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√
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We report on measurements of a charge-dependent flow using a novel three-particle correlator with ALICE in
Pb-Pb collisions at the CERN Large Hadron Collider (LHC), and discuss the implications for observation of local
parity violation and the chiral magnetic wave (CMW) in heavy-ion collisions. Charge-dependent flow is reported
for different collision centralities as a function of the event charge asymmetry. While our results are in qualitative
agreement with expectations based on the CMW, the nonzero signal observed in higher harmonics correlations
indicates a possible significant background contribution. We also present results on a differential correlator, where
the flow of positive and negative charges is reported as a function of the mean charge of the particles and their
pseudorapidity separation. We argue that this differential correlator is better suited to distinguish the differences
in positive and negative charges expected due to the CMW and the background effects, such as local charge
conservation coupled with strong radial and anisotropic flow.

DOI: 10.1103/PhysRevC.93.044903

I. INTRODUCTION

Parity (P) is a major symmetry of classical physics, being
present in rigid-body dynamics, classical electrodynamics, and
gravity. In the development of quantum mechanics, parity
conservation was assumed. It was not until the 1950s [1] that
the possibility of parity violation was considered, and soon
after it was definitively demonstrated experimentally in nuclear
decays [2,3]. In the modern picture, P and CP violation in weak
interactions are widely established experimentally and well
understood theoretically. In strong interactions there is very
little or no global P violation, as determined by measurements
of the neutron electric dipole moment [4,5]. However, there is
no first-principles reason why P and CP violation should not
exist in strong interactions. P and CP violation as a general
feature of quantum field theories was first explored in the
1970s [6,7], and a proposal to use heavy-ion collisions as a
tool for studying P and CP violation first appeared as early
as the 1980s [8]. Specific proposals for a search for local
P-violating effects in heavy-ion collisions appeared in the last
decade [9–14].

Collisions of heavy nuclei at ultrarelativistic energies create
a hot, dense medium that appears to have partonic degrees
of freedom and evolve hydrodynamically. In noncentral
collisions the initial overlap region is nonisotropic, which, due
to particle interactions, leads to a momentum-space anisotropy
of the produced particles. This anisotropy can be described
using a Fourier expansion of the azimuthal distribution of
particles [15]. Noncentral collisions are also characterized by
large orbital momentum and, of importance to this study, very
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large magnetic fields. Numerical estimates [16,17] indicate
that at CERN Large Hadron Collider (LHC) energies the field
strength can be as large as B ≈ m2

π/e ≈ 1014 T. In a vacuum,
the magnetic field induced by the spectators decays in time
quadratically (B ∝ t−2) and the lifetime of the magnetic field
at LHC energies is extremely short, decreasing six orders of
magnitude over the course of 0.5 fm/c. However the presence
of electrical charges (such as the quarks in the QGP) means
there is finite electrical conductivity. By Lenz’s law the change
in magnetic field is opposed by the charge carriers in the
conductor, so the temporal decay of the magnetic field is
significantly slowed [18,19].

The chiral magnetic effect (CME) [20] is a process of charge
separation with respect to the reaction plane. In the QCD
vacuum there can exist gluonic configurations with nonzero
topological charge, which can be an instanton or a sphaleron.
At high temperatures, the sphaleron rate is expected to be
dominant. The presence of such gluonic configurations with
topological charge is what drives the P-violation process. For
example, in a region with negative topological charge, left-
handed quarks will become right-handed, and right-handed
quarks will remain right-handed. The strong magnetic field
created in heavy-ion collisions interacts with the magnetic
moment of the quarks and orients the spins of quarks with
positive (negative) electric charge to be parallel (antiparallel)
to the field direction. Under the assumption of massless quarks,
right-handed quarks have their spins and momenta aligned.
This will cause positive (negative) quarks to move parallel
(antiparallel) to the magnetic field, leading to a positive
electric current and thus a positive electric charge dipole.
Due to the chiral symmetry restoration, u and d quarks
have only their bare Higgs mass, which is of the order
of a few MeV/c2. This is sufficiently small to regard the
quarks as effectively massless. Based on simple geometrical
arguments, the magnetic field direction is always normal to
the reaction plane, and therefore straightforwardly accessible
to experiment. The chiral separation effect (CSE) [21] is a
similar effect in which the presence of a vector charge, e.g.,
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electric charge, causes a separation of chiralities. For example,
the presence of a net positive electric charge will induce a
positive axial current along the direction of the magnetic field,
i.e., right (left) handed quarks moving parallel (antiparallel) to
the magnetic field.

The CME can be summarized in a relatively simple
equation:

�JV = Nce

2π2
μA

�B, (1)

where �JV is the vector current (electric charge current in this
case), Nc is the number of colors [3 in QCD but other numbers
of colors, i.e., SU(Nc) gauge fields, are of interest in theory],
μA is the axial chemical potential (which encodes the anomaly-
induced chiral imbalance), and �B is the magnetic field. The
CSE can similarly be summarized as

�JA = Nce

2π2
μV

�B, (2)

where �JA is the axial current (flow of axial charges, i.e.,
chiralities) and μV is the vector (electric) chemical potential.
The coupling between these two phenomena leads to a wave
propagation of the electric charge, resulting in an electric
charge quadrupole moment of the system. This is called the
chiral magnetic wave (CMW) [22–24]. Importantly, for a given
(net) charge state of the system, the quadrupole moment always
has the same sign and is therefore present in an average over
events with the same vector charge state, meaning it may lead
to a signal strong enough to be observed directly in experiment.

As mentioned above, the azimuthal distribution of particles
can be written as a Fourier expansion:

dN

dϕ
∝ 1 +

∑

n

2vn cos[n(ϕ − ψn)], (3)

where ϕ is the azimuthal angle of the particle, vn is the Fourier
coefficient, and ψn is the symmetry plane, which in principle
can be different for each harmonic number n.

Taking into account the well-known modulation of particle
emission due to elliptic flow parameterized with the Fourier
coefficient v2 (see, e.g., [25]), one can write the azimuthal
distribution of charged particles due to the CMW [24] as

dN±

dϕ
= N±[1 + (2v2 ∓ rA) cos (2(ϕ − ψ2))], (4)

where the charge asymmetry A = (N+ − N−)/(N+ + N−)
is determined in some kinematic region (for example in
the experimental acceptance), and the parameter r encodes
the strength of the electric quadrupole due to the CMW.
Bjorken flow [26] relates the pseudorapidity of a particle to
its longitudinal production point. Due to space-momentum
correlations, the charge asymmetry A, determined in the
experimental acceptance, corresponds to the local charge
asymmetry in a certain region of the fireball.

ALICE measurements of the charge dependent correlations
in search for the CME have been published in [27]. This
paper presents the ALICE results on the charge dependent
elliptic flow as a function of the event charge asymmetry.
As the event charge asymmetry A strongly depends on the

experimental acceptance and tracking efficiency, we also
present related results on a differential three-particle correlator
that allows much more detailed study of the underlying physics
mechanisms. We also present the corresponding measurements
for higher harmonics flow that should be largely insensi-
tive to the CMW but sensitive to the possible background
effects.

II. ANALYSIS METHODOLOGY

A. vn as a function of A and integral three-point correlators

In the theoretical work on the CMW [22–24,28,29] as
well as the analysis published by STAR [30] of Au-Au
collisions at

√
sNN = 200 GeV, the observable has been the

charge-dependent flow coefficient v±
n as a function of the

charge asymmetry A. Experimentally, the charge asymmetry
defined in a specified kinematic region must be corrected
for detector efficiency, as discussed in [30–32]. The effect
of the correction is to increase the slope of positive or negative
particle v±

n vs A. This correction to the slope, though absolutely
necessary, has the undesired feature of introducing additional
sources of systematic uncertainty.

In addition to measuring v±
n as a function of A for a specified

event-selection criterion (e.g., a centrality interval), one can
measure the covariance of v±

n and A, i.e., 〈v±
n A〉 − 〈A〉〈v±

n 〉,
as a function of some event-level variable (e.g., centrality) [33].
The harmonic coefficient is, by definition, vn = 〈cos[n(ϕ1 −
ψn)]〉, where ϕ1 is the azimuthal angle of a particle in the
event and ψn is the th harmonic symmetry plane. This makes
〈v±

n A〉 − 〈A〉〈v±
n 〉 a three-point correlator. The first point is

the flow particle, the second point is the event plane (which
is an estimator for the true symmetry plane), and the third
point is the event charge asymmetry. In cases where the event
plane is determined with a second particle, as is the case with
the two-particle cumulant method, this correlator can also be
called a three-particle correlator.

The strength of the covariance of any two variables is
independent of the sample size as long as the correlation
is statistically significant, so no correction for efficiency is
needed for the three-point correlator. For that reason, the
correlation strength is identical for the full set of particles
in some collection of events and for some randomly selected
subset of particles in the same collection of events [34].

From Eq. (4), it follows that v±
2 ≈ v2 ∓ rA/2, which in

turn allows one to write �v2 = v−
2 − v+

2 ≈ rA. By measuring
�v2 as a function of A, it is possible to extract r directly
in experiment. One can also substitute these terms into the
three-particle correlator, giving

〈v±
2 A〉 − 〈A〉〈v±

2 〉 ≈ ∓r(〈A2〉 − 〈A〉2)/2 = ∓rσ 2
A/2. (5)

Clearly, either of these approaches can be generalized to
arbitrary harmonic vn, yielding in principle a different r
for each harmonic. Because of the symmetry of the CMW
effect, the expectation is that r , and therefore the three-particle
correlator, is significant only for the second harmonic and
strongly suppressed for higher harmonics. Since A is efficiency
dependent, it is necessary to scale down the observed width
to account for the natural broadening due to the binomial
sampling. To calculate the scale factor, we compared the
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widths of A in a Monte Carlo simulation before and after
reconstruction effects, where the full detector response was
implemented within the GEANT3 [35] framework. Since the
ALICE tracking efficiency is independent of centrality, this
scale factor is also independent of centrality. This correction
to σ 2

A introduces an additional source of systematic uncertainty,
in essentially the same way as the correction to the slope for
v±

n vs A. In the present analysis, this uncertainty represents
a roughly 6% normalization uncertainty on the points. Both
the correction and the associated uncertainty vary depending
on detector acceptance and efficiency, analysis cuts, etc.
A key advantage of measuring the three-particle correlator,
rather than r (directly or indirectly), is that it is efficiency
independent and does not require any correction. This reduces
the overall systematic uncertainty on the measurement, which
better facilitates comparisons across experiments as well as
with theory calculations.

In this analysis, two-particle cumulants are always used
to calculate vn [which ignores correlations not related to
anisotropic flow (nonflow), as well as flow fluctuations]. Then,
the integral correlator is

〈v±
n A〉 − 〈A〉〈vn〉 = 〈cos[n(ϕ1 − ψn)] A〉

− 〈cos[n(ϕ1 − ψn)]〉〈A〉
≈ 〈〈cos[n(ϕ1 − ϕ2)]A〉〉√〈〈cos[n(ϕ1 − ϕ2)]〉〉

−
√

〈〈cos[n(ϕ1 − ϕ2)]〉〉〈A〉. (6)

For this equation the inner average represents an average over
all particles in a single event, and the outer average represents
an average over all events. The first particle has the selected
charge and the second particle is of both charges. For the
integral correlator reported below, the same particles are used
to calculate vn and A. The slopes extracted from the three-
particle correlator were checked against the slopes extracted
directly from �v2 vs A and found to be perfectly consistent
with each other.

B. Differential three-point correlators

A key advantage of the novel three-point correlator is that
it permits more differential studies and as such has more
discriminating power. The charge asymmetry in the event
can be generalized to the charge of a particle in the event,
which we will call q3. The average of all charges in the
event is equal to the charge asymmetry, i.e., 〈q3〉event ≡ A.
Under this generalization the correlator [Eq. (6)] becomes
〈vnq3〉 − 〈q3〉〈vn〉.

We also use the additional notation of 〈q3〉1 to denote the
mean of q3 evaluated when selecting on the charge of the first
particle q1. This is important because, by construction, the
correlator 〈vnq3〉 − 〈q3〉〈vn〉 contains reducible correlations,
i.e., correlations that can be expressed in terms of lower order
correlations [33,34]. These reducible correlations are removed
by the construction 〈vnq3〉 − 〈q3〉1〈vn〉, which is therefore a
three-point cumulant.

Using these relations, we estimate the differential correlator
in the following way:

〈v±
n q3〉 − 〈q3〉1〈vn〉
= 〈cos[n(ϕ1 − ψn)] q3〉 − 〈cos[n(ϕ1 − ψn)]〉〈q3〉1

≈ 〈〈cos[n(ϕ1−ϕ2)]q3〉〉√〈〈cos[n(ϕ1 − ϕ2)]〉〉−
√

〈〈cos[n(ϕ1 − ϕ2)]〉〉〈q3〉1.

(7)

The evaluation of a differential correlator is a very important
feature of this study. Rather than measuring only event
quantities, one can also measure the relationship between the
flow at a particular kinematic coordinate and the charge of
the third particle at another particular coordinate. This means
the effect can be measured as a function of the separation
in pseudorapidity of particles 1 and 3, for example. This
differential nature allows for a much more detailed study of
the origin of the correlation and provides stronger experimental
constraints on the theoretical modeling of such effects.

Throughout this paper we use the subscript notation used
above for the first, second, and third particles. The charge,
azimuthal angle, and pseudorapidity of the first particle are q1,
ϕ1, and η1, respectively. Similarly, the azimuthal angle of the
second particle is ϕ2, and the charge and pseudorapidity of the
third particle are q3 and η3, respectively.

III. EXPERIMENTAL APPARATUS AND DATA ANALYSIS

ALICE [36,37] is a dedicated heavy-ion experiment located
at the Large Hadron Collider at CERN. It is composed of a
wide array of detector subsystems. Those used in the present
analysis are the V0 detectors, the Inner Tracking System (ITS),
and the Time Projection Chamber (TPC). The V0 detectors
consist of scintillator arrays and are used for triggering and
centrality determination. There are two V0 detectors, V0A and
V0C. The V0A is located 340 cm from the nominal interaction
point and the V0C is installed at 90 cm distance in the opposite
direction. The V0A covers 2.8 < η < 5.1 in pseudorapidity

Observed A
0.1− 0.05− 0 0.05 0.1

{2
}

2v

0.096

0.098

0.1

0.102

0.104 pos

neg

ALICE

 = 2.76 TeVNNs

30-40% Pb-Pb

c < 5.0 GeV/
T

p0.2 < 

 < 0.8η-0.8 < 

FIG. 1. Harmonic coefficients v+
2 (red squares) and v−

2 (blue
circles) as a function of the observed event charge asymmetry A

in the 30–40% centrality class. Statistical uncertainties only.
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Observed A
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 0.003±Slope = 0.035 

FIG. 2. �v2 = v−
2 − v+

2 as a function of the observed (left) and corrected (right) event charge asymmetry A in the 30–40% centrality class.
Statistical uncertainties only.

and the C side spans −3.7 < η < −1.7. The ITS is used for
both tracking and vertex determination. The ITS is composed
of three subsystems, each having two cylindrical layers of
silicon detectors. Each of the layers covers at least |η| < 0.9
in pseudorapidity to match the TPC acceptance. The TPC is the
primary tracking detector at midrapidity. The TPC is a large
gas volume detector separated into two regions by a central
electrode, positioned in a solenoidal magnetic field of 0.5 T.
The gas volume is contained in a cylindrical electric field cage
with an inner radius of 85 cm and an outer radius of 2.5 m,
spanning the full azimuth 0 < ϕ < 2π . It extends 5.0 m in the
z direction, providing coverage of the full radial track length
for pseudorapidity |η| < 0.9.

The present manuscript reports an analysis of Pb-Pb
collisions at

√
sNN = 2.76 TeV, collected by ALICE during

the 2010 and 2011 years of LHC operations. In the early part
of the 2010 operation, the Pb-Pb minimum bias (MB) trigger
was a 2-out-of-3 coincidence of (a) signals in two pixel chips
in the outer layer of the SPD, (b) a signal in the V0A, (c) a
signal in the V0C. In the later part of the 2010 operation and
for all of the 2011 operation, the Pb-Pb MB trigger required
a coincidence of both V0 detectors. The data sample used in
this analysis comprises approximately 1.7 × 107 MB triggered
events in the 2010 data set. In the 2011 set, we use a mix of
the central, semicentral, and MB triggers. The central trigger
is an online trigger with a threshold on the multiplicity in the
V0 detectors such that it corresponds to the 10% most central
events. The semicentral trigger is defined similarly such that
it corresponds to the 50% most central events. The centrality
is estimated using the mean multiplicity in the V0 detectors,
and the centrality is required to be within 5% (absolute) of
the centrality estimate using the TPC multiplicity to avoid
multiplicity fluctuations in the central region. The longitudinal
position of the primary vertex is required to be within 10 cm of
the nominal center of the ALICE coordinate system in order
to ensure uniform detector acceptance.

Tracks are selected in the kinematic region |η| < 0.8 and
0.2 < pT < 5.0 GeV/c. They are required to have at least
70 TPC clusters, and the percentage of hits to crossed pad
rows is required to be at least 80%. The track fit is required
to have χ2 per cluster (2 degrees of freedom) less than 4.0.

Additional tracking information from the ITS is used when it
is available, i.e., when the track trajectory in the TPC points
to an active area of the ITS. The distance of closest approach
to the reconstructed vertex is required to be within 3.2 cm
in the z direction and within 2.4 cm in the xy-plane. Due
to the excellent azimuthal uniformity of the TPC response,
no correction for azimuthal acceptance is needed, nor is one
applied. The results are corrected for the pT dependence of the
tracking efficiency, which is about 80% at low pT and about
90% at high pT. The correction procedure is to randomly
exclude tracks in such a way that the effective efficiency is
made to be uniform in pT. The result is a 2–3% reduction in vn.

To assess systematic uncertainties, the analysis is repeated
for different operational conditions (i.e., the two orientations
of the experimental magnetic field), different event selection
criteria, different track selection cuts, and different track
reconstruction methods. The uncertainties associated with
each specific selection or condition are observed to be uncor-
related and thus added in quadrature to determine the overall

Centrality (%)
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〉
{2

}
2

v〈〉
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 -
 

〉
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}

2
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0.15

0.2
3−10×
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 = 2.76 TeVNNsPb-Pb
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T
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 < 0.8η-0.8 < 

FIG. 3. Three-particle correlator for positive (red squares) and
negative (blue circles) particles for the second harmonic as a function
of centrality. Statistical (systematic) uncertainties are indicated by
vertical bars (shaded boxes).
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FIG. 4. Charge difference of the three-particle correlator for
the second harmonic as a function of centrality, multiplied by
〈dNch/dη〉 [39]. Statistical (systematic) uncertainties are indicated
by vertical bars (shaded boxes).

systematic uncertainty. All aforementioned sources were
found to generally contribute with similar magnitude. Many
observables reported in this manuscript have values very close
to zero, so that reporting systematic uncertainties as a percent-
age of these values obscures their true meaning. For numerical
stability, systematic uncertainties are evaluated as a percentage
of 〈vn〉〈A〉 or 〈vn〉〈q3〉. This quantity alone is not necessarily
physically meaningful, because it contains detector specific
effects. It does, however, set a natural scale for the uncertain-
ties. Once uncertainties are assessed, their absolute value is
determined and then plotted together with the data points.

IV. RESULTS

A. v2 vs A

Figure 1 shows v+
2 and v−

2 as a function of the observed
(uncorrected) event charge asymmetry A in the 30–40%
centrality class. Clearly visible is an increase in v−

2 with
increasing A, along with a corresponding decrease in v+

2 .

This is qualitatively consistent with expectations from the
CMW [22–24,28,29] as well as with the STAR results [30].
Visually the relationship does not appear exactly linear for
either charge. For a given centrality selection, there is some
range of multiplicities. Since A is a combination of numbers
of particles, it is a combination of different negative binomial
distributions, which are broader for lower numbers of particles.
Therefore, for larger values of |A|, one is sampling events with
lower multiplicities, which can affect the value of v2.

Figure 2 shows �v2 = v−
2 − v+

2 as a function of the
observed A in the left panel and of A corrected for efficiency
in the right panel. To obtain the corrected A, we analyzed
HIJING [38] simulations propagated through a detector descrip-
tion implemented in the GEANT3 [35] framework to determine
the true (generated particle level) A as a function of the
observed (reconstructed track level) A. It can be seen that
the effect of the correction is a modest increase in the slope.
Again, these results are qualitatively consistent with CMW
expectations and with the STAR data [30].

B. Integral correlator results as a function of centrality

Considering the observed increase (decrease) of v−
2 (v+

2 )
with increasing A, discussed in the preceding section, we
expect a positive (negative) covariance of v−

2 (v+
2 ) with A, and

indeed this is exactly what is seen in the integral correlator.
Additionally, it enables a convenient study of the evolution of
the correlation as a function of event-level observables.

Figure 3 shows the integral correlator of the second
harmonic as a function of centrality. A substantial increase
in the correlation strength is seen as the collisions become
more peripheral. This can be caused by a combination of
several factors. The magnetic field strength increases as the
impact parameter increases since there are more spectators
and thus the current gets stronger. This would cause the
correlations due to the CMW to get stronger. Additionally,
local charge conservation (LCC) effects could play a role [33].
It is important to note that neither of these necessarily comes
at the expense of the other; in principle the observable
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FIG. 5. Three-particle correlator for the third harmonic (left panel) for positive (red squares) and negative (blue circles) particles, and the
charge difference multiplied by 〈dNch/dη〉 (right panel). Statistical (systematic) uncertainties are indicated by vertical bars (shaded boxes).
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could have contributions from both of these and/or additional
contributions from as yet unknown sources of correlation.

Local charge conservation is the production of charged pairs
at the same spacetime point. For N particles, there are N/2
correlated pairs, and N (N − 1) combinatoric pairs, meaning
the correlation strength is proportional to N/[N (N − 1)], or
approximately 1/N . Figure 4 shows the difference between
the charges for the second harmonic correlator multiplied by
〈dNch/dη〉 [39], where 〈dNch/dη〉 is used as a proxy for the
total number of particles, to examine the role of the dilution
of LCC correlations on the correlator. Considerable centrality
dependence remains.

The three-particle correlator is studied using other harmon-
ics as well. This provides important additional constraints
because P-violating effects are expected to occur with respect
to the reaction plane, therefore higher harmonics should have
very little or no correlations. The three-particle correlator for
the third harmonic is shown in Fig. 5 and the fourth harmonic
is shown in Fig. 6. In both cases the left panel shows the
correlator for positive and negative charges separately, and
the right panel shows the charge difference of the correlator
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FIG. 7. Slope parameter r as a function of centrality, including
points from STAR [30]. Statistical (systematic) uncertainties are
indicated by vertical bars (shaded boxes). Not shown is the 6%
systematic normalization uncertainty due the MC correction for σ 2

A.

multiplied by 〈dNch/dη〉. In both of these cases, the centrality
dependence of the charge dependence is flat, in contrast to the
second harmonic. This may suggest a different nature of the
correlation. It could also reflect a weaker centrality dependence
of v3 compared to that of elliptic flow.

C. Slopes of �v2 vs A

Figure 7 shows a comparison between slope parameters r
estimated in this analysis and from the STAR analysis [30]
of Au-Au collisions at

√
sNN = 200 GeV. For the STAR

data, the v2 is evaluated for charged pions with 0.15 <
pT < 0.5 GeV/c, in contrast with the present results which
are for unidentified hadrons with 0.2 < pT < 5.0 GeV/c.
Overall, the slopes are surprisingly similar when considering
the different collision energies and multiplicities, as well as the
different kinematic acceptance (in addition to the different pT

selection, the STAR results correspond to the pseudorapidity
range |η| < 1.0). The STAR data exhibit a somewhat stronger
centrality dependence than the ALICE data. Moreover, the
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STAR data exhibit a stronger centrality dependence than
predicted by the theoretical models invoking the CMW for
Au-Au at 200 GeV [24]. Additionally, hydrodynamical models
have been developed to attempt to explain the STAR results
without invoking the CMW [40,41]. However, no theoretical
modeling or calculations at all, regardless of mechanism, are
available for Pb-Pb collisions at

√
sNN = 2.76 TeV.

D. Differential correlator results as a function of �η

As discussed above, the definition of the three particle
differential correlator includes 〈q3〉1, the mean charge of the
third particle when evaluated with a selection on q1. The
quantity 〈q3〉1 − 〈q3〉 is shown as a function of �η = η1 − η3

in Fig. 8. The measurements are performed as a function
of |�η| and shown as a function of �η with the points
reflected about �η = 0. This conditional mean of q3 depends
significantly on �η and has the opposite sign when q1 is

flipped. The effect is most pronounced for �η ≈ 0 and weakest
when �η is large. When the first particle is negative, the
third particle has a slightly positive mean charge, and when
the first particle is positive, the third particle has a slightly
negative mean charge. Note that the quantity 〈q3〉1 − 〈q3〉 is
proportional to the charge balance function [33] and as such
reflects the charge correlation length.

Figure 9 shows the three-particle correlator for the second
harmonic as a function of �η. The correlator exhibits a rather
nontrivial dependence on �η: a peak with a “typical hadronic
width” of about 0.5–1 units of rapidity and a possible change
of the sign at about �η ≈ 1 (note, however, these points are
consistent with zero within the systematic uncertainties). Both
of those features qualitatively agree with possible background
contribution from local charge conservation combined with
strong radial and elliptic flow [33]. Unfortunately there exist
no predictions for this observable from the CMW.

The three-particle correlator for the third and fourth
harmonics as a function of �η is shown in Fig. 10. The strength
of the correlations is significantly reduced, by a factor about 3
in the case of the third harmonic and at least a factor of 5 for the
fourth harmonic. The fourth harmonic correlator is consistent
with zero within errors. Neglecting flow fluctuations, the
CMW expectations for higher harmonics correlators would
be zero; unfortunately there are no reliable calculations of the
effect of flow fluctuations. The (background) contribution due
to the local charge conservation should roughly scale with the
magnitude of the flow [33] and is qualitatively consistent with
the experimental results. More detailed calculations in both
scenarios, as well as more precise data, are obviously needed
for a more definitive conclusion.

V. SUMMARY AND OUTLOOK

Novel three-particle correlators have been employed in
an experimental search for the CMW. Results have been
shown for the second, third, and fourth harmonic for the
integrated correlator of the charge-dependent flow as a function
of centrality and the differential correlator as a function of
pseudorapidity separation. A clear dependence of the positive
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and negative particle anisotropic flow on the event charge
asymmetry is presented for different centralities in Pb-Pb
collisions. The slopes of this dependence, determined by two
different methods, are consistent and qualitatively agree with
the expectations for CMW, as well as similar to those measured
by the STAR Collaboration at the top Relativistic Heavy
Ion Collider (RHIC) energy. The observed nonzero signal
in higher harmonics correlations indicates a possible strong
background contribution, likely from LCC in combination
with strong radial and anisotropic flow. We also have presented
results on the differential correlator, which is more sensitive to
the detail of the underlying physics and helps to discriminate
between the CMW scenario and the background effects. The
second harmonic results show a fairly large correlation, and the
strength of the correlation strongly decreases with increasing
harmonic number. Further input from theory is needed to give
detailed constraints on the magnitude and range of background
vs CMW correlations.

LHC Run 2 will include Pb-Pb collisions at
√

sNN =
5.02 TeV and will offer substantially higher integrated
luminosity, which will largely improve statistical precision
of these measurements, and may also help reduce some of
the systematic uncertainties. One of the chief benefits of
increased statistical precision would be the possibility to
evaluate the three-particle correlator with identified particles.
The species of both particle 1 and 3 is of potential interest. The
different collision energy affects both the peak strength (which
increases) and the lifetime (which decreases) of the magnetic
field induced in the collision, which provides additional
information. For that reason, an analysis of this correlator at
lower collisions energies, for example at RHIC, would provide
important additional insights.
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C. Klein-Bösing,54 S. Klewin,94 A. Kluge,36 M. L. Knichel,94 A. G. Knospe,118,122 C. Kobdaj,114 M. Kofarago,36

T. Kollegger,97 A. Kolojvari,131 V. Kondratiev,131 N. Kondratyeva,75 E. Kondratyuk,111 A. Konevskikh,56 M. Kopcik,115

M. Kour,91 C. Kouzinopoulos,36 O. Kovalenko,77 V. Kovalenko,131 M. Kowalski,117 G. Koyithatta Meethaleveedu,48 I. Králik,59
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S. Li,7,70 X. Li,14 J. Lien,42 R. Lietava,101 S. Lindal,22 V. Lindenstruth,43 C. Lippmann,97 M. A. Lisa,20 H. M. Ljunggren,34

D. F. Lodato,57 P. I. Loenne,18 V. Loginov,75 C. Loizides,74 X. Lopez,70 E. López Torres,9 A. Lowe,135 P. Luettig,53
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