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Measurement of an Excess in the Yield of J=ψ at Very Low pT in Pb–Pb Collisions
at

ffiffi
s

p
NN = 2.76 TeV

J. Adam et al.
*

(ALICE Collaboration)
(Received 12 October 2015; published 2 June 2016)

We report on the first measurement of an excess in the yield of J=ψ at very low transverse momentum
(pT < 0.3 GeV=c) in peripheral hadronic Pb-Pb collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 2.76 TeV, performed by ALICE at
the CERN LHC. Remarkably, the measured nuclear modification factor of J=ψ in the rapidity range
2.5 < y < 4 reaches about 7 (2) in the pT range 0–0.3 GeV=c in the 70%–90% (50%–70%) centrality
class. The J=ψ production cross section associated with the observed excess is obtained under the
hypothesis that coherent photoproduction of J=ψ is the underlying physics mechanism. If confirmed, the
observation of J=ψ coherent photoproduction in Pb-Pb collisions at impact parameters smaller than twice
the nuclear radius opens new theoretical and experimental challenges and opportunities. In particular,
coherent photoproduction accompanying hadronic collisions may provide insight into the dynamics of
photoproduction and nuclear reactions, as well as become a novel probe of the quark-gluon plasma.

DOI: 10.1103/PhysRevLett.116.222301

The aim of experiments with ultrarelativistic heavy-ion
collisions is the study of nuclear matter at high temperature
and pressure, where quantum chromodynamics (QCD)
predicts the existence of a deconfined state of hadronic
matter, the quark-gluon plasma (QGP). Heavy quarks are
expected to be produced in the primary partonic scatterings
and to interact with this partonic matter, making them ideal
probes of the QGP. According to the color screening
mechanism [1], quarkonium states are suppressed in the
QGP, with different dissociation probabilities for the
various states depending on the temperature of the medium.
On the other hand, regeneration models predict charmo-
nium production via the (re)combination of charm quarks
during [2–4] or at the end [5,6] of the deconfined
phase. ALICE measurements of the J=ψ nuclear modifi-
cation factor (RAA) [7–10] and elliptic flow [11] in
Pb-Pb collisions at a center-of-mass energy offfiffiffiffiffiffiffiffi
sNN

p ¼ 2.76 TeV, as well as the comparison of the
J=ψ nuclear modification factor in p-Pb collisions atffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV [12,13] with that in Pb-Pb, support
the regeneration scenario.
In this Letter, we report on the measurement of

J=ψ production in hadronic Pb-Pb collisions atffiffiffiffiffiffiffiffi
sNN

p ¼ 2.76 TeV at very low pT (pT < 0.3 GeV=c).
We find an excess in the yield of J=ψ with respect to
expectations from hadroproduction. A plausible explana-
tion is that the excess is caused by coherent

photoproduction of J=ψ . In this process, quasireal photons
coherently produced by the strong electromagnetic field of
one of the lead nuclei interact, also coherently, with the
gluon field of the other nucleus, to produce a J=ψ . This
process proceeds, at leading order in perturbative QCD,
through the interchange of two gluons in a singlet color
state, probing thus the square of the gluon distribution in
the target. The coherence conditions impose a maximum
transverse momentum for the produced J=ψ of the order of
one over the nuclear radius, so the production occurs at
very low pT. The study of J=ψ photoproduction processes
in hadron colliders is known in ultraperipheral collisions
(UPCs) and several results are already available in this field
at RHIC [14] and at the LHC [15,16]. These measurements
give insight into the gluon distribution of the incoming Pb
nuclei over a broad range of Bjorken-x values, providing
information complementary to the study of J=ψ hadropro-
duction in p-Pb and Pb-Pb collisions. However, coherent
J=ψ photoproduction has never been observed in nuclear
collisions with impact parameters smaller than twice the
radius of the nuclei. Although the extension to interactions
where the nuclei interact hadronically raises several ques-
tions, e.g., how the breakup of the nuclei affects the
coherence requirement, we find no other convincing
explanation. Assuming, therefore, this mechanism causes
the observed excess, we obtain the corresponding cross
section in the 30%–50%, 50%–70%, and 70%–90%
centrality classes.
The ALICE detector is described in Refs. [17,18]. At

forward rapidity (2.5 < y < 4) the production of quarko-
nium states is measured via their μþμ− decay channel in the
muon spectrometer down to pT ¼ 0. The silicon pixel
detector (SPD), the scintillator arrays (V0) and the zero
degree calorimeters (ZDCs) were also used in this analysis.
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The SPD is located in the central barrel of ALICE, while
the V0 and ZDCs are located on both sides of the
interaction point. The pseudorapidity coverages of these
detectors are jηj < 2 (first SPD layer), jηj < 1.4 (second
SPD layer), 2.8 < η < 5.1 (V0A), −3.7 < η < −1.7 (V0C)
and jηj > 8.7 (ZDCs). The SPD provides the coordinates of
the primary interaction vertex. The minimum bias (MB)
trigger required a signal in the V0 detectors at forward and
backward rapidity. In addition to the MB condition, the
dimuon opposite-sign trigger (μμMB), used in this analysis,
required at least one pair of opposite-sign track segments
detected in the muon spectrometer triggering system, each
with a pT above the 1 GeV=c threshold of the online
trigger algorithm. The background induced by the beam
and electromagnetic processes was further reduced by the
V0 and ZDCs timing information and by requiring a
minimum energy deposited in the two neutron ZDCs
(ZNA and ZNC, positioned on opposite sides with respect
to the interaction point) [19]. The energy thresholds were
∼450 GeV for ZNA and ∼500 GeV for ZNC and were
placed approximately 3 standard deviations below the
energy deposition of a 1.38 TeV neutron. The data sample
used for this analysis amounts to about 17 × 106 μμMB
triggered Pb-Pb collisions, corresponding to an integrated
luminosity Lint ≈ 70 μb−1. The centrality determination
was based on a fit of the V0 amplitude distribution as
described in Ref. [20]. A selection corresponding to the
90% most central collisions was applied; for these events
the MB trigger was fully efficient. In each centrality class,

the average number of participant nucleons hNparti and
average value of the nuclear overlap function were derived
from a Glauber model calculation [21].
J=ψ candidates were formed by combining pairs

of opposite-sign (OS) tracks reconstructed in the
geometrical acceptance of the muon spectrometer and
matching a track segment above the 1 GeV=c pT threshold
in the trigger chambers [10]. In Fig. 1, the pT distribution
of OS dimuons, without combinatorial background
subtraction, is shown for the invariant mass range
2.8 < mμþμ− < 3.4 GeV=c2 in the centrality class
70%–90%. A remarkable excess of dimuons is observed
at very low pT in this centrality class. Such an excess has
not been observed in the like-sign dimuon pT distribution,
nor reported in previous measurements in proton-proton
collisions [23–28].
The raw number of J=ψ in five centrality classes

(0%–10%, 10%–30%, 30%–50%, 50%–70%, and
70%–90%) and three pT ranges (0–0.3, 0.3–1,
1–8 GeV=c) was extracted by fitting the OS dimuon
invariant mass distribution using a binned likelihood
approach. Two functions were considered to describe the
J=ψ signal shape: a Crystal Ball function [29] and a
pseudo-Gaussian function [30]. The tails of the J=ψ signal
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FIG. 1. Raw OS dimuon pT distribution for the invariant
mass range 2.8 < mμþμ− < 3.4 GeV=c2 and centrality class
70%–90%. Vertical error bars are the statistical uncertainties.
The red line represents the pT distribution of coherently photo-
produced J=ψ as predicted by the STARLIGHT MC generator [22]
in Pb-Pb ultraperipheral collisions and convoluted with the
response function of the muon spectrometer. The normalization
of the red line is given by the measured number of J=ψ in excess
reported in Table I after correction for the ψð2SÞ feed-down and
incoherent contributions (see text).
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FIG. 2. Invariant mass distributions of OS dimuons in the pT
range 0–0.3 GeV=c. The centrality classes are 0%–10% (top)
and 70%–90% (bottom). Vertical error bars are the statistical
uncertainties.
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functions were fixed using Monte Carlo (MC) simulations
for both hadronic [8] and photoproduction hypotheses [15].
Depending on the pT range and centrality class under study,
two or three functional forms were used to describe the
background under the J=ψ signal peak. In addition, the fit
range was varied. It has also been checked that changing
the invariant mass bin width does not significantly modify
the results. Figure 2 shows typical fits in the pT range
0–0.3 GeV=c for the 0%–10% and 70%–90% centrality
classes. The extracted J=ψ signals are the average of the
results obtained making all the combinations of signal
shapes, background shapes, and fitting ranges, while the
systematic uncertainties are given by the rms of the results.
The extracted J=ψ signals and the corresponding statistical
and systematic uncertainties are quoted in the second
column of Table I for the very low pT range.

In each centrality class and pT range, the RAA was
obtained from the measured number of J=ψ (NJ=ψ

AA )

corrected for acceptance and efficiency—ðA × ϵÞhJ=ψAA —
(assuming pure hadroproduction with no polarization),
branching ratio (BRJ=ψ→lþl−), and normalized to the equiv-
alent number of MB events (Nevents), average nuclear
overlap function (hTAAi), and proton-proton inclusive
J=ψ production cross section (σhJ=ψpp ), as detailed in
Ref. [8] and shown in Eq. (1):

RhJ=ψ
AA ¼ NJ=ψ

AA

BRJ=ψ→lþl− ×Nevents ×ðA×ϵÞhJ=ψAA ×hTAAi×σhJ=ψpp

:

ð1Þ

In the pT range 1–8 GeV=c, the J=ψ cross section in pp
collisions at

ffiffiffi
s

p ¼ 2.76 TeV was directly extracted from
the ALICE measurement [26], while in the pT ranges 0–0.3
and 0.3–1 GeV=c, due to limited statistics, it was obtained
by fitting the measured pT distribution with the following
parametrization [31]:

d2σhJ=ψpp

dpTdy
¼ c × σJ=ψ × pT

1.5 × hpTi2
�
1þ a2

�
pT

hpTi
�

2
�

−n
; ð2Þ

where a ¼ Γð3=2ÞΓðn − 3=2Þ=Γðn − 1Þ, c ¼ 2a2ðn − 1Þ,
and σJ=ψ , hpTi and n are free parameters of the fit. A Lévy-
Tsallis function [32,33] and UA1 function [34] were also
used to fit the data in order to assess systematic uncer-
tainties. In addition, the validity of the procedure was
confirmed using the J=ψ data sample in pp collisions at
7 TeV [23], where the larger statistics at very low pT allow
for a direct measurement of the cross sections: the values
obtained with this procedure in the pT ranges 0–0.3 and
0.3–1 GeV=c agree within 11% (1.2σ) and 4% (0.6σ),
respectively, with the measured cross sections.
The procedures for the determination of the various

systematic uncertainties are the same as those followed in
Ref. [8], apart from the reference pp cross section in the pT
ranges 0–0.3 and 0.3–1 GeV=c, which incorporate the
uncertainties of the fitting procedure described above. In
Fig. 3, systematic uncertainties were separated into four

TABLE I. Raw number of J=ψ (NJ=ψ
AA ), expected raw number of hadronic J=ψ (NhJ=ψ

AA ), and measured excess in the number of J=ψ
(NexcessJ=ψ

AA ), all three numbers in the pT range (0–0.3) GeV=c, and J=ψ coherent photoproduction cross section in Pb-Pb collisons atffiffiffiffiffiffiffiffi
sNN

p ¼ 2.76 TeV, with their statistical and uncorrelated systematic uncertainties. A correlated systematic uncertainty also applies to
the cross section. In the most central classes, an upper limit (95% C.L.) on the J=ψ yield excess and on the cross section is given.

Cent. (%) NJ=ψ
AA NhJ=ψ

AA NexcessJ=ψ
AA dσcohJ=ψ=dy (μb)

0–10 339� 85� 78 406� 14� 55 < 251 < 318
10–30 373� 87� 75 397� 10� 61 < 237 < 290
30–50 187� 37� 15 126� 4� 15 62� 37� 21 73� 44þ26

−27 � 10

50–70 89� 13� 2 39� 2� 5 50� 14� 5 58� 16þ8
−10 � 8

70–90 59� 9� 3 8� 1� 1 51� 9� 3 59� 11þ7
−10 � 8
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FIG. 3. J=ψ RAA as a function of hNparti for 3 pT ranges in
Pb-Pb collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 2.76 TeV. See text for details on
uncertainties. When assuming full transverse polarization of the
J=ψ in Pb-Pb collisions, as expected if J=ψ are coherently
photoproduced, the RAA values increase by about 21% in the
range 0 < pT < 0.3 GeV=c.
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categories according to their degree of correlation with
centrality and pT : uncorrelated in pT and centrality (open
boxes), which contain the systematic uncertainties of the
signal extraction in Pb-Pb (1%–23%); fully correlated as a
function of pT but not as a function of centrality (shaded
areas), which contain the uncertainties of the nuclear
overlap function (3.2%–7%), of the determination of the
centrality classes (0.7%–7.7%), and of the centrality
dependence of the tracking (0%–1%) and trigger efficien-
cies (0%–1%); fully correlated as a function of centrality
but not as a function of pT (quoted as global systematics in
the legend), which contain the uncertainties of the J=ψ
cross section from pp collisions [statistical (3.6%–6.9%)
and uncorrelated systematic (3.2%–8.0%)], of the MC
input parametrization (0.5%–2%) and of the tracking
(10%–11%), trigger (2.2%–3.6%), and matching efficien-
cies (1%); and fully correlated in pT and centrality (quoted
as common global systematics), which contain the corre-
lated systematic uncertainty of the pp reference cross
section (5.8%) and the uncertainty of the number of
equivalent minimum bias events (3.5%).
The J=ψ RAA shown in Fig. 3 exhibits a strong increase

in the pT range 0–0.3 GeV=c for the most peripheral Pb-Pb
collisions. This observation is surprising and none of the
transport models [2,3] that well describe the previous
measurements [7,8,10] predict such a pattern at LHC
energies.
To quantify the excess of J=ψ at very low pT, we

subtracted the number of J=ψ expected from hadropro-
duction in Pb-Pb collisions. The following parametrization
of the number of hadronic J=ψ (NhJ=ψ

AA ) as a function of pT
in a given centrality class was used:

dNhJ=ψ
AA

dpT
¼ N ×

dσhJ=ψpp

dpT
× RhJ=ψ

AA × ðA × ϵÞhJ=ψAA : ð3Þ

The factorN is fixed by normalizing the integral of Eq. (3)
in the pT range 1–8 GeV=c to the number of J=ψ measured
in the same range, where the hadroproduction component is
dominant. The second term is given by the fit of the
J=ψpT-differential cross section measured in pp collisions
[26] using Eq. (2). The third term is a parametrization of
the RhJ=ψ

AA as a function of pT from the ALICE measure-
ments in Pb-Pb collisions at 2.76 TeV [8,10]. These
measurements are available in three centrality classes
(0%–20%, 20%–40%, 40%–90%). To calculate the hadro-
production component in the 10%–30% (30%–50%) cen-
trality class, parameterizations obtained in both 0%–20%
and 20%–40% (20%–40% and 40%–90%) were consid-
ered. AWoods-Saxon like parametrization, which describes
the prediction of transport models on J=ψ production in
heavy-ion collisions at low pT [2,3], was used in all the
centrality classes:

RhJ=ψ
AA ðpTÞ ¼ R0

AA þ ΔRAA

1þ expðpT−p0
T

σpT
Þ
: ð4Þ

R0
AA, σpT

, and ΔRAA
are free parameters of the fit while

the p0
T parameter was either unconstrained or fixed toMJ=ψ

to force an evolution of RhJ=ψ
AA at very low pT in agreement

with the predictions of the transport models [2,3]. In
addition, a first order polynomial and a constant were used
in the most peripheral class. Two fitting ranges in pT were
considered, either 0–8 or 1–8 GeV=c since the first bin
could be biased by the presence of the very low pT J=ψ
excess. Finally, the last term in Eq. (3) is a parametrization
of the acceptance times efficiency of hadronic J=ψ
[ðA × ϵÞhJ=ψAA ]—determined from MC simulations of the
muon spectrometer response function—with either a third-
order polynomial or the ratio of two Lévy–Tsallis func-
tions. Simulations were performed with an embedding
technique where MC J=ψ particles are injected into real
events and then reconstructed [8]. The results of the various
parameterizations are averaged in a given range in pT
and centrality and the rms of the results is included in
he systematic uncertainty of the expected number of
hadronic J=ψ .
The excess in the number of J=ψ measured in the pT

range 0–0.3 GeV=c after subtracting the hadronic compo-
nent is given in the fourth column of Table I. The statistical
uncertainty is the quadratic sum of the uncertainties of the
measured number of J=ψ in the pT ranges 0–0.3 and
1–8 GeV=c. The latter is used in the normalization factor of
Eq. (3). The systematic uncertainty is the quadratic sum of
the uncertainties of the signal extraction in 0–0.3 GeV=c
(see Table I) and of the parametrization of the hadronic
component (13.0%, 12.5%, and 12% in the 70%–90%,
50%–70%, and 30%–50% centrality classes, respectively,
see Table I). The significance of the excess is 5.4σ, 3.4σ,
and 1.4σ in the 70%–90%, 50%–70%, and 30%–50%
centrality classes, respectively. For the two central classes,
only the 95% confidence level limit could be computed.
To cross-check the robustness of these results, the excess
was reevaluated assuming a rough parametrization of the
RhJ=ψ
AA based on two extreme cases: (i) a constant suppres-

sion independent of pT (RhJ=ψ
AA ðpT < 0.3 GeV=cÞ ¼

RhJ=ψ
AA ½1 < pT < 8 GeV=cÞ�, which minimizes the had-

ronic contribution, and (ii) no suppression at all at low
pT ½RhJ=ψ

AA ðpT < 0.3 GeV=cÞ ¼ 1�, which gives the maxi-
mum possible hadronic contribution. Even with these
simplified and extreme assumptions, the J=ψ excess
remains significant and compatible with the results reported
in Table I within less than 1 (3) times the quoted systematic
uncertainty for the 70%–90% (50%–70%) centrality class.
A plausible explanation of the measured excess is J=ψ

photoproduction. The cross section for this process
increases with energy and at the LHC becomes comparable
to the J=ψ hadronic cross section. Moreover, the shape of
the pT distribution in the region of the observed excess is
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similar to that of a coherently photoproduced J=ψ [15],
where the photon is emitted by the electromagnetic field of
the source nucleus, and then the target nucleus interacts
coherently with the photon to produce the J=ψ , like in
Pb-Pb ultraperipheral collisions. The average transverse
momentum of coherently photoproduced J=ψ is around
0.055 GeV=c. Detailed MC simulations show that detector
effects widen reconstructed distribution by approximately a
factor of 2 (see red line in Fig. 1) and that 98% of
coherently photoproduced J=ψ are contained in the pT
interval ½0; 0.3� GeV=c.
Assuming that coherent photoproduction causes the

excess at very low pT, the corresponding cross section
can be obtained as described in Ref. [15]. The fraction of
processes where the coherently emitted photon couples
only to a single nucleon, so-called incoherent photopro-
duction of J=ψ , and passed the data selection is
fI ¼ 0.14þ0.16

−0.05 , while the contribution of coherently
produced ψð2SÞ with a J=ψ among the decay products
which passes the data selection is fD ¼ 0.10� 0.06.
Both fractions are used to correct the found excess to
extract the number of coherent J=ψ . This number was
then corrected for the acceptance times efficiency
(A × ϵ ¼ 11.31� 0.04%) taking into account that photo-
produced J=ψ are expected to be transversally polarized,
for the branching ratio, and normalized to the integrated
luminosity and the width of the rapidity range. For the
70%–90% centrality class, the cross section per unit of
rapidity amounts to 59� 11ðstatÞþ7

−10 (uncor. syst) �8 (cor.
syst) μb (see Table I, where the values for the other
centrality classes are also reported). The uncorrelated
centrality dependent systematic uncertainties contain, in
addition to the one of the measured excess, the uncertainties
of the incoherent and ψð2SÞ feed-down contributions (see
above), of the determination of the centrality classes
(0.7%–7.7%), of the trigger efficiency (0%–1%), of the
tracking efficiency (0%–1%), and of the tracking and
trigger efficiency loss as a function of centrality
(0%–3%). The correlated systematic uncertainties contain
the uncertainty of the branching ratio (1%), of the lumi-
nosity (ðþ7.8

−6.5 %Þ), of the tracking (11%), trigger (3.6%), and
matching efficiencies (1%), and of the MC input para-
metrization (3%).
In the UPC of lead nuclei at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 2.76 TeV one
expects the incoherent yield in the pT range 0.3–1 GeV=c
to be about 30% of the coherent yield in the pT range
0–0.3 GeV=c [15]. Assuming the same behavior in periph-
eral collisions, one would expect a 23% (4%) contribution
of incoherent J=ψ to the total number of J=ψ measured in
the 70%–90% (50%–70%) centrality class in the pT range
0.3–1 GeV=c. The significance of the present data sample
is not sufficient to confirm the presence of incoherent
photoproduction in this pT range.
The probability of a random coincidence of a MB

collision and a coherent production of a J=ψ in a UPC

satisfying the dimuon trigger, in the same bunch crossing,
has been evaluated. In the overall data sample, only
one random coincidence is expected for the full centrality
range, corresponding to 0.6 coincidences in the 30%–90%
centrality class.
To our knowledge there is no numerical prediction for

the cross section of coherent photoproduction of J=ψ in
peripheral collisions. Given that the nuclei also undergo a
hadronic interaction, it is not clear how to incorporate the
coherence conditions. To have a rough estimate, we
considered the extreme assumption that all the charges
in the source and all the nucleons in the target contribute to
the photonuclear cross section as in coherent UPCs (see
also Ref. [35]). The photon flux, see, e.g. Ref. [36], was
obtained integrating in the impact parameter range corre-
sponding to the centrality class. We used two different
approaches: the vector dominance model of Ref. [37],
normalized to the measured UPC data [15,16], and the
perturbative QCD model of Ref. [36] with the parameter-
ization of Ref. [38]. In both cases we obtain a cross section
in the 70%–90% centrality class of about 40 μb, which is of
the same order of magnitude as our measurement. Note that
the most peripheral class corresponds to the hadronic
interaction of just a few nucleons (Npart ≈ 11), so the
interaction is close to the ultraperipheral case and the
comparison to the estimate seems reasonable. Another
interesting hypothesis, not considered, would be that only
the spectators in the target are the ones that interact
coherently with the photon. In this case, the pT distribution
of the excess would get wider as the centrality increases,
providing an experimental tool to discriminate among
potential models. Indeed, as the size of the spectator region
decreases with centrality, the maximum pT , given by the
coherence condition and the uncertainty principle, would
increase.
In summary, we reported on the ALICE measurement of

J=ψ production at very low pT and forward rapidity in
Pb-Pb collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 2.76 TeV. A strong increase of
the J=ψ RAA is observed in the range 0 ≤ pT < 0.3 GeV=c
for the 70%–90% (50%–70%) centrality class, where RAA
reaches a value of about 7 (2). The excess has been
quantified with a significance of 5.4 (3.4)σ assuming a
smooth evolution of the J=ψ hadroproduction at low pT.
Coherent photoproduction of J=ψ is a plausible physics
mechanism at the origin of this excess. Following this
assumption, the coherent photoproduction cross section
has been extracted for the centrality classes 30%–50%,
50%–70%, and 70%–90% while an upper limit is given for
0%–10% and 10%–30%. It would be very challenging for
existing theoretical models, which only include hadronic
processes, to explain this excess. The survival of an
electromagnetically produced charmonium in a nuclear
collision merits theoretical investigation. In addition, coher-
ent photoproduced J=ψ may be formed in the initial stage
of the collisions and could therefore interact with the QGP,
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resulting in a modification of the measured cross section
with respect to the expectation of theoretical models. In
particular, one expects a partial suppression of photo-
produced J=ψ due to color screening of the heavy quark
potential in the QGP. The regenerated J=ψ in the QGP
exhibit a wider pT distribution and do not contribute to the
measured excess, making this measurement a potentially
powerful tool to constrain the suppression or regeneration
components in the models. Experimentally, the increase of
the LHC heavy ion luminosity during run 2 will lead to a
factor 10 larger data sample, thus improving the precision
of the present measurement and opening the possibility to
determine whether the J=ψ excess at very low pT is also
present in the most central collisions.
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