeter response to hadrons are esti-
mated using identified π± , p̄ tracks; the photon candidate spectra, 
measured with different cuts (default, dispersion, CPV, both) were 
decomposed into γ , π± , p̄ and n̄ contributions, assuming equal 
contamination from p̄ and n̄. The contamination calculated in this 
way agrees with that estimated from a HIJING simulation. Finally, 
the photon contribution from K 0

s → 2π0 → 4γ decays was sub-
tracted based on the measured K 0

s spectrum [46] as in the PCM 
analysis.

To calculate the γdecay/π
0 ratio, a Monte Carlo approach was 

used to simulate particle decays into photons both for the PCM 
and the PHOS analysis. The largest contributions come from π0, η, 
and ω decays. Contributions of other hadrons were also included 
but were found to be negligible. To allow for a cancellation of some 
uncertainties common to the photon and π0 yield in Eq. (1), each 
analysis (PCM, PHOS) used the π0 spectrum measured with the 
respective method.

The η meson contribution is estimated by using two approaches 
which assume: (i) transverse mass (mT) scaling of the π0 and the 
η spectrum which is consistent with measurements at RHIC [31,
47] or (ii) that the pT spectrum of the η has the same shape as 
the K 0

s spectrum [46] as both particles should be affected by radial 
flow in the same way due to their similar masses. The maximum 
deviation between these two cases occurs at pT ≈ 2.5 GeV/c where 
(i) corresponds to a η/π0 ratio of about 0.4 whereas (ii) gives a 
ratio of about 0.5. The absolute yield of η mesons in both cases 
was fixed at pT > 5 GeV/c to reproduce the measured η/π0 ra-
tio at 

√
sNN = 200 GeV: 0.46 ± 0.05 [48]. The statistical precision 

of the η signal in the 2010 and 2011 data sets is too low to fur-
ther constrain these two assumptions with a measurement of the 
η spectrum. The average of these two cases is used for the decay 
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Fig. 1. (Color online.) Relative contributions of different hadrons to the total decay 
photon spectrum as a function of the decay photon transverse momentum (PCM 
case).

Table 1
Summary of the systematic uncertainties of the PCM analysis in percentage. Uncer-
tainties are characterized according to three categories: point-by-point uncorrelated 
(A), correlated in pT with magnitude of the relative uncertainty varying point-by-
point (B), and constant fractional uncertainty (C). Items in the table with categories 
(A, B) summarize sources of uncertainties which are either of type A or B.

Centrality 0–20% 20–40% 40–80%

pT (GeV/c) 1.2 5.0 1.2 5.0 1.2 5.0

γ incl yield
Track quality (A) 0.6 0.6 0.2 0.2 0.2 0.7
Electron PID (A, B) 1.5 6.9 0.9 4.8 0.7 4.0
Photon selection (A, B) 4.0 1.8 2.4 2.1 1.5 1.3
Material (C) 4.5 4.5 4.5 4.5 4.5 4.5
γ incl/π

0

Track quality (A) 0.7 1.7 0.8 0.4 0.6 1.3
Electron PID (A, B) 1.2 4.8 0.9 3.8 0.9 4.0
Photon selection (A, B) 3.2 3.2 3.0 1.5 2.5 2.4
π0 yield (A) 1.6 2.9 1.7 2.7 0.5 3.0
Material (C) 4.5 4.5 4.5 4.5 4.5 4.5
γ decay/π

0

π0 spectrum (B) 0.5 1.2 0.8 1.8 0.5 3.2
η yield (C) 1.4 1.4 1.4 1.4 1.4 1.4
η shape (B) 1.6 0.5 1.2 0.2 1.0 0.2

Total Rγ 6.2 8.1 5.7 7.0 5.7 8.3
Total γincl 6.2 8.5 5.2 6.9 4.8 6.2

photon calculation, while half the difference is taken as a contribu-
tion to the systematic uncertainty of the η meson contribution in 
addition to the normalization uncertainty quoted above. The con-
tribution of ω meson decay photons is below ∼3% and mT scaling 
of the measured π0 spectrum with (dNω/dmT)/(dNπ0/dmT) = 0.9
is used [49]. The relative contributions of the different hadrons to 
the total decay photon spectrum are shown in Fig. 1.

The main sources of systematic uncertainties in the determina-
tion of the inclusive photon spectrum and Rγ for the PCM analysis 
are listed in Table 1. The two largest uncertainties are related to 
the material budget of the ALICE detector and the Monte Carlo-
based efficiency corrections to the inclusive photon and π0 spec-

Table 2
Summary of systematic uncertainties of the PHOS analysis in percentage. Uncertain-
ties are characterized according to three categories: point-by-point uncorrelated (A), 
correlated in pT with magnitude of the relative uncertainty varying point-by-point 
(B), and constant fractional uncertainty (C). Uncertainties marked with * cancel in 
the double ratio Rγ .

Centrality 0–20% 20–40% 40–80%

pT (GeV/c) 2 10 2 10 2 10

γ incl yield
Efficiency (B) 3.0 3.0 0.7 0.7 2.5 2.5
Contamination (B) 2.0 2.0 1.3 1.3 2.9 0.5
Conversion (C) 1.7 1.7 1.7 1.7 1.7 1.7
Acceptance (C) 1.0 1.0 1.0 1.0 1.0 1.0
∗Global E scale (B) 9.6 9.0 6.1 5.9 5.8 6.3
∗Non-linearity (B) 2.2 0.1 2.1 0.1 2.0 0.1
π0 yield
Yield extraction (A) 2.7 4.0 3.1 5.2 1.8 2.9
Efficiency (B) 1.8 1.8 2.7 2.2 2.5 2.5
Acceptance (C) 1.0 1.0 1.0 1.0 1.0 1.0
Pileup (C) 1.0 1.0 1.0 1.0 1.0 1.0
Feed-down (B) 2.0 2.0 2.0 2.0 2.0 2.0
γ decay/π

0

π0 spectrum (B) 1.3 4.3 1.8 1.8 1.8 1.8
η contribution (B) 2.2 1.7 2.2 1.6 2.1 1.6

Total Rγ 6.8 7.9 5.9 6.5 6.1 6.0
Total γincl 12.4 12.7 9.7 10.0 9.8 9.6

tra. The material budget uncertainty was estimated in pp collisions 
by comparing the measured number of converted photons (nor-
malized to the measured charged particle multiplicity) with GEANT 
simulation results in which particle yields from PYTHIA and PHO-
JET were used as input. Uncertainties related to track selection and 
electron identification were estimated by variation of the cuts. For 
instance, we observe a small variation in results depending on the 
minimum threshold for electron tracks. This is most likely related 
to different tracking performance for real data and in the Monte 
Carlo simulation for low-pT particles (pT � 50 MeV/c). The un-
certainty related to the choice of this threshold was estimated by 
increasing the minimum pT from 50 MeV/c up to 100 MeV/c. Un-
certainties related to falsely reconstructed electron–positron pairs 
from Dalitz decays as conversion pairs were obtained by varying 
the minimum radial distance Rmin of reconstructed electron tracks 
from the standard value of Rmin = 5 cm up to Rmin = 10 cm. The 
estimation of the systematic uncertainty of the electron selection 
includes a contribution estimated by the variation of the dE/dx
cuts.

In the double ratio Rγ , many uncertainties partially cancel. The 
uncertainties on Rγ were therefore obtained by evaluating the ef-
fect of cut variations directly on Rγ . Uncertainties related to the 
decay photon spectrum are similar for PCM and PHOS analyses: 
they include the uncertainty due to the π0 spectrum parameteri-
zation, difference of shapes of π0 spectra measured by PCM and 
PHOS, and uncertainties due to the shape and absolute normaliza-
tion of the η spectrum. Uncertainties due to contributions of other 
hadrons are negligible.

The main systematic uncertainties of the PHOS analysis are 
summarized in Table 2. For the inclusive photon spectrum, the un-
certainty of the efficiency calculation is estimated comparing the 
PID cut efficiency in Monte Carlo and real data. The contamination 
uncertainty is estimated comparing the photon purity calculated 
with a data driven approach and with Monte Carlo HIJING simula-
tions. The conversion probability is estimated comparing π0 yields 
in pp collisions with and without magnetic field. The global energy 
and non-linearity uncertainties, which mostly cancel in Rγ , are es-
timated comparing calibrations based on the π0 peak position and 
on the electron E/p peak position. The centrality dependence of 
the energy scale uncertainty results from the larger background 
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Fig. 2. (Color online.) Comparison of inclusive photon spectra measured with PCM 
and PHOS in the 0–20%, 20–40%, and 40–80% centrality classes. The individual spec-
tra were divided by the corresponding combined PCM and PHOS spectrum. The 
shown errors only reflect the uncertainties of the individual measurements. The 
boxes around unity indicate normalization uncertainties (type C).

under the π0 peak in central events and therefore larger uncer-
tainties in the peak position.

A more detailed description of the single photon selection and 
especially of the additional π0 uncertainties for both the PCM and 
PHOS analyses can be found in Ref. [41].

The comparison of the individual PHOS and PCM inclusive pho-
ton spectra, normalized to the averaged spectrum, is shown in 
Fig. 2. Statistical and point-to-point uncorrelated systematic un-
certainties (type A) are combined and presented as error bars, 
point-to-point correlated systematic uncertainties (type B) are 
shown as boxes, and common normalization systematic uncertain-
ties (type C) are shown as bands around unity. The uncertainties 
are dominated by pT-correlated contributions. The individual PHOS 
and PCM double ratios are shown in Fig. 3. The partial cancellation 
of the energy scale uncertainties (PHOS) and the material budget 
uncertainties (PCM) is taken into account in the shown uncertain-
ties.

The level of agreement between the PHOS and PCM inclusive 
photon spectra and double ratios Rγ was quantified taking into 
account the correlation of the uncertainties in pT and centrality. 
To this end, pseudo data points for the ratio of the PHOS and 
PCM inclusive photon spectra and double ratios were generated 
simultaneously for all three centrality classes under the assump-
tion of the null hypothesis that the ratio is unity for all points, 
i.e., that both measurements result from the same original distri-
bution. The types B and C systematic uncertainties give rise to a 
shifted baseline, around which the pseudo data points are drawn 
from a Gaussian with a standard deviation given by the statisti-
cal and type A uncertainties. A test statistic t was defined as the 
sum of the squared differences of the pseudo data points with re-
spect to the null hypothesis in units of the type A and statistical 

Fig. 3. (Color online.) Comparison of double ratios Rγ measured with PCM and 
PHOS for the 0–20%, 20–40%, and 40–80% centrality classes. Error bars reflect the 
statistical and type A systematic uncertainty, the boxes represent the type B and 
C systematic uncertainties. The cancellation of uncertainties (energy scale, material 
budget) in the double ratio Rγ is taken into account in the shown systematic un-
certainties.

uncertainties. A p-value was calculated as the fraction of pseudo 
experiments with values of t larger than observed in the real data 
[50]. The corresponding significance in units of the standard de-
viation of a one-dimensional normal distribution was calculated 
based on a two-tailed test. The PHOS and PCM inclusive pho-
ton spectra were found to agree within 1.2 standard deviations, 
the PHOS and PCM double ratios agree within 0.4 standard devia-
tions.

4. Results

The inclusive photon spectra and double ratios of the PCM and 
PHOS analyses are combined as two independent measurements 
to obtain the error-weighted average. The uncertainties common 
to both measurements (trigger efficiency, centrality determination, 
etc.) are negligible in comparison to the uncorrelated, analysis-
specific uncertainties. For each centrality selection the average 
double ratio Rγ is used together with the averaged inclusive pho-
ton spectrum to obtain the final direct photon spectrum, according 
to Eq. (2). For the 0–20% centrality class and pT = 2 GeV/c, this 
results in types A, B, and C systematic uncertainties of σA = 2.5%, 
σB = 2.3%, and σC = 3.0% for the combined double ratio and of 
σA = 20%, σB = 18%, σC = 24% for the combined direct photon 
spectrum.

The combined PCM and PHOS double ratios Rγ measured for 
three centrality classes are shown in Fig. 4. A direct photon excess 
is observed for all centrality classes for pT � 4 GeV/c, and also 
for 1 � pT � 4 GeV/c in the most central class. The measurements 
are compared with the expected Rγ for the prompt photon contri-
bution as calculated with next-to-leading-order (NLO) perturbative 
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Fig. 4. (Color online.) Combined PCM and PHOS double ratio Rγ in the 0–20%, 
20–40%, and 40–80% centrality classes compared with pQCD calculations for 
nucleon–nucleon collisions scaled by the number of binary collisions for the corre-
sponding Pb–Pb centrality class. The dark blue curve is a calculation from Refs. [51,
52] which uses the GRV photon fragmentation function [53]. The JETPHOX calcu-
lations [54] were performed with two different parton distribution functions, CT10 
[55] and EPS09 [56], and the BFG II fragmentation function [57].

QCD calculations. The prompt photon expectations in Fig. 4 were 
determined as 1 + NcollγpQCD/γdecay where the number of binary 
nucleon–nucleon collisions (Ncoll = 1210.8 ±132.5, 438.4 ±42, and 
77.2 ± 18 for the 0–20%, 20–40%, and 40–80% class, respectively) 
was calculated with a Monte Carlo Glauber code [58] using an in-
elastic nucleon–nucleon cross section of σ inel

NN = 64 ± 5 mb. The 
decay photon spectra γdecay were calculated as the product of the 
(γdecay/π

0)|MC ratio from the decay photon calculation and the 
combined PHOS and PCM π0 spectra. Three different direct pho-
ton calculations are shown, two based on JETPHOX (with different 
parton distribution functions) [54], and one from Refs. [51,52]. The 
band around the latter reflects the factorization, renormalization, 
and fragmentation scale uncertainty whereas the bands around 
the JETPHOX calculations also include the uncertainty of the par-
ton distribution functions. In all three centrality classes, the excess 
agrees with the calculated prompt direct photon contributions at 
high pT � 5 GeV/c. The contribution of prompt direct photons 
cannot be calculated straightforwardly for pT � 2 GeV/c; their con-
tribution relative to the decay photons, however, is expected to 
be small. The excess of about 10–15% for the 0–20% centrality 
class in the range 0.9 � pT � 2.1 GeV/c indicates the presence of 
another source of direct photons in central collisions. The signif-
icance of the excess at each data point in this pT range in the 
0–20% centrality class is about 2σ . Considering all data points in 
0.9 � pT � 2.1 GeV/c, the significance of the direct photon excess 
is about 2.6σ which is only slightly larger than the significance of 
the individual points due to the correlation of systematic uncer-
tainties in pT.

Fig. 5. (Color online.) Direct photon spectra in Pb–Pb collisions at √sNN = 2.76 TeV
for the 0–20% (scaled by a factor 100), the 20–40% (scaled by a factor 10) and 
40–80% centrality classes compared to NLO pQCD predictions for the direct photon 
yield in pp collisions at the same energy, scaled by the number of binary nucleon 
collisions for each centrality class.

The resulting direct photon spectra are shown in Fig. 5. Arrows 
represent 90% upper confidence limits. The same NLO pQCD cal-
culations that were used in Fig. 4 are directly compared with the 
measured direct-photon spectra. In addition, the pQCD calculation 
used in the Pb–Pb direct photon prediction by Paquet et al. [59] is 
shown as a dashed line in Fig. 5. This calculation was performed 
down to pT ≈ 1 GeV/c by using large scales μ (> 2pγ

T ) and rescal-
ing the result so that it agrees with a calculation done with smaller 
scales at higher pT. The systematic uncertainty of this calculation 
is estimated to be about 25% for pT � 5 GeV/c, growing to about 
60% at pT ≈ 1 GeV/c. All calculations were scaled with the cor-
responding number of nucleon–nucleon collisions in the centrality 
class. Similar to Rγ , an agreement with these theoretical estimates 
of pQCD photon production in peripheral, mid-central, and cen-
tral collisions for pT � 5 GeV/c is found. An agreement between 
Ncoll-scaled pQCD calculation and data for isolated direct photon 
yields was also found at higher pT (>20 GeV/c) by ATLAS [27]
and CMS [28].

In mid-central and more clearly in central collisions an ex-
cess of direct photons at low pT � 4 GeV/c with respect to 
the pQCD photon predictions is observed, which might be re-
lated to the production of thermal photons. In models in which 
thermal photon production in the early phase dominates, the in-
verse slope parameter reflects an effective temperature averaged 
over the different temperatures during the space–time evolution 
of the medium. In order to extract the slope parameter, a pT re-
gion is selected where the contribution of prompt direct photons 
is small. The pQCD contribution from the calculation by Paquet 
et al. [59], shown as a dashed line in Fig. 5, is subtracted and 
the remaining excess yield is fit with an exponential function 
∝ exp(−pT/Teff). The extracted inverse slope parameter is Teff =
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Fig. 6. (Color online.) Comparison of model calculations from Refs. [59–62] with the 
direct photon spectra in Pb–Pb collisions at √sNN = 2.76 TeV for the 0–20% (scaled 
by a factor 100), the 20–40% (scaled by a factor 10) and 40–80% centrality classes. 
All models include a contribution from pQCD photons. For the 0–20% and 20–40% 
classes the fit with an exponential function is shown in addition.

(297 ± 12stat ± 41syst) MeV in the range 0.9 < pT < 2.1 GeV/c for 
the 0–20% class and Teff = (410 ± 84stat ± 140syst) MeV in the 
range 1.1 < pT < 2.1 GeV/c for the 20–40% class. Alternatively, 
to estimate the sensitivity to the pQCD photon contribution, the 
slope was extracted without the subtraction of pQCD photons. This 
yields inverse slopes of T no subtr

eff = (304 ± 11stat ± 40syst) MeV for 
the 0–20% class and T no subtr

eff = (407 ± 61stat ± 96syst) MeV for the 
20–40% class. The dominant contribution to the systematic uncer-
tainty of the inverse slopes is due to the type B uncertainties.

A significant contribution of blueshifted photons from the late 
stages of the collision evolution with high radial flow velocities has 
to be taken into account [22,63]. This makes the relation between 
the medium temperature and the inverse slope parameter less di-
rect and a comparison to full direct photon calculations including 
the photons emitted during the QGP and hadron gas phase is nec-
essary to extract the initial temperature. A comparison to state-
of-the-art direct photon calculations is shown in Fig. 6. All shown 
models assume the formation of a QGP. The hydrodynamic mod-
els, which fold the space–time evolution with photon production 
rates, use QGP rates from Ref. [64] and equations of state from 
lattice QCD. All models include the contribution from pQCD pho-
tons, however, different parameterizations are used. The model of 
van Hees et al. [60] is based on ideal hydrodynamics with initial 
flow (prior to thermalization) [65]. The photon production rates in 
the hadronic phase are based on a massive Yang–Mills description 
of gas of π , K , ρ , K ∗ , and a1 mesons, along with additional pro-
duction channels (including anti-/baryons) evaluated with the in-
medium ρ spectral function [19]. Bremsstrahlung from π–π and 
K –K̄ is also included [66], in the calculation shown here together 
with π–ρ–ω channels recently described in Ref. [67]. The space–
time evolution starts at τ0 = 0.2 fm/c with temperatures T0 = 682, 
641, 461 MeV for the 0–20%, 20–40%, and 40–80% classes, respec-

tively, at the center of the fireball. The calculation by Chatterjee 
et al. [61,68] is based on an event-by-event (2 + 1D) longitudi-
nally boost invariant ideal hydrodynamic model with fluctuating 
initial conditions. An earlier prediction with smooth initial condi-
tions was presented in Ref. [69]. Hadron gas rates are taken from 
the massive Yang–Mills approach of Ref. [19]. Bremsstrahlung from 
hadron scattering is not included. The hydrodynamic evolution in 
the model of Chatterjee et al. starts at τ0 = 0.14 fm/c with an av-
erage temperature at the center of the fireball of T0 ≈ 740 MeV
for the 0–20% class and T0 ≈ 680 MeV for the 20–40% class. The 
calculation by Paquet et al. [59] uses event-by-event (2 + 1D) lon-
gitudinally boost invariant viscous hydrodynamics [70] with IP-
Glasma initial conditions [71]. Viscous corrections were applied 
to the photon production rates [59,72,73]. The same hadron gas 
rates as described above for the calculation by van Hees et al. 
are used. The hydrodynamic evolution starts at τ0 = 0.4 fm/c
with an initial temperature (averaged over all volume elements 
with T > 145 MeV) of T0 = 385 MeV for the 0–20% class and 
T0 = 350 MeV for the 20–40% class. The PHSD model prediction 
by Linnyk et al. [62] is based on an off-shell transport approach in 
which the full evolution of the collision is described microscopi-
cally. Bremsstrahlung from the scattering of hadrons is a significant 
photon source in this model. The comparison of the measured 
direct-photon spectra to the calculations in Fig. 6 indicates that the 
systematic uncertainties do not allow us to discriminate between 
the models.

5. Conclusions

The pT differential invariant yield of direct photons has been 
measured for the first time in Pb–Pb collisions at 

√
sNN = 2.76 TeV

for transverse momenta 0.9 < pT < 14 GeV/c and for three cen-
trality classes: 0–20%, 20–40%, and 40–80%. Two independent and 
consistent measurements (PCM, PHOS) have been averaged to ob-
tain the final results. In all centrality classes, the spectra at high 
transverse momentum pT � 5 GeV/c follow the expectation from 
pQCD calculations of the direct photon yield in pp collisions at 
the same energy, scaled by the number of binary nucleon col-
lisions. Within the sensitivity of the current measurement, no 
evidence for medium influence on direct photon production at 
high pT is observed. In the low pT region, pT � 2 GeV/c, no di-
rect photon signal can be extracted in peripheral collisions, but 
in mid-central and central collisions an excess above the prompt 
photon contributions is observed. An inverse slope parameter of 
Teff = (297 ± 12stat ± 41syst) MeV is obtained for the 0–20% most 
central collisions from an exponential function fit to the direct 
photon spectrum, after subtraction of the pQCD contribution, in 
the range 0.9 < pT < 2.1 GeV/c. Models which assume the forma-
tion of a QGP were found to agree with the measurements within 
uncertainties.
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