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We report the double-helicity asymmetry, AJ=ψ
LL , in inclusive J=ψ production at forward rapidity as a

function of transverse momentum pT and rapidity jyj. The data analyzed were taken during
ffiffiffi
s

p ¼ 510 GeV
longitudinally polarized pþ p collisions at the Relativistic Heavy Ion Collider in the 2013 run using the
PHENIX detector. At this collision energy, J=ψ particles are predominantly produced through gluon-gluon

scatterings, thus AJ=ψ
LL is sensitive to the gluon polarization inside the proton. We measured AJ=ψ

LL by
detecting the decay daughter muon pairs μþμ− within the PHENIX muon spectrometers in the rapidity

range 1.2 < jyj < 2.2. In this kinematic range, we measured the AJ=ψ
LL to be 0.012� 0.010 (stat) �0.003

(syst). The AJ=ψ
LL can be expressed to be proportional to the product of the gluon polarization distributions at

two distinct ranges of Bjorken x: one at moderate range x ≈ 5 × 10−2 where recent data of jet and π0 double
helicity spin asymmetries have shown evidence for significant gluon polarization, and the other one
covering the poorly known small-x region x ≈ 2 × 10−3. Thus our new results could be used to further
constrain the gluon polarization for x < 5 × 10−2.

DOI: 10.1103/PhysRevD.94.112008

I. INTRODUCTION

Understanding the proton spin structure in terms of
quark and gluon degrees of freedom is one of the key open
questions in the field of hadron physics. The total angular
momentum of the proton may be decomposed into quark
and gluon contributions in several different frameworks
[1–6]. For example, in the infinite momentum frame, the
contributions to the proton spin can be classified according
to the Manohar-Jaffe sum rule [1,7,8]:

Sp ¼ 1

2
¼ 1

2
ΔΣþ ΔGþ Lq þ Lg: ð1Þ

Here, 1=2 ΔΣ represents the contribution from quark
helicity distributions (quark polarization projected onto the
proton momentum direction); similarly, ΔG represents the
contribution from gluon helicity distributions; Lq and Lg

represent the contributions from orbital angular momenta
of quarks and gluons respectively. The Manohar-Jaffe
scheme has been widely used to directly compare theo-
retical expectations with experimental data in the infinite
momentum frame for quark and gluon polarization

contributions; however, the direct connection between
orbital angular momentum and any corresponding exper-
imental observable is still under debate [3,6].
The polarized parton distribution functions have been

studied extensively at the European Laboratory for Particle
Physics, the Stanford Linear Accelerator, the Deutsches
Elektronen-Synchrotron, the Thomas Jefferson National
Accelerator Facility and the Relativistic Heavy Ion
Collider (RHIC) for decades. The most-recent-global
quantum-chromodynamics (QCD) fits [9–14] based on
these experimental data indicate that the quark polarization
only accounts for about 30% of the proton spin. The
remaining spin must come from the contributions from
gluon polarization and from the orbital angular momentum
of quarks and gluons. To resolve this “spin puzzle,” it is
critical to understand the contribution from gluon polari-
zation [15–19].
Many hard-scale processes in pþ p collisions at RHIC

energies are dominated by gluon-gluon and quark-gluon
interactions; the corresponding spin observables are there-
fore sensitive to the gluon polarization. The latest global fits
(DSSV [20], NNPDFpol [14], etc.) incorporating the RHIC
2009 inclusive jet [21] and π0 [22] spin asymmetry data at
midrapidity show the first experimental evidence of sizable
gluon polarization at moderate Bjorken x in the range
0.05 ≤ x ≤ 0.2. With higher statistics, a recent PHENIX
Aπ0
LL measurement [23] extended the small x reach down to

*Deceased.
†PHENIX Spokesperson.
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1 × 10−2 for the polarized gluon distribution. However, in
the smaller-x region, x < 1 × 10−2, where gluons domi-
nate, the gluon polarization remains poorly constrained.
The measurement of the double-helicity asymmetry in

the production of J=ψ particles at forward rapidity can
provide access to the gluon polarization in a smaller x
region, x ∼ 2 × 10−3. In pþ p collisions at RHIC energies,
J=ψ particles are predominantly produced via gluon-gluon
scatterings [24]. Therefore, at leading order, the asymmetry
of J=ψ production can be expressed as

AJ=ψ
LL ¼ Δσ

σ
¼ σþþ − σþ−

σþþ þ σþ− ð2Þ

≈
Δgðx1Þ
gðx1Þ

⊗
Δgðx2Þ
gðx2Þ

⊗ âgg→J=ψþX
LL ; ð3Þ

where AJ=ψ
LL is the J=ψ double-helicity asymmetry defined

by the ratio of the polarized and unpolarized J=ψ cross
sections (Δσ and σ); “þþ” and “þ−” denote the same and
opposite helicity pþ p collisions; ΔgðxÞ and gðxÞ are the
polarized and unpolarized gluon parton distribution func-
tions; and âgg→J=ψþX

LL is the partonic double-helicity asym-
metry for the process of gþ g → J=ψ þ X. Due to the large
charm quark mass, perturbative QCD is expected to work
for calculations of the J=ψ and other charmonia production
cross sections in high energy deep inelastic scattering
and pþ p collisions. The production mechanisms of
charmonia have been studied extensively for decades,
and several theoretical approaches, including nonrelativis-
tic QCD (NRQCD), have been developed to describe
various experimental observations [25]. In high energy
pþ p collisions, the individual partonic double-helicity
asymmetry âgg→J=ψþX

LL has been calculated in perturbative
QCD for both color-singlet and color-octet mechanisms in
the NRQCD framework, and used to calculate the inclusive
AJ=ψ
LL [24,26–28].
By detecting the J=ψ at forward rapidity, we sample

participating gluons from two distinct ranges of Bjorken x.
Quantitatively, we used a PYTHIA [29] (PYTHIA 6.4 tuned for
RHIC energies) simulation at leading order to estimate the
gluon x-distribution sampled in J=ψ production within the
PHENIX muon arm acceptance. The simulation (Fig. 1)
illustrates that for the gþ g → J=ψ þ X process in the
forward rapidity of the PHENIX muon arm acceptance,
the two gluons come from two very distinct x regions,
with one gluon in the intermediate x range (3 × 10−2 −
2 × 10−1) and the other gluon in the small x range
(1 × 10−3 − 5 × 10−3).
Several sources contribute to the inclusive J=ψ produc-

tion, including decays from heavier states containing charm
and/or bottom quarks. Previous studies in PHENIX [30] at
midrapidity indicate that the excited states χc and ψ 0
contribute a sizable (30%–40%) portion of the inclusive

J=ψ production cross section. The B → J=ψ þ X contri-
bution is only important in the high pT > 10 GeV region,
and it is estimated to be small, less than 10% [31], in our
kinematics at forward rapidity.
In the following, we present the measurement of the

double-helicity asymmetry in inclusive J=ψ production in
longitudinally polarized pþp collisions at

ffiffiffi
s

p ¼510GeV.
The data used for the study were collected by the PHENIX
experiment [32] during the 2013 run; the sampled inte-
grated luminosity was about 150 pb−1 for this analysis.

II. EXPERIMENT SETUP AND DATA ANALYSIS

The J=ψ mesons were observed in the dimuon μþμ−
decay channel using the two PHENIX forward muon
spectrometers. Each spectrometer arm has full azimuthal
coverage and spans the pseudorapidity range 1.2< jηj< 2.4
for the north arm and 1.2 < jηj < 2.2 for the south arm. The
major detector subsystems involved in this analysis were
the muon trackers (MuTr) and the muon identifiers (MuID)
[33], the beam-beam counters (BBC), the zero-degree
calorimeters (ZDC) [34], and the forward-silicon-vertex
detectors (FVTX) [35].
The muon momentum was measured by the MuTr, a

system based on three layers of cathode-strip tracking
chambers in a radial-field magnet. The MuID comprises
five layers of Iarocci tubes interleaved with 10 or 20 cm
thick steel absorbers. The MuID absorbers, together with
the central magnet absorbers (a combination of copper, iron
and stainless steel, approximately 100 cm thick), were used
to suppress light hadron backgrounds (pions and kaons)
while allowing high energy muons to pass through. The
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FIG. 1. Bjorken x distribution of gluons in the gg→ J=ψþX→
μþμ−þX process from a PYTHIA simulation with J=ψ generated
within 1.2< jyj<2.2 and the decayed muon within 1.2< jηj<2.4
for the north arm and 1.2 < jηj < 2.2 for the south arm. The top
panel shows the pT binning and the bottom panel shows the jyj
binning. All the distributions are arbitrarily normalized to have
unit area.
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probability of a high energy hadron (p > 3 GeV) generated
from the interaction point (IP) passing through all the
absorbers and getting mistagged as a muon is less than 3%
[33] in pþ p collisions.
The BBC comprises two quartz Čerenkov modules

located on opposite sides of the IP at z ¼ �144 cm, where
z is the distance in the beam direction from the IP, and
covering a pseudorapidity range of 3.1 < jηj < 3.9 and full
azimuth. The BBC system measures the collision vertex
position along the beam direction via a time-of-flight
method and also serves as one of the luminosity detectors.
Muon candidate events were selected using a BBC-based

minimum-bias collision trigger in coincidence with a MuID
track-based trigger. The MuID triggers were defined by
various combinations of hits in several layers of the MuID
projecting to the IP. A “deep” MuID track requires at least
one hit in the last two layers of the MuID detector and at
least two hits in other layers. In the PHENIX 2013 run
detector shielding configuration, a minimum momentum of
∼3 GeV=c was needed for muons to reach the last layer
of the MuID. The data set we used was selected by the
“2-Deep Muon Trigger” which required at least two MuID
deep tracks in the same muon arm in a pþ p collision
event. A more detailed description of the 2-Deep Muon
Trigger is found in Ref. [36].
The ZDC detector comprises two hadron calorimeter

arms at jzj ¼ 18 m. It covers a pseudorapidity range of
jηj > 6. In this analysis, the ZDC served as a second
luminosity detector for systematic studies.
The FVTX detector is composed of two end caps

upstream of the MuTr [35]. By searching for common
origin points of the detected tracks, the FVTX is capable
of reconstructing primary collision vertices in the z range
used in this measurement. The FVTX vertex resolution
along the beam line direction is at the one millimeter level,
which is much more precise than the vertex resolution of
the BBC detector. In this analysis, the FVTX vertices were
used when available to improve the mass resolution of the
dimuon pairs.
For optimal use of the muon spectrometers, the collision

vertex reconstructed by the BBC was required to be within
�30 cm of the IP along the beam direction. Each muon
track candidate was required to have a longitudinal
momentum pz < 100 GeV=c and transverse momentum
pT < 10 GeV=c. The distance between the projected MuTr
track and MuID track position at the first layer of the MuID
plane was required to be less than 15 cm, and the projected
opening angle between the MuTr track and the MuID track
less than 10 degrees. Similar MuTr and MuID track
matching cuts were used in Ref. [36]. A fit to the common
vertex of the two candidate tracks near the IP was
performed and was required to have a χ2 < 20 for 4 degrees
of freedom. The black circle data points in Fig. 2 show the
invariant mass distribution of the unlike-sign dimuon pairs
after event and track quality selections.

At RHIC, the clockwise (“Blue”) and counterclockwise
(“Yellow”) circulating beams collide at several fixed IPs,
the PHENIX detector being one of them. During the 2013
longitudinally polarized pþ p run, up to 111 radio-
frequency bunches in each beam were filled with protons.
Protons in each bunch were configured to have positive or
negative helicity, denoted as “þ” or “−.” Thus collisions at
the PHENIX IP can be categorized into two helicity
combinations: same helicity (denoted as þþ) and opposite
helicity (denoted as þ−) collisions. For parity-conserving
QCD processes, the production cross sections obey the
relations σþþ ¼ σ−− and σþ− ¼ σ−þ. Experimentally, the
double helicity asymmetry is defined as

ALL ¼ σþþ − σþ−

σþþ þ σþ− ¼
1

PBPY

Nþþ − R · Nþ−

Nþþ þ R · Nþ− ; ð4Þ

where PB (PY) is the beam polarization for the Blue
(Yellow) beam, σþþ (σþ−) is the cross section for same
(opposite) helicity collisions, and Nþþ (Nþ−) is the
produced dimuon yield for same (opposite) helicity colli-
sions. R is the relative luminosity between helicity states
and is defined as

R ¼ Lþþ

Lþ− ; ð5Þ

]2[GeV/c-μ+μM
1.5 2 2.5 3 3.5 4 4.5 5 5.5 6

]
-1 )2

 [(
50

 M
eV

/c
- μ+ μ

dN
/d

M

310

410

Data

Sideband region

GPR BKG. estimation

Data after BKG. extraction

ψ + ψJ/

ψJ/

ψ

PHENIX p+p 510 GeV
-μ+μ→ψJ/

FIG. 2. Dimuon invariant mass spectrum and the GPR fitting
for the background fraction fBkg extraction. The black circles are
the PHENIX unlike-sign dimuon data after event and track
selection. The blue triangles are the GPR background estimation.
The red boxes are the data remaining after subtraction of the
background. The green dashed line represents the J=ψ shape; the
blue dot-dashed line represents the ψ 0 shape; and the red solid line
the summation of J=ψ and ψ 0. The green shaded region indicates
the sideband area used for the calculation of ABkg

LL in Eq. (8). The
data in the region between the two red vertical lines are the data
used to calculate AIncl

LL in Eq. (8).
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where LþþðLþ−Þ is the luminosity measured by the BBC
detectors in þþðþ−Þ helicity state collisions. The aver-
aged polarizations for the data used in this analysis were

PB ¼ 0.55� 0.02ðsystÞ; ð6Þ

PY ¼ 0.56� 0.02ðsystÞ: ð7Þ

For each “fill” (a unit of the operation period of the
accelerator, typically several hours) of the rings, the helicity
pattern was designed to provide almost equal numbers of
collisions in the þþ, þ−, −þ, and −− helicity configu-
rations. In this way, slow changes in detector acceptance
and efficiency were eliminated from the asymmetry deter-
mination in Eq. (4).
As shown in Fig. 2, there is a small amount (∼15%) of

dimuon background underneath the J=ψ signal peak in the
dimuon invariant mass distribution; the background events
may have a different asymmetry from that of J=ψ events.
To correct for this, we estimated the background asymme-
try using the “sideband” in the invariant mass region
(1.5–2.4 GeV=c2), the green shaded region in Fig. 2.
Consistent with Ref. [36], this sideband was located below
the J=ψ peak in invariant mass; a sideband that was higher
in invariant mass would need to be placed further away
from the J=ψ to avoid the ψ 0 and would have had negligible
statistical significance. For the final J=ψ double-helicity
asymmetry, we subtracted the background contributions:

AJ=ψ
LL ¼ AIncl

LL − fBkg · A
Bkg
LL

1 − fBkg
; ð8Þ

where ALL values on the right-hand side were calculated
using Eq. (4). The asymmetry AIncl

LL is for inclusive unlike-
charge dimuon pairs in the invariant mass region �2σ
around the J=ψ mass peak mean value (σ is the mass
resolution of the detector), and ABkg

LL is the asymmetry for a
sideband of unlike-charge dimuon pairs. In this analysis,
the measured ABkg

LL was −0.002� 0.012ðstatÞ for the pT
range 0 < pT < 10 GeV. The background fraction fBkg is
defined as

fBkg ¼
NBkg

NIncl
; ð9Þ

where NBkg is the number of estimated non-J=ψ dimuon
pairs in the �2σ range around the J=ψ peak, and NIncl is
the total number of unlike-charge dimuon pairs in the
same mass range. For the background under the J=ψ mass
peak, a Gaussian process regression (GPR) [37–41]
approach was used to determine the background distribu-
tion. Two training zones, on either side of the J=ψ peak,
were defined for this GPR approach: 1.5–2.2 GeV=c2 and
4.3–6.0 GeV=c2. These two training zones were used only

for the estimation of background yield, not the background
asymmetry. The J=ψ2σ mass window was defined by
fitting the data after the GPR background subtraction. In
the fitting, the J=ψ invariant mass peak shape was
described by a Crystal Ball distribution [42], and for
simplicity the low statistics ψ 0 peak was fit with a
Gaussian distribution with mass resolution evaluated from
Monte Carlo simulation.
In this analysis, we measured the asymmetry separately

for the two muon arms. The results were then cross-
checked for consistency and combined to produce the final
physics double-helicity asymmetry.
To further study the pT or jyj dependence of the

asymmetry, the data were divided into three pT bins
(0–2, 2–4, and 4–10 GeV=c) or two jyj bins (1.2–1.8,
1.8–2.2). AJ=ψ

LL was extracted for each of the bins following
the procedure described above; the corresponding back-
ground fraction fBkg was extracted and is listed in Table I.

The statistical uncertainties for AJ=ψ
LL (ΔAJ=ψ

LL ) were
calculated via Eq. (10):

ΔAJ=ψ
LL ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðΔAIncl

LL Þ2 þ ðfBkg · ΔABkg
LL Þ2

q

1 − fBkg
; ð10Þ

whereΔAIncl
LL andΔABkg

LL represent the statistical uncertainty
of the AIncl

LL and ABkg
LL respectively. The statistical uncertainty

of fBkg is combined with its systematic uncertainty from the
extraction method and considered as one of the systematic
uncertainties which is discussed in the next section.

III. SYSTEMATIC UNCERTAINTY

There are two types of systematic uncertainties involved
in this analysis: Type A are uncorrelated point-to-point
uncertainties for each pT or jyj bin, and type B are
correlated point-to-point uncertainties.
One important type A systematic uncertainty comes

from the determination of the background fraction under
the J=ψ mass peak. To test the possible bias of the
background fraction fBkg extracted from the GPR pro-
cedure, we compared to the method that was used in [36]

TABLE I. Background fraction fBkg for each arm and each pT
or jyj bin using the corresponding J=ψ2σ mass window for that
bin. The systematic uncertainty is 0.05 (absolute value) for all the
bins; see discussion in the text.

pT or jyj range fBkg � ΔfBkgðstatÞ
0 < pT < 2 GeV=c 0.26� 0.01
2 < pT < 4 GeV=c 0.17� 0.01
4 < pT < 10 GeV=c 0.18� 0.01
1.2 < jyj < 1.8 0.25� 0.02
1.8 < jyj < 2.2 0.30� 0.02
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which used a third order polynomial to describe the
background. The two methods differed at most by 0.05
(absolute value); we took that as the systematic uncertainty
for the background fraction fBkg.
Another type A systematic uncertainty is from the

determination of background asymmetry under the J=ψ
mass peak. Because the low mass side band was used to
estimate the background spin asymmetry under the J=ψ
mass peak, we need to estimate the bias introduced by this
approximation. We studied the mass dependence of the
background asymmetry by dividing the sideband into two
mass bins, 1.5–2.0 GeV=c2 and 2.0–2.4 GeV=c2. We
found no obvious mass dependence beyond expected
statistical fluctuation. Thus we concluded that this system-
atic uncertainty related to the mass dependence of the
background asymmetry is small compared with the stat-
istical uncertainty of the sideband dimuon asymmetry
[ΔABkg

LL in Eq. (10)] and is not counted as additional
uncertainty for this analysis.
The last type A systematic uncertainty comes from the

variation of detector efficiency within a data group in which
the asymmetry is calculated. For the purpose of getting
sufficient statistics in the asymmetry calculations using
Eq. (4) discussed above, we collected individual PHENIX
runs into larger groups, each of which corresponds to a time
period of up to 1.5 hour of continuous data acquisition.
However, the detector efficiency may vary between runs in
each group, and that could lead to a biased result. The muon
reconstruction efficiency has a dependence on the luminosity
and event vertex distribution and it could also change over
time. To study this systematically, three grouping methods
were applied and compared with each other: (1) runs with
similar luminosity and event vertex distribution; (2) runs
within a RHIC fill to minimize the time spreading of each
group; (3) all the runs into one group. We chose method
(1) results to calculate the mean value of our results. The
systematic uncertainty from the grouping method was set to
the maximum variation extracted from these three
approaches. Type A systematic uncertainties for all pT or
jyj bins are summarized in Table II.
The systematic uncertainty in the determination of the

relative luminosity is of type B. The luminosities Lþþ;þ−,

and therefore also the relative luminosity R used in Eq. (4),
were measured by the BBC trigger counts with a vertex cut
of �30 cm along the beam line. To test if the BBC count
rate contains an unmeasured physics asymmetry, we used
another luminosity detector, the ZDC, and computed the
double-helicity asymmetry of the ZDC/BBC luminosity
ratio:

AZDC=BBC
LL ¼ 1

PBPY

Nþþ
ZDC

Nþþ
BBC

− Nþ−
ZDC

Nþ−
BBC

Nþþ
ZDC

Nþþ
BBC

þ Nþ−
ZDC

Nþ−
BBC

; ð11Þ

where NZDC (NBBC) is the coincidence counts measured by
the ZDC (BBC), which is proportional to the beam
luminosity. During the 2013 PHENIX 510 GeV pþ p
run, due to high beam intensity, approximately 30% of
bunch crossings contain more than one pþ p binary
collision. However, neither the BBC nor the ZDC can
separate these multiple collisions. Therefore, multiple
collisions are counted as one pþ p collision and this
affects the determination of the relative luminosity. A
statistical pileup correction was performed to remove the
bias of the (relative) luminosity measurement caused by
multiple collisions, identical to the correction performed
in Ref. [23]. We took the asymmetry AZDC=BBC

LL plus its
statistical uncertainty as a systematic uncertainty for the
relative luminosity R. After pileup corrections the system-
atic uncertainty from relative luminosity was determined to
be 4 × 10−4.
Another source of systematic uncertainty (type B) comes

from the measurement of the average beam polarizations,
PB and PY . The uncertainty of the product PBPY used in
Eq. (4) leads to an overall scale uncertainty of the ALL
measurements. For the RHIC 2013 data set, this uncertainty
was evaluated to be 6.5% × ALL. The residual transverse
polarization component in the interaction region is very
small (the longitudinal polarization component is> 99.8%)
and the associated effect on the overall scale is smaller than
10−3 × ALL and is thus negligible for this analysis.
A technique called “bunch shuffling” [22] was applied to

test for additional RHIC bunch-to-bunch and fill-to-fill
uncorrelated systematic uncertainties that may have been
overlooked. The resulting Ashuffle

LL follows a Gaussian
distribution with σ consistent with the statistical uncertainty
of AJ=ψ

LL obtained with real data. This test result indicates
that all other uncorrelated bunch-to-bunch and fill-to-fill
systematic uncertainties are much smaller than the stat-
istical uncertainties.

IV. RESULTS AND SUMMARY

The final results for J=ψALL as a function of pT and jyj
are summarized in Table III and in Fig. 3. The average AJ=ψ

LL
measured is 0.012� 0.010 (stat) �0.003 (syst).

TABLE II. Type A systematic uncertainties for each pT or jyj
bin. ΔAfit

LL is the systematic uncertainty from background fraction
determination. ΔArun group

LL is the systematic uncertainty from the
run grouping method.

pT or jyj range ΔAfit
LL ΔArun group

LL

0 < pT < 2 GeV=c <0.001 0.003
2 < pT < 4 GeV=c 0.001 0.004
4 < pT < 10 GeV=c 0.003 0.009
1.2 < jyj < 1.8 0.005 0.004
1.8 < jyj < 2.2 0.002 0.002
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There were several NRQCD calculations of the AJ=ψ
LL

for RHIC energies
ffiffiffi
s

p ¼ 200 GeV and
ffiffiffi
s

p ¼ 500 GeV
[26] but with the Gehrmann-Stirling and other polarized
parton distribution functions [43] produced in the 1990s. Our
knowledge of quark and gluon polarizations has been sig-
nificantly improved over the past 10 years [14,20]. To
compare our results with the current understanding of the
gluon polarization, we have calculated the AJ=ψ

LL in our
kinematic range using a PYTHIA [29] simulation with
NNPDFpol1.1 [14] and NNPDF3.0 [44] as the polarized and
unpolarized PDF respectively. To separate the uncertainty
from the J=ψ production mechanism, we have assumed
âgg→J=ψþX
LL ¼ 1, which is the leading order partonic asym-

metry for open heavy quarks in the heavymass limit at RHIC
energies [24].A2σ uncertaintybandwasalso calculatedusing
the replica method as presented in Ref. [45]. The calculated
asymmetry using these assumptions is shown in Fig. 3
together with the PHENIX data. The calculated asymmetry
is consistent with our data within the statistical uncertainties.
A reweighting method that estimates the impact of a new

data set on the PDFs without doing a new global fit was
introduced by the NNPDF Collaboration [46]. Using this
method we estimated the impact of our data on the gluon
polarization based on NNPDFpol1.1 and under the assumption
of âgg→J=ψþX

LL ¼ 1. Figure 4 shows the gluon polarization
before and after reweighting. In this reweighting, only the
statistical uncertainty of our data was considered. Under
this assumption, our data favors a more positive gluon
polarization in the x ∼ 2 × 10−3 region compared to the
original NNPDFpol1.1.
In summary, the double-helicity asymmetries of inclu-

sive J=ψ production have been measured with the PHENIX
detector as a function of the J=ψ ’s pT and jyj, covering
0 < pT < 10 GeV and rapidity 1.2 < jyj < 2.2. The AJ=ψ

LL
measurements offer a new way to access ΔG via heavy-
quark production in pþ p collisions. They also serve as an
important test of the universality of the helicity-dependent
parton densities and QCD factorizations.

TABLE III. AJ=ψ
LL as a function of pT or jyj. N2σ

J=ψ is the J=ψ counting within its 2σ mass window. The column of type A systematic
uncertainties are a statistically weighted quadratic combination of the background fraction and run grouping uncertainties. ΔALL
(relative luminosity) is the global systematic uncertainty from relative luminosity measurements. ΔALL (polarization) is the systematic
uncertainty from the beam polarization measurement.

pT ðGeV=cÞ
or jyj bin

hpTiðGeV=cÞ
or hjyji

N2σ
J=ψ

×10000
AJ=ψ
LL

ΔALL
(stat)

ΔALL
(Type A syst)

ΔALL (relative luminosity)
(Type B syst)

ΔALL (polarization)
(Type B syst)

pT ∈ (0–10)
jyj ∈ (1.2–2.2)

hpTi ¼ 2.03 GeV/c
hjyji ¼ 1.71

15.9 0.012 0.010 0.003 0.0004 0.001

pT ∈ (0–2) 1.12 8.8 0.003 0.014 0.003 0.0004 <0.001
pT ∈ (2–4) 2.79 5.6 0.007 0.016 0.004 0.0004 <0.001
pT ∈ (4–10) 5.25 1.7 0.057 0.029 0.010 0.0004 0.004
jyj ∈ (1.2–1.8) 1.59 10.2 0.025 0.013 0.006 0.0004 0.002
jyj ∈ (1.8–2.2) 1.94 4.9 0.001 0.019 0.003 0.0004 <0.001
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FIG. 3. AJ=ψ
LL as a function of pT (top panel) and jyj (bottom

panel). The black error bars show the statistical uncertainty. The
red boxes show only the type A systematic uncertainties. There
are additionally a 4 × 10−4 global systematic uncertainty from the
relative luminosity determination and a 6.5% global scaling
systematic uncertainty from the polarization magnitude determi-
nation for all pT or jyj bins. The blue curve with shaded band is
our AJ=ψ

LL estimation using PYTHIA6 [29] simulation with

NNPDFpol1.1 data sets under the assumption of âgg→J=ψþX
LL ¼ 1.

The solid blue curve is the central value and the blue shaded band
is the �2σ uncertainty range. See details in the text.
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