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Effective numbers of charge carriers in doped graphene: Generalized Fermi liquid approach
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The single-band current-dipole Kubo formula for the dynamical conductivity of heavily doped graphene
from Kupčić [Phys. Rev. B 91, 205428 (2015)] is extended to a two-band model for conduction π electrons in
lightly doped graphene. Using a posteriori relaxation-time approximation in the two-band quantum transport
equations, with two different relaxation rates and one quasiparticle lifetime, we explain a seemingly inconsistent
dependence of the dc conductivity of ultraclean and dirty lightly doped graphene samples on electron doping,
in a way consistent with the charge continuity equation. It is also shown that the intraband contribution to the
effective number of conduction electrons in the dc conductivity vanishes at T = 0 K in the ultraclean regime,
but it remains finite in the dirty regime. The present model is shown to be consistent with a picture in which
the intraband and interband contributions to the dc conductivity are characterized by two different mobilities of
conduction electrons, the values of which are well below the widely accepted value of mobility in ultraclean
graphene. The dispersions of Dirac and π plasmon resonances are reexamined to show that the present, relatively
simple expression for the dynamical conductivity tensor can be used to study simultaneously single-particle
excitations in the dc and optical conductivity and collective excitations in energy loss spectroscopy experiments.

DOI: 10.1103/PhysRevB.94.075434

I. INTRODUCTION

In quantum field theory, Fermi liquids are completely
described in terms of single-electron Green’s functions
and renormalized charge/current vertex functions [1,2]. The
Green’s functions satisfy the corresponding Dyson equations
and the vertex functions the Bethe-Salpeter equations. In elec-
tronic systems with parabolic dispersions and weak residual
interactions the problem of solving these two self-consistent
equations reduces to analyzing the semiclassical Landau-Silin
transport equations for nonequilibrium distribution functions
[3,4]. The details about electron-electron interactions are
hidden in renormalized electron dispersions and in transport
relaxation rates. Electrodynamic properties of such systems are
well known and are usually expressed in terms of the nominal
concentration of conduction electrons, or the electron density
of states at the Fermi level, and in terms of the well-known
Landau scattering functions. The effective mass of conduction
electrons and the effective density of states are introduced to
describe the effects of residual electron-electron interactions
in the simplest way. Almost all observables look the same as
in the theory of noninteracting fermions, with the exception
that the electron mass and the electron density of states are
replaced by their effective values.

In contrast, when the residual interactions among conduc-
tion electrons are strong, e.g., in underdoped cuprates [5], there
is no way to simplify the original self-consistent equations. In
addition, when these equations are treated beyond the leading
(Hartree-Fock) approximation, it is necessary to replace bare
electron-electron interactions by irreducible four-point inter-
actions. Consequently, the resulting expressions for different
transport coefficients, for the real and imaginary parts of the di-
electric function, and for many other response functions cannot
be mapped onto standard Fermi liquid expressions. The con-
centration of conduction electrons and the bare density of states

*Corresponding author: kupcic@phy.hr

are no longer quantities which enter in observables as multi-
plicative parameters. They are replaced by different forms of
the effective number of charge carriers and different effective
densities of states [6]. More importantly, in such a general
formulation of the response functions, there is no need for
using concepts such as the transport or optical electron mass.

The residual electron-electron interactions in graphene
are presumably weak, but the electron dispersions are
very different from the parabolic dispersion. Therefore, to
understand electrodynamic properties of pristine and doped
graphene, as well as to answer open questions regarding
the behavior of conduction π electrons in the presence of
external electromagnetic fields, we are forced once again
to use the original Dyson and Bethe-Salpeter equations
instead of the semiclassical Landau-Silin equations, and to
treat the dispersions of π electrons beyond the Dirac cone
approximation. However, the leading approximation for
irreducible four-point interactions can still be used [7].

The results presented here are of general importance. They
are directly applicable to investigations of transport properties
of different three-dimensional systems with linear electron
dispersions, such as Dirac semimetals [8].

The paper is organized as follows. In Sec. II, we consider
the total two-band Hamiltonian for conduction π electrons
in graphene beyond the Dirac cone approximation. The
multiband quantum transport equations [9] shown in the
Hartree-Fock approximation are reconsidered in Sec. III.
These equations are expected to be appropriate for studying
relaxation processes in graphene at low enough temperatures
where the conduction electrons are scattered primarily by
static disorder and by phonons. In these equations there are
two types of damping energies: the single-electron damping
energy [i.e., the half width of the quasiparticle peak in
angle-resolved photoemission spectra (ARPES) [10,11]] and
the electron-hole damping energies (i.e., the intraband and
interband relaxation rates in the dc and optical conductivity
[12–14]). The charge continuity equation is responsible for the
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fact that q ≈ 0 scattering processes drop out of the intraband
electron-hole damping energies. On the contrary, the single-
electron damping energies depend quite drastically on the
intensity of these scattering processes. We use the multiband
Ward identity relations [7,15] to determine the structure of
the effective number of charge carriers in the two-band
version of the transverse conductivity sum rule and show
that this effective number does not depend on the relaxation
rates. In Sec. IV, low-order perturbation theory is used to
emphasize different roles played by vertex corrections in
the intraband and interband quantum transport equations.
In Sec. V, the observed dc conductivity of lightly doped
graphene samples [13] is analyzed by using the current-dipole
conductivity formula, with particular care devoted to two types
of damping energies and to two types of contributions to the
effective number of charge carriers. We use the relaxation-
time approximation, for simplicity, with reasonable values
of the relaxation rates. They agree with both experimental
observation [13] and with theoretical predictions for the de-
pendence of the single-electron damping energy on the Fermi
energy EF from Refs. [16–18]. In Sec. VI, we write the
current-dipole conductivity formula in the alternative form and
briefly discuss disadvantages of this conductivity formula with
respect to the current-dipole formula from Sec. V. In Sec. VII,
the dispersions of Dirac and π plasmons are reexamined to
emphasize that the present current-dipole approach can be
used to study the dc and dynamical conductivity on an equal
footing with finite q properties of doped graphene. Section VIII
contains concluding remarks.

II. MODEL HAMILTONIAN

In doped graphene conduction electrons are described by
the Hamiltonian [7,19–21]

H = H el
0 + H

ph
0 + H ′

1a + H ′
1b + H ′

2 + H ext. (1)

The bare electronic contribution

H el
0 =

∑
L=π,π∗

∑
kσ

[
ε0
L(k) + μ

]
c
†
Lkσ cLkσ (2)

represents an exactly solvable two-band tight-binding problem
with two π bands. In the leading approximation, the disper-
sions of electrons in these two bands, measured with respect
to the chemical potential μ, are [19]

ε0
π∗,π (k) = ±t

√
3 + 2 cos kxa + 4 cos

kxa

2
cos

√
3kya

2
− μ.

(3)

Here, t is the first neighbor hopping integral. H
ph
0 is the bare

phonon Hamiltonian

H
ph
0 =

∑
λq′

1

2Mλ

[p†
λq′pλq′ + (Mλωλq′)2u

†
λq′uλq′] (4)

given in terms of the phonon field uλq′ , and the conjugate field
pλq′ , ωλq′ is the bare phonon frequency, λ is the phonon branch
index, and Mλ is the corresponding effective ion mass.

The electron-phonon coupling Hamiltonian can be shown
in the following way

H ′
1a =

∑
λLL′

∑
kq′σ

GL′L
λ (k+,k)√

N
(bλq′ + b

†
λ−q′ )c

†
L′k+q′σ cLkσ , (5)

where uλq′ = √
(�/2Mλωλq′)(bλq′ + b

†
λ−q′) and k+ = k + q′.

This expression includes the scattering by acoustic and optical
phonons. On the other hand, the scattering by static disorder
is given by

H ′
1b =

∑
LL′

∑
kq′σ

V L′L(k+,k)c†L′k+q′σ cLkσ . (6)

Finally, the electron-electron interaction Hamiltonian

H ′
2 = 1

2V

∑
LL′L1L

′
1

∑
kk′q

∑
σσ ′

ϕ
L′L1L

′
1L

σσ ′ (q)

× c
†
L′k+qσ c

†
L1k′σ ′cL′

1k′+qσ ′cLkσ (7)

describes all nonretarded electron-electron interactions [7].
e2v(q) = 2πe2/q is the long-range part of this interaction.

It must be emphasized that Eq. (3) describes the dispersions
of conduction electrons beyond the Dirac cone approximation
and that the sum

∑
k runs over the entire first Brillouin

zone. This means that the total perturbation Hamiltonian
H ′ = H ′

1 + H ′
2 = H ′

1a + H ′
1b + H ′

2 includes all intravalley
and intervalley scattering processes. Therefore, to change the
present representation of the electronic subsystem into the
common Dirac cone representation [17], we must replace

∑
k

by
∑

vk and k in all electron creation and annihilation operators
by vk (v is the common pseudospin index).

The coupling between conduction electrons and external
electromagnetic fields is obtained by the gauge-invariant tight-
binding minimal substitution [9,15,18,22]. The result is H ext =
H ext

1 + H ext
2 , where

H ext
1 =

∑
q

V ext(q)ρ̂(−q) − 1

c

∑
qα

Aext
α (q)Ĵα(−q),

H ext
2 = e2

2mc2

∑
qq′αβ

Aext
α (q − q′)Aext

β (q′)γ̂αβ(−q; 2). (8)

Here, V ext(q,ω) and Aext(q,ω) are, respectively, the Fourier
transforms of the external scalar and vector potentials. The
corresponding screened potentials are V tot(r,t) and Atot(r,t),
and the macroscopic electric field is

E(r,t) = −∂V tot(r,t)
∂r

− 1

c

∂Atot(r,t)
∂t

. (9)

The total charge density operator in the coupling Hamiltonian
(8),

ρ̂(q) =
∑
LL′

∑
kσ

eqLL′
(k,k+)c†Lkσ cL′k+qσ , (10)

consists of the intraband (L′ = L) and interband (L′ �= L)
contributions. The corresponding current density operator
Ĵμ(q) and the bare diamagnetic density operator γ̂αβ(q; 2)
have similar structures. Finally, eqLL′

(k,k+), JLL′
α (k,k+), and

γ LL′
αβ (k,k+; 2) are the bare vertex functions in question. The

general structure of the charge vertex functions qLL′
(k,k+)
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and the current vertex functions JLL′
α (k,k+) is given in

Appendix B of Ref. [21], for example. As discussed below,
there is a close relation between these two vertex functions.

III. TRANSVERSE CONDUCTIVITY SUM RULE

An appropriate starting point for the microscopic exam-
ination of the relaxation processes in weakly interacting
multiband electronic systems in which local field effects are
absent [the two-band model for π electrons in doped graphene,
Eqs. (2) and (3), being an example] is the Bethe-Salpeter equa-
tions for the electron-hole propagators LL′

ν (k,k+,iωn,iωn+)
shown in the Hartree-Fock approximation,

LL′
ν (k,k+,iωn,iωn+)

= 1

�2
GL′(k+,iωn+)GL(k,iωn)

{
JL′L

ν (k+,k)

−
∑
λk′

1

β

∑
iωm

Fλ(k′ − k,iνm)LL′
ν (k′,k′

+,iωm,iωm+)

}
.

(11)

They are illustrated in Fig. 1(a). Here, L is again the band
index, k+ = k + q, iωn+ = iωn + iνn, and iνm = iωm − iωn.
The index ν = 0, x, y, z stands for four components of the
four-component vector potential (cV ext(q,ω),Aext(q,ω)) in
H ext

1 of Eq. (8) and for four components of the related
four-component current density operator (ρ̂(q),Ĵ(q)), and
α = x, y, z is the polarization index of the macroscopic
electric field E(q,ω) = ∑

α êαEα(q,ω). As usual, GL(k,iωn)
is the Fourier transform of the Matsubara Green’s function
GL(k,τ ) = −〈Tτ [cLkσ (τ )c†Lkσ (0)]〉.

The related quantum transport equations are of the form
[7,9]

D−1
LL′(k,k+,iωn,iωn+)LL′

ν (k,k+,iωn,iωn+)

= 1

�2
[GL(k,iωn) − GL′(k+,iωn+)]

×
{
JL′L

ν (k+,k) −
∑
λk′

1

β

∑
iωm

Fλ(k′ − k,iνm)

×LL′
ν (k′,k′

+,iωm,iωm+)

}
. (12)

L k

L′ k+q

L k

L′ k+q

L k

L′ k+q
q q q

Jν Jν Jν

L′ k′+q

L k′

(a)

L k L k

L k+q′

L kL k

q′

(b)

FIG. 1. (a) The Bethe-Salpeter equations for the auxiliary
electron-hole propagators LL′

ν (k,k+,iωn,iωn+) in the Hartree-Fock
approximation. The dashed line represents the force-force corre-
lation function Fλ(k′ − k,iνm) and the bold solid lines are the
single-electron propagators GL(k,iωn). (b) The Dyson equation for
GL(k,iωn) in the same approximation.

In these two equations,

�
2LL′

ν (k,k+,iωn,iωn+)

= GL′(k+,iωn+)GL(k,iωn)�L′L
ν (k+,k,iωn+,iωn) (13)

is the auxiliary RPA irreducible electron-hole propagator,
which is the product of two single-electron Green’s functions
and the renormalized vertex �L′L

ν (k+,k,iωn+,iωn) [1,7,15,23].
Moreover,

��L(k,iωn) ≈ −
∑
λk′

1

β�

∑
iωm

GL(k′,iωm)Fλ(k′ − k,iνm)

(14)

is the single-electron self-energy in the Dyson equation from
Fig. 1(b);

D−1
LL′(k,k+,iωn,iωn+)

= iνn + ε0
LL′(k,k+)/� + �L(k,iωn) − �L′(k+,iωn+) (15)

is a useful abbreviation, and Fλ(k′ − k,iνm) is the force-force
correlation function in the scattering channel labeled by the in-
dex λ [9,24]. Scattering from static disorder and from phonons
is described by the Hamiltonian H ′

1, Eqs. (5) and (6), and
scattering from other electrons by the nonretarded Coulomb
forces in H ′

2, Eq. (7). With little loss of generality, we restrict
the analysis to the case where the electron does not change
the band when it is scattered. The generalization is straightfor-
ward, and as is shown in Refs. [16,18], it must be done when
considering scattering processes in pristine and lightly doped
graphene beyond the relaxation-time approximation. Finally,

ρLL′
(k,k+) ≡ JLL′

0 (k,k+) =
∑

α

qα

�JLL′
α (k,k+)

ε0
L′L(k+,k)

(16)

is the relation between the charge vertex functions and
the current vertex, and ε0

L′L(k+,k) = ε0
L′(k+) − ε0

L(k) [21].
The relation (16) can be easily proven in any exactly solvable
multiband model. It is a direct consequence of the gauge
invariant form of the coupling Hamiltonian (8) [7,9].

It is generally agreed that the quantum transport equa-
tions (12) are a good starting point in the longitudinal response
theory [7,9,25], while the Bethe-Salpeter equations (1) are
more appropriate for considering the response to transverse
electromagnetic fields, in particular in the case where the
vertex corrections [the second term in the curly braces in
Eqs. (11) and (12)] are neglected [16,17,24]. As pointed out
in Ref. [9], there is a direct link between this form of the
quantum transport equations and both the semiclassical Boltz-
mann transport equations and the Landau-Silin equations.
Equations (11) and (12) are simplified versions of the general
equations [7,23] in which irreducible four-point interactions
are replaced by the force-force correlation function Fλ(k′ −
k,iνm). It is well known that if we are interested in the
relaxation processes associated with the electron scattering
from other electrons, the next corrections must be included
[7,21]. For the electron scattering from static disorder and
from phonons, this approximation is sufficient.
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JJ μ JJν μν JJν μν J

JJν μ JJν μ

FIG. 2. The Bethe-Salpeter expression for the 4 × 4 current-
current correlation function πμν(q,iνn) [15,21].

A. Gauge invariance of the response theory

It is not hard to verify that the auxiliary electron-hole
propagators LL′

ν (k,k+,iωn,iωn+) in Eqs. (11) and (12) must
satisfy the following equations:∑

LL′

1

V

∑
kσ

[
ωJLL′

0 (k,k+) −
∑

α

qαJLL′
α (k,k+)

]

×LL′
0 (k,k+,ω) = 0 (17)

and∑
LL′

1

V

∑
kσ

[
ωJLL′

0 (k,k+) −
∑

β

qβJLL′
β (k,k+)

]
LL′

α (k,k+,ω)

=
∑

β

qβ

e2ntot
βα(q)

m
, (18)

where the electron-hole propagator LL′
ν (k,k+,ω) is the

analytically continued form of

LL′
ν (k,k+,iνn) = 1

β

∑
iωn

LL′
ν (k,k+,iωn,iωn+). (19)

In the usual notation for the elements of the RPA irreducible
4×4 response tensor (see Fig. 2)

πμν(q,ω) =
∑
LL′

1

V

∑
kσ

J LL′
μ (k,k+)LL′

ν (k,k+,ω), (20)

these two relations can be written as [21,26]

ωπ00(q,ω) =
∑

α

qαπα0(q,ω), (21)

ωπ0α(q,ω) =
∑

β

qβ

(
πβα(q,ω) + e2ntot

βα(q)

m

)
. (22)

This means that Eqs. (17) and (18) represent an alternative way
to write the Ward identity relations connecting the renormal-
ized vertices �L′L

0 (k+,k,iωn+,iωn) and �L′L
α (k+,k,iωn+,iωn)

and thus represent the simplest way to take care of both local
charge conservation and gauge invariance of the response
theory. Notice that πμν(q,ω) is nothing but the analytically
continued form of πμν(q,iνn), which is the Matsubara Fourier
transform of πμν(q,τ ) = (1/�V )〈Tτ [Ĵμ(q,τ )Ĵν(−q,0)]〉irred.

It is well known that the intraband version of Eqs. (17)
and (18) (L = L′) follows directly from Eq. (12) after
multiplication by JLL

0 (k,k+) and summation over k and iωn

[7]. This means that the intraband Hartree-Fock quantum
transport equation is gauge invariant. On the other hand, the

present form of the interband Hartree-Fock quantum transport
equation is not gauge invariant in the strict sense. Namely, after
performing the same procedure as in the intraband channel,
we obtain extra contributions in Eqs. (17) and (18), with
an obvious violation of local charge conservation. All these
elements become more complicated when there are local
field effects [9]. The restriction to the two-band model for
conduction π electrons in graphene represents the way to
obtain a general description of electrodynamic properties of
graphene which is still very simple.

B. Dynamical conductivity tensor

The dynamical conductivity tensor is usually defined by
two Kubo formulas [21,26]

σαα(q,ω) = παα̃(q,ω) = i

ω

(
παα(q,ω) + e2ntot

αα(q)

m

)
. (23)

Here, παα̃(q,ω) is the current-dipole correlation function. In
the longitudinal case with q = qαêα , it is the product of the
current-charge correlation function πα0(q,ω) and the dimen-
sionless dipole vertex i/qα . The dipole vertices P LL′

α (k,k+) in
παα̃(q,ω) are related to the charge vertices from Eq. (16) in
the following way [21]∑

α

qαP LL′
α (k,k+) = iJLL′

0 (k,k+). (24)

In the longitudinal case, we can also write

σαα(q,ω) = iω

q2
α

π00(q,ω). (25)

Depending on the complexity of the problem, we can use one
of these three expressions for σαα(q,ω). As long as the three
types of the correlation functions πμν(q,ω) are treated exactly,
these three conductivity formulas give the same result. Any
approximate treatment of the problem usually means that one
of these formulas is a better choice than the other two. In the
standard Fermi liquid regime, the current-dipole conductivity
formula is the most natural choice.

C. Effective numbers of charge carriers in the partial
transverse conductivity sum rule

The quantity

ntot
βα(q) =

∑
LL′

1

V

∑
kσ

m

e2

JLL′
β (k,k+)JL′L

α (k+,k)

εL′L(k+,k)

× [nL(k) − nL′(k+)] = nintra
βα (q) + ninter

βα (q) (26)

in Eqs. (18), (22), and (23) is the total number of charge
carriers, which comprises the intraband contribution nintra

βα (q)
(L = L′) and the interband contribution ninter

βα (q) (L �= L′).
Since the integrated conductivity spectral weight is propor-
tional to ntot

βα(q) = (−m/e2)πβα(q) [21,26], these two numbers
can be estimated from the measured intraband and interband
contributions to the dynamical conductivity σαα(q,ω) and
compared to the corresponding effective numbers in the
intraband and interband plasmon frequencies (see Sec. VII).
As we show in Sec. V, there is also a close relation between
nintra

βα (q), ninter
βα (q) and two contributions to the effective number
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0 
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t
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total
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V0 ne

FIG. 3. The effective numbers of charge carriers nintra
αα (q) and

ntot
αα(q) calculated by using Eq. (26), for nL(k) = fL(k), t = 2.52 eV,

T = 100 K, and q ≈ 0. V0n = (1/N )
∑

Lkσ fL(k) is the concentra-
tion of conduction electrons (V0n = 2 in pristine graphene) and V0 is
the primitive cell volume.

of charge carriers n
dc,tot
βα in the dc conductivity. nintra

βα (q) and
ninter

βα (q) are thus an important part of the discussion of the
mobility of conduction electrons in doped graphene, as well
as in similar multiband electronic systems (Sec. V B). The
expression (26) for the total number of charge carriers is the
first important result of the present paper.

Figure 3 shows the effective numbers nintra
αα (q) and ntot

αα(q)
in the two-band model for π electrons in graphene obtained by
Eq. (26), for nL(k) = fL(k) ≡ f (εL(k)) and q ≈ 0. Notice that
ntot

αα(q) ≈ nintra
αα (q) ≈ n for V0n < 0.5, as expected in the usual

Fermi liquid regime, and at variance with nintra
αα (q) ∝ √|ne| for

V0n ≈ 2 (here ne is the concentration of doped electrons/holes
measured with respect to the completely occupied π band).

It is apparent that the effective numbers ni
βα(q), i =

tot,intra,inter, depend on details in the single-electron spectral
functions AL(k,ε), but they are not functions of the corre-
sponding electron-hole damping energies. This can be easily
seen if we show the momentum distribution functions from
Eq. (26) in their usual explicit form

nL(k) = 1

β�

∑
iωn

GL(k,iωn) ≡
∫ ∞

−∞

dε

2π
AL(k,ε)f (ε). (27)

Here, f (ε) is the Fermi-Dirac distribution function and

AL(k,ε) = i

�

∑
s=±1

sGL(k,ε + siη) = −2

�
Im{GL(k,ε + iη)}

(28)

is the single-electron spectral function in question. Finally,

GL(k,ε + iη) = �

ε − ε0
L(k) − ��L(k,ε)

(29)

is the T = 0 retarded single-electron Green’s function, and
�L(k,ε) ≡ �L(k,ε + iη) is the analytically continued form

of the self-energy (14). The relation (27) shows a way to
incorporate the results of ARPES measurements of AL(k,ε)
into the analysis of the dc and dynamical conductivity
measurements.

D. A posteriori relaxation-time approximation

In weakly interacting systems, the usual quasiparticle
picture can be safely used, in which ε0

L(k) + ��L(k,ε) in
Eq. (29) is replaced by εL(k) + i��i

L(k). Here, �i
L(k) =

�i
L(k,ε = εL(k)) is the single-electron damping energy. The

result is the spectral function

AL(k,ε) ≈ −2��i
L(k)

[ε − εL(k)]2 + [
��i

L(k)
]2 . (30)

The next level of approximation corresponds to the replace-
ment nL(k) ≈ fL(k), i.e., −�i

L(k) ≈ η in Eq. (30). This
approximation will be referred to as a posteriori relaxation-
time approximation. In this case, the total number of charge
carriers ntot

βα(q) is free of any kind of damping effects.
Typical results for the real part of the dynamical

conductivity tensor, obtained by using the current-dipole
approach from Sec. V, are shown in Fig. 4 and compared with
experimental data. The figure illustrates that in order to obtain
reasonable agreement with experiment in the relaxation-time
approximation, at least the damping energies ��1 and ��2

must be treated as independent parameters. In the microscopic
picture, the difference between ��1 and ��2 extracted from
measured reflectivity spectra reflects the different role of vertex
corrections in the intraband and interband quantum transport
equations (notably those related to the long-range Coulomb
forces).

0 0.1 0.2 0.3 0.4 0.5
energy (eV)

0

0.2

0.4

0.6
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e{

σ xx
} 

 (π
e2 /2

h)

Li et al.
J-P
J-P intra
J-P inter
ρ-ρ inter
J-J inter

qxa0 = 0.0001

FIG. 4. Solid, dashed, and dotted lines: the real part of the dy-
namical conductivity of doped graphene obtained by Eq. (35) beyond
the Dirac cone approximation, for nL(k) = fL(k), EF = −0.105 eV,
T = 150 K, qxa0 = 0.0001, and for realistic values of the damping
energies, ��1 = 4 meV and ��2 = 20 meV. The interband part
calculated by using π inter

00 (q,ω) and π inter
α0 (q,ω) from Eq. (34) is also

shown (dot-dashed and dot-dot-dashed lines). Experimental data (full
triangles) are from Ref. [14]. a0 is the Bohr radius.
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The effective numbers associated with σαα(q,ω) from Fig. 4
are V0n

intra
αα ≈ 23×10−3 and V0n

inter
αα ≈ 1.027 (the relation

between nintra
αα and the nominal concentration of conduction

electrons n will be discussed later). This means that the
effective number V0n

tot
αα ≈ 1.05 from the two-band version of

the transverse conductivity sum rule (26) takes only one half of
V0n ≈ 2 from the complete transverse conductivity sum rule,
in agreement with Fig. 3.

IV. LOW-ORDER PERTURBATION THEORY

In order to better understand the microscopic structure of
the intraband and interband electron-hole-pair self-energies
[and their imaginary parts i��1(k) and i��2(k)], it is helpful
to determine the structure of the λ0 and λ2 contributions
to πμν(q,iνn), π [0]

μν (q,iνn) and π [2]
μν (q,iνn) (λ is the pertur-

bation parameter in H ′ = λH ′
1 + λ2H ′

2). Let us first con-
sider the intraband contributions to πμν(q,iνn) for electron
scattering by phonons in the case GLL

λ (k,k′) ≈ Gλ(k,k′).
The calculation of the λ0 contributions to π intra

μν (q,iνn) is
straightforward. The result contains the factor fL(k+) −
fL(k) ≈ qα�vL

α (k)∂fL(k)/∂ε0
L(k) and gives a finite contribu-

tions only when multiplied by 1/qα [vL
α (k) = JLL

α (k,k)/e =
(1/�)∂εL(k)/∂kα is the electron group velocity].

Three λ2 diagrams (labeled by 2A1, 2A2, and 2B in Fig. 5)
give four contributions, which are studied in detail in Refs. [21]
and [7]. For example, the result for the 2A1 diagram is given
by

π [2A1]
μν (q,iνn)

=
∑
LL′

1

V

∑
kσ

J LL′
μ (k,k+)JL′L

ν (k+,k)
∑
λk′

|Gλ(k,k′)|2
N

×
∑
s=±1

sS [2A1](iνn,ε,ε+,ε′,sω′), (31)

with L′ = L. Here, S [2A1](iνn,ε,ε+,ε′,ω′) is the cor-
responding Matsubara sum, which has the following
structure

S [2A1](iνn,ε,ε+,ε′,ω′)

= f b(ω′) + f (ε′)
i�νn + ε − ε′ + �ω′

f (ε) − f (ε+)

(i�νn + ε − ε+)2

+ f b(ω′) + f (ε′)
i�νn + ε − ε′ + �ω′

f (ε) − f (ε′ − �ω′)
(ε+ − ε′ + �ω′)2

− f b(ω′) + f (ε′)
ε+ − ε′ + �ω′

∂f (ε+)/∂ε+
i�νn + ε − ε+

(32)

(similarly for the 2A2, 2B1, and 2B2 sums, and for four sums in
the case of the scattering by static disorder). Here, ε = εL(k),
ε+ = εL′(k+), ε′ = εL′(k′

+), ω′ = ωλk′−k, and f b(ω′) is the
Bose-Einstein distribution function.

The four Matsubara sums in π intra[2]
μν (q,iνn) comprise

three different contributions associated with three terms
in Eq. (32). The direct contributions are characterized by
the factor f (ε+) − f (ε) ∝ qα , while the indirect contribu-
tions are proportional to f (ε) − f (ε′ − �ω′). The latter give
rise to a product of two effective vertex functions of the

2A 2B2

JJ μν JJ μν

JJ μν JJ μν

2A1

JJ μν

...

0

FIG. 5. One (H ′
1)0 and three (H ′

1)2 contributions to πμν(q,iνn),
labeled by 0 (bare contribution), 2A1 (electron self-energy term), 2A2

(hole self-energy term), and 2B = 2B1 + 2B2 (vertex correction).

form [JLL
μ (k,k+) − JLL

μ (k′,k′
+)][JLL

ν (k+,k) − JLL
ν (k′

+,k)′],
which vanishes for μ = 0 and/or ν = 0, because JLL

0 (k,k+) ≈
e [6]. The third term is related to the renormalization of the
electron dispersions in fL(k) and fL′(k+), and does not appear
in the vertex corrections contribution. The recollection of the
diagrams of the third type in powers of λ2 to infinity leads in
a natural way to the momentum distribution function nL(k)
from Eq. (27).

There is a well-defined exclusion rule, which is a di-
rect consequence of the identity relation (21). The direct
contributions are relevant only to the correlation functions
π intra[2]

μν (q,iνn) in which at least one vertex is the charge vertex,
leading, for example, to the usual expressions for the k-
dependent intraband memory function [7]. Their contribution
to the current-current correlation function π intra

αα (q,ω) is thus
negligible, due to the factor q2

α . In π intra
αα (q,ω), the leading role

is played by the indirect contributions.
There is no such rule for the interband contributions. The λ0

contribution π inter[0]
αα (q,ω), given by the L �= L′ contributions

in

π [0]
αα (q,ω) =

∑
LL′

1

V

∑
kσ

∣∣JLL′
α (k,k+)

∣∣2 fL′(k+) − fL(k)

�ω+εLL′(k,k+) + iη

(33)

is finite and it is directly related to π
inter[0]
α0 (q,ω). The relaxation

processes in π inter
μν (q,ω), which start with the λ2 contributions,

lead thus to the redistribution of the spectral weight over a
slightly wider energy range than in π inter[0]

μν (q,ω). In the leading
approximation, we obtain

π inter
μν (q,ω) ≈

∑
L �=L′

1

V

∑
kσ

J LL′
μ (k,k+)LL′

ν (k,k+,ω),

LL′
ν (k,k+,ω) = JL′L

ν (k+,k)[nL′(k+) − nL(k)]

�ω + εLL′(k,k+) + i��LL′(k)
, (34)

where the �LL′
(k) are the damping energies in question

[�LL(k) ≈ �1 and �LL(k) ≈ �2 in Fig. 4].
The dot-dashed and the dot-dot-dashed lines in Fig. 4

show the predictions of the current-current and the charge-
charge conductivity formulas for the interband dynamical
conductivity [given, respectively, by the second expression
in Eq. (23) and by Eq. (25)]. There is quite a large dif-
ference between the three interband contributions at ω ≈ 0.
The charge-charge conductivity formula underestimates the
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interband contribution to the ω ≈ 0 conductivity and the
current-current contribution overestimates it. Finally, it should
be noticed that in spite of the fact that the integrated interband
spectral weight is almost the same for the three cases, it is
obvious that only the current-dipole conductivity formula gives
the result which is identical to the general expression for the
partial transverse conductivity sum rule from Eq. (26).

V. LONGITUDINAL CURRENT-DIPOLE APPROACH

For many purposes it is sufficient to use the semiclassical
version of Eq. (12) in which the relaxation processes associated
with the interactions in H ′

1 and H ′
2 are described in terms of

the intraband and interband memory functions MLL′
α (k,ω). The

result is the current-dipole conductivity formula [7,21]

σαα(q,ω) =
∑
LL′

1

V

∑
kσ

i�
∣∣JLL′

α (k,k+)
∣∣2

εLL′(k,k+)

× nL′(k+) − nL(k)

�ω + εLL′(k,k+) + i��LL′(k)
, (35)

with q = êαqα , which consists of the interband contribution
π inter

α0 (q,ω) from Eq. (34) and the analogous expression for
π intra

α0 (q,ω). The ��LL′
(k) are the intraband and interband

electron-hole-pair damping energies, which are proportional to
the imaginary part of the memory functions MLL′

α (k,ω) taken
at �ω = εL′L(k+,k). The exclusion rule from the previous
section is implicitly included through the very definition
of the intraband memory functions MLL

α (k,ω). However, to
estimate MLL′

α (k,ω), L �= L′, we must solve the self-consistent
integral equation (12) [or Eq. (11)]. The limit �LL(k) ≈ �1,
�LL(k) ≈ �2 corresponds to the aforementioned a posteriori
relaxation-time approximation, with nL(k) �= fL(k).

A. DC conductivity of lightly doped graphene

At the level of approximation used in Eq. (35), the dc
conductivity of the two-band model for π electrons in graphene
becomes

σ dc
αα =

∑
LL′

1

V

∑
kσ

�
∣∣JLL′

α (k,k+)
∣∣2

εLL′(k,k+)
[nL′(k+) − nL(k)]

× ��LL′
(k)

ε2
LL′(k,k+) + [��LL′(k)]2

. (36)

For �LL(k) = �1 and �LL(k) = �2, the intraband contribution
to σ dc

αα ,

σ dc,intra
αα = e2

�1

1

V

∑
Lkσ

[
vL

α (k)
]2 nL(k+) − nL(k)

εLL(k,k+)
, (37)

is the product of the relaxation time τ1 = 1/�1 and the
intraband part of the total number of charge carriers

nintra
αα = 1

V

∑
Lkσ

m
[
vL

α (k)
]2

(
−∂nL(k)

∂εL(k)

)
. (38)

The latter has the same structure as nintra
αα (q ≈ 0) from the

partial transverse conductivity sum rule (26).
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FIG. 6. The doping dependence of σ dc
αα in ultraclean graphene

calculated by using the current-dipole conductivity formula (35),
for nL(k) = fL(k), and for realistic values of ��, ��(T ) = a + bT ,
a = 0.5 meV, and b = 0.5/200 meV/K. Experimental data, taken at
T = 40 K, are from Ref. [13].

On the other hand, the interband contribution reads

σ dc,inter
αα = e2

m�2
ndc,inter

αα (39)

ndc,inter
αα = 1

V

∑
Lkσ

m

e2

∣∣JLL
α (k,k+)

∣∣2 nL(k+) − nL(k)

εLL(k,k+)

× (��2)2

ε2
LL(k,k+) + (��2)2

. (40)

It should be noticed that ndc,inter
αα represents a small fraction of

ninter
αα (q ≈ 0) from Eq. (26), which is selected by the function

(��2)2/[ε2
LL(k,k+) + (��2)2]. This means that only the states

in the vicinity of the Fermi level satisfying the condition
ε2
LL(k,k+) < (��2)2 participate in the interband dc conduc-

tivity. This term is negligible in usual multiband electronic
systems, but it is finite in graphene and in similar systems
with negligible threshold energy for interband electron-hole
excitations. It must also be noticed that although the analysis
of ninter

αα (q) requires the treatment of the interband electron-
hole excitations beyond the Dirac cone approximation, this
approximation can safely be used in analyzing ndc,inter

αα and
nintra

αα .
Figure 6 shows the doping dependence of the dc con-

ductivity in ultraclean graphene at temperatures between 40
and 150 K. The calculation is performed in the Dirac cone
approximation, by using the usual replacement for the square
of the current vertices [16],∣∣JLL′

α (k,k+)
∣∣2 → 1

2

∑
α

∣∣JLL′
α (k,k+)

∣∣2 = 1

2
(evF)2. (41)

The relaxation rates are taken to be ��1 = ��2 = ��(T ) =
a + bT , for simplicity, where a and b are functions of Fermi
energy [13,16,18]. The damping energy −��i

L(k) in Eq. (30)
is approximated by ��i = 0, leading to nL(k) = fL(k). Notice
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FIG. 7. The doping dependence of the effective number ndc,tot
αα

and the dc conductivity σ dc
αα for different values of the ratio �i/�

at T = 50 K and �� = 5 meV. Experimental data (for ne > 0 and
T = 40 K) are from Ref. [13].

that for ��1 = ��2 = ��, we can introduce the effective
number of charge carriers ndc,tot

αα in the dc conductivity, which
is proportional to σ dc

αα ,

V0n
dc,tot
αα = V0m

�e2
��σ dc

αα =
(

2h

πe2

)√
3

4t
��σ dc

αα. (42)

Figure 7 illustrates the doping dependence of σ dc
αα in dirty

graphene at T = 50 K for different values of the ratio �i/�.
The result is in reasonably good agreement with experiment for
�� = 5 meV and ��i = 22 meV. Notice that the dependence
of σ dc

αα (and ndc,tot
αα ) on |ne| changes from the linear dependence

for �i/�  1 to the
√|ne| dependence in the opposite limit.

Therefore Figs. 6 and 7 show that the main effects of current
annealing of the samples [13] are the reduction of the damping
energies ��1 and ��2 by one order of magnitude and a much
larger effect on the q ≈ 0 scattering processes in ��i . Figure 7
also illustrates the dependence of ndc,tot

αα on the single-electron
damping energy �i in the ballistic conductivity regime of dirty
graphene samples.

In conclusion, to understand the damping effects in dirty
conductors quantitatively, we have to take into account vertex
corrections in the quantum transport equations, at least in the
phenomenological way. There are significant contributions
in the damping energies ��i

L(k) originating from the q ≈
0 forward scattering processes, which are canceled out in
the electron-hole damping energies �LL′

(k), resulting in the
regime 2�i/�  1 shown in Fig. 7.

B. Mobility of conduction electrons

It is also important to recall that the mobility of conduction
electrons μ is the quantity which is intimately related with the
effective number of charge carriers. In simple semiconducting
systems, the mobility is usually defined by [27]

σ dc
αα = σ dc,intra

αα + σ dc,inter
αα = eμ|ne|, (43)

where |ne| is the nominal concentration of doped conduction
electrons/holes. Figure 7 illustrates that in spite of the fact that

this definition of μ is widely used in analyzing experimental
results in graphene [12,28] (for example, μ is estimated to be
as large as 170 000 cm2/Vs at n = 2×1011 cm−2 [13]) it makes
sense only for large enough Fermi energies (typically V0|ne| >

10−2). For example, when 103V0n
dc,tot
αα ≈ 10 from Fig. 7 is

replaced by 103V0ne ≈ 0.1, the mobility μ increases by two
orders of magnitude with respect to the correct value μ =
(e/m�). It increases further with decreasing |ne| and becomes
infinite at ne = 0. The mobility that is infinite is certainly not
physically reasonable.

A more realistic form of σ dc
αα treats the intraband and

interband contributions in Eq. (36) as two independent
terms characterized by two mobilities, μintra = (e/m�1) and
μdc,inter = (e/m�2). In this case, we obtain the general form
of the dc conductivity in graphene,

σ dc
αα = eμintranintra

αα + eμdc,interndc,inter
αα . (44)

It is very much reminiscent of the dc conductivity of the two-
band semiconductors [27].

VI. TRANSVERSE CURRENT-DIPOLE APPROACH

It is tempting to use the procedure of calculating the
current-current conductivity formula (A2) from Appendix A
[16,24] to work out the other elements of the 4×4 response
tensor. In this way it is possible to obtain an alternative form of
the current-dipole conductivity formula, which can be useful
when comparing the results of the present paper with previous
work, in particular with that based on the current-current
approach [20,29–31].

The result,

πμν(q,ω) =
∑
LL′

1

V

∑
kσ

J LL′
μ (k,k+)LL′

ν (k,k+,ω),

LL′
ν (k,k+,ω) =

∫ ∞

−∞

dε

2π

∫ ∞

−∞

dε′

2π
AL(k,ε)AL(k+,ε′)

× JL′L
ν (k+,k)

f (ε) − f (ε′)
�ω + iη + ε − ε′ , (45)

is characterized by the product of two Lorentz functions,
AL(k,ε) and AL′(k+,ε′), and the function [�ω + ε − ε′ +
iη]−1. The ideal conductivity regime in Im{π intra

μν (q,ω)}
[AL(k,ε) ≈ A0

L(k,ε) = 2πδ(ε − εL(k)), in this case] leads to
a longstanding problem of the product of three δ functions.
The conductivity formula (A2) in Appendix A is obtained by
using the function δ(�ω + ε − ε′) to evaluate the integral over
ε′ and then integrating over ε.

The same order of steps in evaluating π intra
α0 (q,ω) leads

to the result which is proportional to ω/qα . This result is
evidently incorrect, because it is singular in the Drude limit
ω2  q2

α[vL
α (k)]2. Evidently, to obtain an alternative form of

Eq. (35), which is correct in both the intraband and interband
channel, the product AL(k,ε)AL′(k+,ε′)[f (ε) − f (ε′)] must
be replaced by AL(k,ε)AL′ (k+,ε′)[fL(k) − fL′(k+)]. The
result is

Re
{
σ 0

αα(q,ω)
} =

∫ ∞

−∞

dε

4π

∑
LL′

1

V

∑
kσ

�
∣∣JLL′

α (k,k+)
∣∣2AL(k,ε)

×AL′(k+,ε+)
fL(k) − fL′(k+)

εL′L(k+,k)
. (46)

075434-8



EFFECTIVE NUMBERS OF CHARGE CARRIERS IN DOPED . . . PHYSICAL REVIEW B 94, 075434 (2016)

0 0.01 0.02 0.03
energy (eV)

0

0.5

1

1.5

2
R

e{
σ xx

} 
 (π

e2 /2
h)

T = 50 K
40
30
20
15

intra

inter

total

FIG. 8. The real part of the dynamical conductivity of pristine
graphene calculated by using Eq. (35), for nL(k) = fL(k), ��1 =
��2 = 5 meV, and T = 50, 40, 30, 20, 15 K. The intraband and
interband contributions are also shown.

The simplest way to verify this result analytically is to compare
the predictions for π

intra[2]
α0 (q,ω) with the results of low-order

perturbation theory from Sec. IV.
This expression for the real part of the dynamical conduc-

tivity is the second important result of the present paper. We
can therefore conclude that the vertex corrections are not only
an essential part of the aforementioned exclusion rule but also
represent a criterion how to deal with the factor f (ε) − f (ε′)
in Eq. (45) and in similar expressions.

Figure 8 shows the results for Re{σαα(ω)} in pristine
graphene obtained by two current-dipole conductivity for-
mulas, Eqs. (35) and (46), in the relaxation-time approxi-
mation, with nL(k) = fL(k). The result is the same for both
approaches. Notice that at T = 0 K the intraband contribution
vanishes, as well as that the interband one is characterized by
the well-known value (πe2/2h) [22,32].

The advantages of Eq. (35) over Eq. (46) [and over the
usual current-current conductivity formula (A2)] are obvious.
This formula treats the damping energies ��1, ��2, and ��i

as three independent parameters. It anticipates the effects of
vertex corrections and is thus capable of explaining the relation
between ��i estimated from measured ARPES spectra [11]
and ��1, ��2 extracted from reflectivity and dc measurements
[13,14]. As mentioned above, the ��i �= 0 regime in Eq. (35)
characterizes dirty graphene samples. It is even more important
in analyzing different strongly correlated systems such as
underdoped cuprates [33] or in analyzing three-dimensional
systems with linear electron dispersions [8]. This is the third
major conclusion of the present analysis.

VII. DIRAC AND π PLASMONS

In Sec. IV, we have seen that the problem with phe-
nomenological treatment of the relaxation processes in the
intraband charge-charge correlation function can be solved
by recollecting the diagrams associated with the scattering
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FIG. 9. The real part of ε(q,ω) calculated by using three versions
of π inter

μν (q,ω) from Eq. (34), for EF = −0.5 eV and qxa0 = 0.02,
qy = 0. σ intra

αα (q,ω) is given by the intraband term in Eq. (35). The
dot-dot-dashed line is the prediction of the charge-charge conductivity
formula. The parameters of the model are ��1 = 10 meV, ��2 =
50 meV, and T = 150 K.

processes in H ′ = λH ′
1 + λ2H ′

2 in powers of λ2 to infinity.
However, to do this, we must take care of Eq. (21); otherwise,
the local charge will not be conserved. The violation of local
charge conservation is expected to be visible in both the
low-frequency conductivity (as already shown in Fig. 4) and
in the dispersion of the intraband plasmon resonance.

Figure 9 illustrates the real part of the dielectric function
for EF = −0.5 eV and qxa0 = 0.02 obtained by combining
the current-dipole expression for σ intra

αα (q,ω) from Eq. (35)
with three expressions for σ inter

αα (q,ω) from Eq. (34). The
Dirac plasmon frequency ωpl(q) is essentially the same for
all three cases. On the other hand, the charge-charge version
of σ tot

αα(q,ω) = σ intra
αα (q,ω) + σ inter

αα (q,ω), which is widely used
in analyzing interband collective modes [34–36], leads to a
small shift of ωpl(q) to higher frequencies.

However, the best way to study the finite q effects in
the dielectric function on an equal footing with the dc and
dynamical q ≈ 0 conductivity, is to use the usual Fermi
liquid expression for σ intra

αα (q,ω) [given by Eq. (47) from
Ref. [21], with MLL(q,k,ω) ≈ i�1, for example] and the
current-dipole expression for σ inter

αα (q,ω). Figure 10 shows the
two-dimensional plot of the energy loss function

−Im

{
1

ε(q,ω)

}
= Im{ε(q,ω)}

|ε(q,ω)|2 , (47)

for ε(q,ω) obtained in the described way. The result is typical
of two-dimensional multiband electronic systems with wide
bands. The intraband plasmon mode is clearly visible in the
q,ω region in which the Landau damping is absent. For long
wavelengths, the frequency ωpl(q) is close to the bare intraband
plasmon frequency ω0

pl(q), because the dynamical screening
effects of the rest of the π electrons is negligible in this case
[21,34].
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FIG. 10. The two-dimensional plot of the energy loss function
−Im{1/ε(q,ω)}, for qx = q and qy = 0. Main figure: the interband
plasmon resonance (π plasmon, in common language). Inset: the
intraband (Dirac) plasmon resonance. The dashed lines show the
frequencies ω0

pl(q) = √
(2πe2q/m)nintra

αα , with V0n
intra
αα = 0.109 (inset)

and ω
tot,0
pl (q) = √

(2πe2q/m)ntot
αα , with V0n

tot
αα = 1.045 (main figure).

The parameters are the same as in Fig. 9.

The interband plasmon resonance in the energy loss
function (47) in two-dimensional two-band systems exists only
for large enough wave vectors (q > q1). Since the interband
plasmon frequency ωtot

pl (q) is the second root of the real part
of ε(q,ω), it is expected to be clearly visible in Re{ε(q,ω)}, at
least in the ideal conductivity limit and for large enough wave
vectors (see Fig. 4 in Ref. [35]). As may be anticipated from
the definition relation

[
ωtot

pl (q)
]2 = 4q

∫ ωtot
pl

0
dω′

[
ωtot

pl (q)
]2

[
ωtot

pl (q)
]2 − ω′2

Re{σαα(q,ω′)}

+ 4q

∫ ∞

ωtot
pl

dω′
[
ωtot

pl (q)
]2

[
ωtot

pl (q)
]2 − ω′2

Re{σαα(q,ω′)},

(48)

there are two different regimes, depending upon whether
[ωtot

pl (q)]2/[[ωtot
pl (q)]2 − ω′2] in the first term in Eq. (48) is equal

to unity or not [37,38]. In the first regime (q2 < q) we have
ωtot

pl (q) ≈ ω
tot,0
pl (q) = √

(2πe2q/m)ntot
αα(q), while in the second

regime (q1 < q < q2) the frequency ωtot
pl (q) is well above

the bare interband plasmon frequency ω
tot,0
pl (q). According to

Fig. 10, in graphene the wave vector q1 is approximately equal
to 0.05/a0 and the wave vector q2 is well above 0.2/a0. For
q < q1, the collective peak in −Im{1/ε(q,ω)} associated with
the interband plasmon resonance transforms into the Van Hove
single-particle peak in Im{ε(q,ω)} (placed at �ω ≈ 2t [21,39]).
The solid line in the main figure shows the position of such a
composite interband resonance from q = 0 up to q = 0.2/a0.
This change of character of the interband π excitations in
the energy loss function was studied in pristine graphene in

Ref. [35] within the common charge-charge approach. The
present study of doped graphene gives qualitatively the same
result: the q2 dependence of the single-particle peak at q ≈ 0
and the

√
q dependence of the collective resonance at large

enough wave vectors. Here we show how the prefactor in the√
q regime is related to the partial transverse conductivity sum

rule.

VIII. CONCLUSION

In this paper, we have shown that it is possible to simplify
the analysis of electrodynamic properties of pristine and doped
graphene by using the quantum transport equations for auxil-
iary electron-hole propagators [9,25] instead of the original
Bethe-Salpeter equations. The key to better understanding
of electrodynamic properties of graphene is to solve the
quantum transport equations in a way consistent with the
charge continuity equation. In such an approach, the Ward
identity relations play an essential role in determining the
exact form of the total number of charge carriers in the partial
transverse conductivity sum rule. As in any multiband case,
this effective number consists of the intraband and interband
contributions. However, in graphene, as well as in similar
multiband electronic systems in which the threshold energy
for interband electron-hole excitations is negligible, these
two contributions are equally important when analyzing the
dc conductivity and the intraband and interband plasmon
resonances. They have a structure which is different from the
nominal concentration of conduction electrons in Fermi liquid
theory, but their role in describing transport coefficients and
the dynamical conductivity is very similar.

We also shown that the current-dipole conductivity formula,
which is intimately related with these quantum transport
equations, represents the most natural way to take into account
the effects of vertex corrections. In principle, this can be
done by using the relaxation-time approximation, not only
in clean but also in dirty systems. We demonstrate the
advantages of using the current-dipole conductivity formula
over other methods (the widely used current-current approach,
for example) by considering several open questions regarding
electrodynamic properties of pristine and doped graphene: the
dc conductivity of ultraclean and dirty lightly doped samples
[13], the dynamical conductivity of moderately doped samples
[14], and the dispersions of Dirac and π plasmon resonances
in both pristine and doped samples [36,40].
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APPENDIX A: CURRENT-CURRENT APPROACH
WITHOUT VERTEX CORRECTIONS

After neglecting the current vertex renormalizations in the
Bethe-Salpeter equations (11), the current-current contribution
to the conductivity tensor (23) can be represented by the first
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diagram in the second row of Fig. 2 and written in the form

�σ 0
αα(q,iνn) = i

ω

∑
LL′

1

V

∑
kσ

∣∣JLL′
α (k,k+)

∣∣2

×GL(k,iωn)GL′(k+,iωn+). (A1)

This conductivity formula represents a widely applicable
model for analyzing electrodynamic properties of doped
graphene [16,17,20,31]. It depends on AL(k,ε) directly, and
not through the momentum distribution function nL(k). The
main disadvantage of this approach is that it is focused only
on the indirect contributions to σ intra

αα (q,iνn), and, consequently,
does not apply to finite wave vectors q.

The real part of the analytically continued form of Eq. (A1)
at q = 0 can be represented by the following textbook
expression [16,24]

Re
{
σ 0

αα(ω)
} =

∫ ∞

−∞

dε

4π

∑
LL′

1

V

∑
kσ

�
∣∣JLL′

α (k,k+)
∣∣2

×AL(k,ε)AL′ (k+,ε+)
f (ε) − f (ε + �ω)

�ω

≡
∫ ∞

−∞

dε

4π

f (ε) − f (ε + �ω)

�ω
Pαα(ε,ε + �ω).

(A2)

Here,

Pαα(ε,ε + �ω) ≈ Pαα(q ≈ 0,ε,ε + �ω) (A3)

is the auxiliary T = 0 current-current correlation function,
with

Pαα(q,ε,ε + �ω) =
∑
LL′

1

V

∑
kσ

�
∣∣JLL′

α (k,k+)
∣∣2

×AL(k,ε)AL′(k+,ε+) (A4)

and ε+ = ε + �ω.
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0
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FIG. 11. The doping dependence of σ dc
αα at T = 50, 100, and

150 K. The solid, dashed, and dot-dashed lines represent the results
of the current-dipole conductivity formula (35) for ��1 = ��2 =
5 meV and nL(k) = fL(k). The full circles, squares, and diamonds
are the results of the current-current conductivity formula (A2) for
��i = 2.5 meV.

The full circles, squares, and diamonds in Fig. 11 show the
dc conductivity in graphene calculated in the Dirac cone ap-
proximation by using Eq. (A2), for ��i = 2.5 meV. This figure
shows that the current-dipole conductivity formula (35) and the
current-current conductivity formula (A2) give essentially the
same results, when the damping energies in these expressions
are mutually related by �� = 2��i , with nL(k) = fL(k), and
when the temperature is not too low. Namely, it is well known
that Eq. (A2) is characterized by the ballistic conductivity
(8/π2)(πe2/2h) at EF = 0 and T = 0 [16], which is in
disagreement with the ballistic conductivity of the current-
dipole conductivity formula (35), (πe2/2h) [22,32], as well
as with experiment, (8/π )(πe2/2h) [12]. Another important
difference between these two conductivity formulas is in the
structure of the T = 0 dc conductivity: σ dc

αα = σ dc,inter
αα in the

current-dipole approach, and σ dc
αα = 2σ dc,intra

αα = 2σ dc,inter
αα in

the current-current approach.

APPENDIX B: PHENOMENOLOGICAL TREATMENT
OF VERTEX EFFECTS

We can use the identity relation

GL(k,ε + siη)GL′(k+,ε+ + s ′iη)

= GL(k,ε + siη) − GL′(k+,ε+ + s ′iη)

ω + ε0
LL′(k,k+)/� + s�L(k,ε) − s ′�L′(k+,ε+)

(B1)

to obtain

Pαα(q,ε,ε + �ω)

= −
∑
ss ′

ss ′ ∑
LL′

1

V

∑
kσ

∣∣JLL′
α (k,k+)

∣∣2

× GL(k,ε + siη) − GL′(k+,ε+ + s ′iη)

�ω + ε0
LL′(k,k+) + s��L(k,ε) − s ′��L′(k+,ε+)

.

(B2)

Here, �L(k,ε) is the single-electron self-energy from Eq. (29),
which is the solution of the corresponding Dyson equation for
GL(k,ε + iη) from Fig. 1(b).

The resulting expression for Pαα(q,ε,ε+) is

Pαα(q,ε,ε + �ω) ≈ −
∑
ss ′

ss ′ ∑
LL′

1

V

∑
kσ

∣∣JLL′
α (k,k+)

∣∣2

× GL(k,ε + siη) − GL′(k+,ε+ + s ′iη)

�ω + εLL′(k,k+) + i��LL′
ss ′ (k)

,

(B3)

with �LL′
ss ′ (k) = s�i

L(k) − s ′�i
L′(k). The expression (A2), to-

gether with Eqs. (A3) and (B3), is the forth important result
of the present analysis. It represents the usual current-current
formula for the conductivity tensor, which is shown in the form
directly related to the current-dipole conductivity formula (35).
Both of these formulas contain two damping energies: �i

L(k)
in the spectral functions in the numerator and �LL′

(k) in the
denominator. Evidently both of them are first order in the
spectral functions AL(k,ε).
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