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We present measurements of the elliptic (v2), triangular (v3) and quadrangular (v4) anisotropic azimuthal 
flow over a wide range of pseudorapidities (−3.5 < η < 5). The measurements are performed with Pb–
Pb collisions at √sNN = 2.76 TeV using the ALICE detector at the Large Hadron Collider (LHC). The flow 
harmonics are obtained using two- and four-particle correlations from nine different centrality intervals 
covering central to peripheral collisions. We find that the shape of vn(η) is largely independent of 
centrality for the flow harmonics n = 2–4, however the higher harmonics fall off more steeply with 
increasing |η|. We assess the validity of extended longitudinal scaling of v2 by comparing to lower 
energy measurements, and find that the higher harmonic flow coefficients are proportional to the 
charged particle densities at larger pseudorapidities. Finally, we compare our measurements to both 
hydrodynamical and transport models, and find they both have challenges when it comes to describing 
our data.

© 2016 The Author. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The main goal of the heavy-ion physics program at the Large 
Hadron Collider (LHC) is to study the quark–gluon plasma (QGP), 
a deconfined state of matter existing at extreme temperatures and 
energy-densities. Experimental results from RHIC were the first 
to suggest that the QGP behaves as a nearly perfect fluid [1–4]. 
A particularly important observable when characterizing the QGP 
is anisotropic azimuthal flow. The anisotropic flow develops from 
pressure gradients originating from the initial spatial geometry of 
a collision and is observed as a momentum anisotropy in the final-
state particles. It is usually described by flow harmonics, which are 
defined as the Fourier coefficients:

vn = 〈cos [n(ϕ − �n)]〉 , (1)

where n is the order of the flow harmonic, ϕ is the azimuthal an-
gle and �n is the symmetry plane angle of harmonic n. The first 
three Fourier coefficients, v1, v2, and v3 are known as directed, 
elliptic and triangular flow, respectively. The flow harmonics v1
to v6 have been studied extensively at RHIC [1–7] and the LHC 
[8–17]. The observed anisotropic flow is considered to be a strong 
indication of collectivity [18] and is described well by relativistic 
hydrodynamics [19].

1 See Appendix A for the list of collaboration members.
� E-mail address: alice-publications@cern.ch.

Anisotropic flow studies at RHIC played a major role in estab-
lishing that the produced system is a strongly interacting quark–
gluon plasma (sQGP) [1–4] with a shear viscosity to entropy den-
sity ratio (η/s) close to the conjectured lower limit of 1/(4π) pre-
dicted by the AdS/CFT correspondence [20]. The fact that higher or-
der harmonics are increasingly suppressed by viscosity [21] makes 
it possible to use anisotropic flow measurements to estimate the 
η/s of the produced system [22,23].

The pseudorapidity (η) dependence of the flow harmonics can 
play a key role in understanding the temperature dependence of 
η/s, something that can be determined using Quantum Chromo-
dynamics (QCD) [24–26]. At forward rapidities, the average tem-
perature drops which implies η/s will also change. In addition, 
the lower temperatures at forward rapidities mean the system will 
spend less time in the QGP phase leading to the hadronic viscos-
ity playing a greater role in affecting the flow harmonics [26,27]. 
Recently, it has been suggested that the symmetry plane angles 
may depend on η [28–30]. While this effect is not directly stud-
ied in this Letter, considering that the reference particles are taken 
from mid-rapidity, the measured values of anisotropy coefficients 
at forward rapidity will be suppressed if the symmetry-plane an-
gles fluctuate with η.

At RHIC, the PHOBOS experiment reported the pseudorapidity 
dependence of elliptic flow over a wide range (−5.0 < η < 5.3) 
and variety of collision energies [31–33], and system sizes [34]. 
It was found that in the rest frame of one of the colliding nuclei 
(η − ybeam), v2 is energy independent. This feature was also ob-
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served in multiplicity density distributions [35,36] and for v1 [37]. 
This suggests that at forward rapidity, in the fragmentation region, 
particle production is independent of the collision energy, an effect 
known as extended longitudinal scaling.

In this Letter, we present measurements of v2, v3, and v4 over a 
wide pseudorapidity range (−3.5 < η < 5.0) in Pb–Pb collisions at √

sNN = 2.76 TeV using the ALICE detector. At the LHC, the pseu-
dorapidity dependence of the flow harmonics has already been 
reported by ATLAS [12,38] and CMS [13,16] in a limited η-range 
(|η| < 2.5 and |η| < 2.4, respectively). The extended longitudinal 
scaling has been shown to hold for multiplicity densities [39] and 
directed flow [15], and appears to occur for elliptic flow [13,38]. 
Here, the η-range is extended considerably compared to the for-
mer results and we will investigate whether the extended longi-
tudinal scaling of elliptic flow continues to hold. We will compare 
our data to hydrodynamical and transport models, and investigate 
the decrease of vn in the forward regions relative to dNch/dη.

2. Experimental setup

A detailed description of the ALICE detector is available else-
where [40]. In this section, the sub-detectors used in this analysis 
are described: the V0 detector, the Time Projection Chamber (TPC), 
the Inner Tracking System (ITS) and the Forward Multiplicity De-
tector (FMD). The V0 detector consists of 2 arrays of scintillators 
located on opposite sides of the interaction point (IP) along the 
beam line. The detector has full azimuthal coverage in the ranges 
of 2.8 < η < 5.1 (V0-A) and −3.7 < η < −1.7 (V0-C) [41]. The de-
tector acts as an online trigger and, with its large coverage, as a 
centrality estimator.

Charged particle tracks are reconstructed using the TPC, a large 
Time Projection Chamber [42]. The detector can provide position 
and momentum information. Particles that traverse the TPC vol-
ume leave ionization trails that drift towards the endcaps, where 
they are detected. Full length tracks can be reconstructed in the 
range |η| < 0.8. For this analysis, a transverse momentum range 
of 0.2 < pT < 5.0 GeV/c was used. To ensure good track qual-
ity, the tracks are required to have at least 70 reconstructed TPC 
space points (cluster) out of 159 possible and an average χ2

per TPC cluster ≤ 4. In addition, to reduce contamination from 
secondary particles (weak decays or interactions with material), 
a cut on the distance of closest approach (DCA) between the track 
and the primary vertex is applied both in the transverse plane 
(DCAxy < 2.4 cm) and on the z-coordinate (DCAz < 3.2 cm).

The ITS is made up of six cylindrical concentric silicon layers di-
vided into three sub-systems, the Silicon Pixel Detector (SPD), the 
Silicon Drift Detector (SDD) and the Silicon Strip Detector (SSD), 
each consisting of two layers [40]. ITS clusters can be combined 
with the TPC information to improve track resolution. The SPD 
has additional applications [40]. Firstly, it is used to estimate the 
primary vertex as it is located close to the beam pipe. Secondly, 
clusters from the SPD inner layer, which consists of 3.3 ×106 pixels
of size 50 × 425 μm2, are used to estimate the number of charged 
particles in the range |η| < 2.0.

The FMD consists of five silicon rings, providing a pseudora-
pidity coverage in the ranges −3.5 < η < −1.7 and 1.7 < η < 5.0
[43]. The rings are single-layer detectors and only charged particle 
hits, not tracks, are measured. This means that primary and sec-
ondary particles cannot be distinguished. There are two types of 
FMD rings: inner ring and outer rings. Inner rings have 512 ra-
dial strips each covering 18◦ in azimuth and outer rings have 256 
radial strips each covering 9◦ in azimuth. The charged particle es-
timation in the FMD is described in more detail elsewhere [39]. 
The inner layer of the SPD and the five FMD rings allow one to 
measure charged particle hits in the range −3.5 < η < 5.0.

3. Data sample and analysis details

We analysed 10 million minimum bias Pb–Pb collisions at √
sNN = 2.76 TeV. The sample was recorded during the first LHC 

heavy-ion data-taking period in 2010. A minimum-bias trigger re-
quiring a coincidence between the signals from V0-A and V0-C was 
used. In addition, it is required that the primary vertex, determined 
by the SPD, be within |vz| < 10.0 cm, where vz = 0 cm is the lo-
cation of the nominal interaction position. The measurements are 
grouped according to fractions of the inelastic cross section, and 
cover the 80% most central collisions. The V0 detector is used for 
the centrality estimate which is described in more detail elsewhere 
[44]. For the most central to the most peripheral events, the V0 has 
a centrality resolution of 0.5% to 2%, respectively.

The flow harmonics are estimated using the Q-cumulants 
method [45] for two- and four-particle correlations, denoted as 
vn{2} and vn{4} respectively. The two- and four-particle cumulants 
respond differently to flow fluctuations. The two-particle cumu-
lants are enhanced, while four-particle cumulants are suppressed. 
At forward rapidities, the pseudorapidity density is relatively low. 
This means that it is not always possible to get statistically sig-
nificant results using only particles from a small region in η. To 
circumvent this using the Q-cumulants method, the reference flow 
measurement is performed using the charged particle tracks from 
the TPC, where the correlations at mid-rapidity are measured. As 
a systematic check, the charged particle tracks using a combina-
tion of the TPC and ITS are also used. Then, for the vn(η) analysis, 
the correlations between charged particle hits (from the SPD or 
FMD) and the tracks are measured in η-bins 0.5 units of pseudo-
rapidity wide. To avoid autocorrelations between the SPD clusters 
and tracks, the tracks for the reference particles are located in a 
different η-region than the SPD hits. Effectively, for SPD hits with 
η < 0, tracks are required to have η > 0 and vice versa. The same 
considerations apply for FMD hits. Due to the use of particle hits, 
only the pT-integrated flow is measured. The φ distribution for 
the SPD or FMD clusters is not uniform, therefore a non-uniform 
acceptance correction is applied based on relations derived else-
where [46].

As the inner rings of the FMD have only 20 azimuthal segments, 
the flow harmonics are slightly suppressed. The effect of this was 
recently calculated [47] and found to be 1.6%, 3.7% and 6.5% for 
v2, v3 and v4 respectively. This suppression is taken into account 
in the final results. When using charged particle hits it is not 
possible to distinguish secondary particles (from material interac-
tions and decays) from primary particles. For the regions covered 
by the SPD, the contamination from secondary particles is small 
(< 10%), as the inner layer of the SPD is very close to the beam 
pipe. Away from mid-rapidity, in the FMD, dense material such 
as cooling tubes and read-out cables cause a very large produc-
tion of secondary particles – up to twice the number of primary 
particles according to Monte Carlo (MC) studies. These secondary 
particles are deflected in ϕ with respect to the mother particle, 
which causes a reduction in the observed flow. The reduction of 
flow caused by the secondary particles is estimated using an event 
generator containing particle yields, ratios, momentum spectra and 
flow coefficients, which are then subject to a full detector simula-
tion using GEANT3 [48]. To make sure that the correction is not 
model dependent, the AMPT MC event generator [49,50] is used 
as an independent input, with GEANT3 again used to model the 
detector response. Using these simulations, the reduction is found 
to be larger for higher harmonics, up to 41% for v4. Finally, the 
correction also accounts for missing very low pT particles, which 
increase the observed vn as these particles have a very small vn . 
However, as the correction is always less than 1, the dominant ef-
fect comes from the secondary particles, which reduce vn .
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Few-particle correlations, not originating from the initial geom-
etry termed non-flow (decays, jets, etc.), enhance the two-particle 
cumulant measurements. The non-flow contribution to the four-
particle cumulant is found to be negligible [45,51], however, it is 
necessary to apply a correction to the two-particle cumulant. In 
the FMD and SPD, there is also a non-flow contribution from sec-
ondary particles, as they are sometimes produced in pairs. For the 
differential flow measurement, there is a rapidity-gap between the 
charged particle hits and the charged particle tracks. For the SPD, it 
is between 0 and 2 units in pseudorapidity, while for the FMD it is 
between 0.9 and 4.2 units in pseudorapidity. The large rapidity gap 
suppresses the non-flow contribution at forward rapidity. However, 
at mid-rapidities, this contribution is non-negligible and needs ap-
propriate corrections. For the reference flow measurement there 
is no rapidity gap, and non-flow removal is important. For this 
analysis, the non-flow contributions are estimated using the HI-
JING event generator [52] and GEANT3 for the detector simulation. 
The non-flow contribution is estimated and subtracted separately 
for the reference and differential flow, before the correction for the 
deflection of secondary particles is applied and the vn estimates 
are derived.

4. Systematic uncertainties

Numerous sources of systematic uncertainty were investigated, 
including effects due to detector cuts, choice of reference particles 
and uncertainties related to the secondary particle correction. Four 
major contributors to the systematic uncertainty were identified: 
the choice of reference tracks, the model dependence of the sec-
ondary particle correction, the description of the detector used for 
the simulations, and finally the non-flow correction. As the non-
flow contribution to the four-particle cumulant is negligible, only 
the first three systematic uncertainties are considered for v2{4}. 
The systematic uncertainties assigned to each of the sources are 
shown in Table 1, and are described in more detail below.

The dependence of the differential flow on the reference tracks 
was tested by using tracks with combined information from the 
TPC and ITS, rather than tracks with only TPC information. The sys-
tematic uncertainty from the choice of reference tracks was found 
to vary slightly with centrality, with the most central events having 
the largest uncertainty. To test the model dependence of secondary 
particle production, the correction from the toy-model described 
above is compared to the one derived from AMPT tuned to LHC 
data. Both the secondary particle correction and the non-flow cor-
rection derived from HIJING are sensitive to inaccuracies in the 
description of the detector used for the simulation. To test this 
sensitivity, the output of two HIJING simulations with a flow after-
burner, one with +7% material density and one with −7% material 
density, are compared to the output from having normal mate-
rial density. In this case the systematic uncertainty has a small 
η-dependence, as there are significantly fewer secondary particles 
at mid-rapidity. The 3% uncertainty is applicable to the SPD, while 
the 4% uncertainty is applicable to the FMD.

We assessed the systematic uncertainty associated with the 
non-flow correction in two ways. Firstly, following another method 
proposed to subtract non-flow [53], the two-particle cumulants 
were obtained from minimum bias pp collisions, where it is as-
sumed that there is negligible anisotropic flow. The pp refer-
ence and differential cumulants are then rescaled according to 
their multiplicity, M , using the ratio Mpp/Mcent, then subtracted 
from the corresponding A–A cumulants. Any differences found be-
tween this method and the default HIJING method are treated 
as systematic uncertainties. Secondly, by using only charged par-
ticle hits from the SPD and FMD, it is possible to construct a 
two-particle cumulant with a large rapidity-gap, vn{2, |	η| > 2.0}, 

Table 1
List of the systematic uncertainties for each observable.

Source v2{2} v3{2} v4{2} v2{4}
Reference particle tracks 2–4% 2–4% 2–6% 2–4%
Model dependence 5% 5% 7% 5%
Material budget 3–4% 3–4% 3–4% 3–4%
Non-flow correction 2–10% 2–10% 2–10% -

Total 6–12% 6–13% 6–14% 6–8%

which largely removes all non-flow contributions. Unfortunately, 
this observable is statistically stable only for v2 and v3, so it is 
used as a further cross check. In Table 1, the 2% uncertainties 
correspond to mid-central collisions where the ratio of flow to 
non-flow is largest, while the 10% uncertainties correspond to very 
central and very peripheral collisions where the ratio of flow to 
non-flow is smallest. Finally, we used the AMPT model [49,50] to 
investigate if there are differences between vn(η) and vn(y), as η
is supposed to approximate y. We found there are 15% differences 
in the flow coefficients at mid-rapidity, which reduced to 0% for 
η > 2. We did not assign any systematic uncertainties due to these 
differences, as we are explicitly reporting measurements as a func-
tion of η (as in the case of dNch/dη measurements).

The systematic uncertainty assigned to the non-flow correction 
is the largest contributor to the total systematic uncertainty, ex-
cept for v2{4} due to the four-particle cumulant’s insensitivity to 
non-flow. The total systematic uncertainties are slightly dependent 
on centrality and pseudorapidity.

5. Results

An overview of the four observables in each centrality class is 
shown in Fig. 1. Due to the changing overlap geometry, a strong 
centrality dependence of the elliptic flow is observed over the en-
tire pseudorapidity range. The weaker centrality dependence of the 
higher order coefficients v3 and v4 is an indication that initial-state 
fluctuations play a prominent role, as the centrality dependence of 
the corresponding eccentricities are more modest relative to n = 2
[21]. The different behaviour of v2{2} and v2{4} caused by flow 
fluctuations is also clearly seen. For the most peripheral events, 
there are not enough particles to get statistically stable results for 
v2{4} and similarly for v4{2} due to the relatively small quadran-
gular flow.

The pT-integrated elliptic flow was also measured by CMS [13]
and ATLAS [38] in Pb–Pb collisions at 

√
sNN = 2.76 TeV and by 

PHOBOS in Au–Au collisions at 
√

sNN = 200 GeV [32]. A compar-
ison between those results and this analysis is shown for the 
25–50% centrality class in Fig. 2. In the common region of pseu-
dorapidity acceptance, the results of present analysis are consis-
tent with the results obtained by CMS and ATLAS experiments 
within the systematic uncertainties. The present analyses extends 
the measurements to a wider range of pseudorapidity. The values 
of v2 at all pseudorapidities measured at LHC energies are larger 
than the corresponding values at RHIC, as reported by PHOBOS. 
This increase in elliptic flow coincides with a larger pT at the LHC 
energy [8].

The extended longitudinal scaling observed by PHOBOS in Au–
Au collisions with centre-of-mass energies from 19.6 to 200 GeV 
[33] is found to hold up to the LHC energy (shown in Fig. 3). This 
is consistent with what was found by CMS [13] and ATLAS [38]. 
Here it is shown as an event average for the 0–40% most central 
events. The event average means that the analysis was performed 
in smaller centrality bins using multiplicity weights, and was then 
averaged over the centrality bins using the number of events as a 
weight [45]. To examine boost invariance, it would be preferable to 
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Fig. 1. Measurements of the pseudorapidity dependence of v2, v3 and v4 in each centrality bin. The vertical lines represent the statistical uncertainties and the boxes represent 
the systematic uncertainties. The statistical uncertainties are usually smaller than the marker size.
Fig. 2. Elliptic flow for the 25–50% centrality range. Boxes represent systematic un-
certainties and errors bars represent statistical uncertainties. The results for v2{2}
from this analysis are compared to measurements using the event plane method 
from CMS [13] and ATLAS [38] at the same energy and lower energy results 
from PHOBOS [32]. For the comparable LHC energy, the pT range for ALICE is 
pT > 0 GeV/c, for CMS is 0.3 < pT < 3 GeV/c, and for ATLAS is pT > 0.07 GeV/c.

use rapidity (y) instead of pseudorapidity, unfortunately that is not 
possible using the FMD as the momentum cannot be measured.

PHOBOS found the shape of v2(η) to be largely independent of 
centrality, with only the overall level changing between central and 
peripheral events [32]. The ratios of central to peripheral events 
for v2, v3 and v4 using the two-particle cumulant are shown in 
Fig. 4. Here it is observed that none of the harmonics show a clear 
centrality dependence in the shape of vn(η) within uncertainties 
(albeit hints of such a dependence are present in the v2 ratio), 
consistent with the results from PHOBOS at lower energy.

It is known that the suppression from viscous effects to the 
flow harmonics increases with n [21]. The hadronic phase is spec-
ulated to be more dominant at forward rapidity [26,27]. Therefore, 
the relative decrease of the flow harmonics may help to disentan-

Fig. 3. The elliptic flow as observed in the rest frame of one of the projectiles by 
using the variable |η| − ybeam (ybeam = 7.99) for the event averaged 0–40% central-
ity range. The results from v2{2} from this analysis are compared to lower energy 
results from PHOBOS [33]. The vertical lines represent the statistical uncertainties 
and the boxes represent the systematic uncertainties. For the PHOBOS results only 
statistical errors are shown.

gle the viscous effects from the hadronic phase with those from 
the QGP phase. When the ratio vm/vn (n �= m) is formed most of 
the common systematic uncertainties cancel, leaving the contribu-
tion from the non-flow correction. The ratios of v3/v2 and v4/v3

are shown for the 30–40% most central events in Fig. 5. A small de-
crease with η is observed for v3/v2, qualitatively consistent with 
the expectation from viscous effects suppressing higher harmonics. 
The v4/v3 ratio remains constant with |η| within the uncertainties. 
The figure also shows v4/v2

2, which is commonly used to estimate 
the non-linear contribution to v4 from the elliptic anisotropy [5]. 
Given the uncertainties, it is difficult to conclude whether v4/v2

2
changes with respect to η.

As mentioned previously, at forward rapidities the steepness 
of vn(η) has been linked to the hadronic contribution to the vis-
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Fig. 4. Ratio of vn{2} between central (0–5%) and peripheral (50–60%) events for v2, 
v3 and v4. The vertical lines represent the statistical uncertainties and the boxes 
represent the systematic uncertainties. The v2 results are multiplied by 3 to fit on 
the same scale as v3 and v4.

Fig. 5. Ratios between different harmonics for the 30–40% centrality range. The 
vertical lines represent the statistical uncertainties and the boxes represent the 
common systematic uncertainties. In the bottom panel the ratios are rescaled to 
1 at mid-rapidity and the common systematic uncertainties are shown as the thick 
bars on the left.

cosity to entropy ratio [26,27]. The larger the hadronic η/s, the 
steeper the fall off. We also note that the pseudorapidity densities 
of charged particles decrease in this region. In order to investigate 
the correspondence of the latter, in Fig. 6 we show the ratio of var-
ious vn coefficients to previous ALICE measurements of dNch/dη
[39]. In order to avoid any influence of the Jacobian translation 
from y to η, only the range η > 2 is shown. We find that this ra-
tio is generally flat, with the exception of v2 at the larger values 
of η. This indicates that within a fixed centrality interval, v3 and v4

are largely driven by the local particle density. Indeed, when com-
paring p–Pb and Pb–Pb collisions at LHC energies, it was found 
that values of v3{2} were similar for similar values of dNch/dη
[51]. The correlation found between both quantities may be sim-

ply attributed to the fact that both particle production and the 
development of anisotropic flow are driven by the number of in-
teractions in the system.

In Fig. 7, we compare our data to hydrodynamic calculations 
tuned to RHIC data [26]. The tuning involves finding a parameter-
ization of the temperature dependence of η/s, so that the hydro-
dynamical calculations describe PHOBOS measurements of v2(η)

[32,33]. It is clear that the same parameterization does not de-
scribe the LHC data as well. For both centralities, the elliptic flow 
coefficient v2 is generally underestimated, while the higher order 
coefficients v3 and v4 are generally overestimated. This points to 
the need for an either an alternative parameterization of η/s that 
describes both the RHIC and LHC data simultaneously, or further 
investigations into whether the initial state model used is applica-
ble for the LHC energies.

In contrast to hydrodynamical models, AMPT is a non-equilib-
rium model that attempts to simulate parton production after the 
initial collision, and collective behaviour arises from parton and 
hadronic rescatterings. It has previously been tuned to agree with 
ALICE measurements of v2 vs. pT and multiplicity for the 40–50%
most central events. It was found to reproduce v3(pT) well us-
ing the same parameters. In Fig. 8 the results of this analysis are 
compared to the output of the AMPT model for two different cen-
tralities. For the centrality range of 40–50%, which AMPT is tuned 
to match, there is good agreement at mid-rapidity for all observ-
ables modulo v2{4} at larger |η|, where AMPT underestimates the 
data. The underestimation at forward rapidity is found to be inde-
pendent of the choice of reference particles, suggesting that it is 
unrelated to symmetry plane angle fluctuations with η. For more 
central events AMPT tends to overestimate flow at forward rapidi-
ties, except for v4 which it describes quite well over the entire 
range. At mid-rapidity AMPT agrees with the observed values of 
v2, v3 and v4 within the systematic uncertainties. Further tuning 
may lead to an improvement at forward rapidities, and should be 
investigated in future studies.

6. Conclusions

The pseudorapidity dependence of the anisotropic flow har-
monics v2, v3 and v4 have been measured in Pb–Pb collisions at √

sNN = 2.76 TeV using the ALICE detector. The measurement is 
performed over the widest η-range at the LHC, −3.5 < η < 5.0, 
in nine centrality bins covering 0 to 80% of the total inelastic cross 
section. It was found that the shape of vn(η) does not depend ob-
viously on centrality. Comparing to lower energy measurements at 
RHIC, elliptic flow is larger at the LHC over the entire pseudora-
pidity range and extended longitudinal scaling of v2 observed at 
lower collision energies is still valid up to the LHC energy. In the 
range |η| < 2.5 the results were found to be consistent with previ-
ous LHC measurements. At forward rapidities, the higher harmonic 
flow coefficients are proportional to the charged particle densities 
for a given centrality, while the ratio of v2 to dNch/dη rises with 
increasing η. A comparison to hydrodynamic calculations tuned to 
RHIC data has difficulties in describing our data in some η regions, 
and this suggests that the LHC data play a key role in constrain-
ing either the temperature dependence of η/s or the initial state. 
Finally, comparing our data to AMPT, the model describes the flow 
well at mid-rapidity, but fails for v2 at forward rapidities.
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A. Kumar 92, J. Kumar 48, L. Kumar 89, S. Kumar 48, P. Kurashvili 78, A. Kurepin 57, A.B. Kurepin 57, 
A. Kuryakin 100, M.J. Kweon 51, Y. Kwon 139, S.L. La Pointe 111, P. La Rocca 28, P. Ladron de Guevara 11, 



ALICE Collaboration / Physics Letters B 762 (2016) 376–388 385

C. Lagana Fernandes 121, I. Lakomov 35, R. Langoy 41, K. Lapidus 138,36, C. Lara 53, A. Lardeux 15, 
A. Lattuca 26, E. Laudi 35, R. Lea 25, L. Leardini 95, S. Lee 139, F. Lehas 83, S. Lehner 113, R.C. Lemmon 84, 
V. Lenti 104, E. Leogrande 58, I. León Monzón 120, H. León Vargas 65, M. Leoncino 26, P. Lévai 137, S. Li 71,7, 
X. Li 14, J. Lien 41, R. Lietava 102, S. Lindal 22, V. Lindenstruth 42, C. Lippmann 98, M.A. Lisa 20, 
H.M. Ljunggren 33, D.F. Lodato 58, P.I. Loenne 18, V. Loginov 76, C. Loizides 75, X. Lopez 71, E. López Torres 9, 
A. Lowe 137, P. Luettig 54, M. Lunardon 29, G. Luparello 25, M. Lupi 35, T.H. Lutz 138, A. Maevskaya 57, 
M. Mager 35, S. Mahajan 92, S.M. Mahmood 22, A. Maire 56, R.D. Majka 138, M. Malaev 87, 
I. Maldonado Cervantes 64, L. Malinina 67,iv, D. Mal’Kevich 59, P. Malzacher 98, A. Mamonov 100, 
V. Manko 81, F. Manso 71, V. Manzari 35,104, Y. Mao 7, M. Marchisone 127,66,26, J. Mareš 61, 
G.V. Margagliotti 25, A. Margotti 105, J. Margutti 58, A. Marín 98, C. Markert 119, M. Marquard 54, 
N.A. Martin 98, J. Martin Blanco 114, P. Martinengo 35, M.I. Martínez 2, G. Martínez García 114, 
M. Martinez Pedreira 35, A. Mas 121, S. Masciocchi 98, M. Masera 26, A. Masoni 106, A. Mastroserio 32, 
A. Matyja 118, C. Mayer 118, J. Mazer 126, M.A. Mazzoni 109, D. Mcdonald 123, F. Meddi 23, Y. Melikyan 76, 
A. Menchaca-Rocha 65, E. Meninno 30, J. Mercado Pérez 95, M. Meres 38, S. Mhlanga 91, Y. Miake 129, 
M.M. Mieskolainen 46, K. Mikhaylov 67,59, L. Milano 75,35, J. Milosevic 22, A. Mischke 58, A.N. Mishra 49, 
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