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Fundamental properties of 
resonances
S. Ceci1, M. Hadžimehmedović2, H. Osmanović2, A. Percan3 & B. Zauner1

All resonances, from hydrogen nuclei excited by the high-energy gamma rays in deep space to newly 
discovered particles produced in Large Hadron Collider, should be described by the same fundamental 
physical quantities. However, two distinct sets of properties are used to describe resonances: the 
pole parameters (complex pole position and residue) and the Breit-Wigner parameters (mass, width, 
and branching fractions). There is an ongoing decades-old debate on which one of them should be 
abandoned. In this study of nucleon resonances appearing in the elastic pion-nucleon scattering 
we discover an intricate interplay of the parameters from both sets, and realize that neither set is 
completely independent or fundamental on its own.

All particle scattering processes are described by the scattering amplitude, a complex function of energy. It is 
also an analytic function, which means it is expandable to the experimentally unreachable complex energies. An 
infinite value of the amplitude at some complex energy indicates the existence of a short-living particle, i.e. the 
resonance1. This infinity, the first order pole, may produce experimentally observable signal in a measured prob-
ability of the reaction, the cross section. In such cases, the cross section usually increases rapidly as the energy 
approaches the resonance mass, and then suddenly drops producing a characteristic bell-shaped peak.

Main resonant features come from the mathematical properties of the pole. Its mass M is given by the real 
part of the pole position in the complex energy plane, and its total decay width Γ  is directly determined from the 
imaginary part. Generally, the peak position and its width do not correspond to M nor Γ . Two other properties, 
the magnitude |r|, and especially the phase θ of the complex residue seem to be purely mathematical objects. 
There is no physical interpretation for them.

In experimental physics resonances are often described using a different set of parameters. Instead of the pole 
parameters, the Breit-Wigner mass MBW, width Γ BW, and branching fraction xBW are used. These Breit-Wigner 
parameters are also used in some theoretical studies: the quark models2, the effective-field theories3 and the 
lattice quantum chromodynamics4. It is, however, important to distinguish the Breit-Wigner parameters from 
the quantities in the Breit-Wigner formula5–7 which can be found in most textbooks. Parameters MBW, Γ BW, and 
xBW collected by the Particle Data Group (PDG)8 are not extracted using this formula, but using rather elaborate 
functions that are fundamentally different for Z boson8, Δ  resonance9, or ρ meson10.

The debate whether having two sets of resonant properties is redundant lasts for decades now, and the 
Breit-Wigner parameters seem to be losing11. That is the case particularly since their mere physicality came into 
question. Namely, the Breit-Wigner masses of Z boson12 and Δ  resonance13 calculated using the standard defini-
tion change when otherwise unobservable field transformations are imposed on a quantum-field level.

Here we show that in the case of prominent and isolated nucleon resonances emerging in elastic pion-nucleon 
scattering the pole residue phase can be predicted with known reaction threshold, the resonant pole position, and 
the corresponding Breit-Wigner mass. This is, as far as we know, the first time anyone provided a physical mean-
ing for the residue phase. For other less prominent resonances, pole residue ceases to be a fundamental property 
of a single resonance and becomes a collective property strongly influenced by other particles that have the same 
quantum numbers.

Model
Cross section formula. We begin by reminding the reader that the resonant cross section6–8 is given by
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where q is the center-of-mass momentum of incident particles, s1 and s2 are their spins, J is the spin of the reso-
nance, and A is the key object in this relation, the resonant amplitude.

Breit-Wigner formula. The simplest resonant amplitude is the Breit-Wigner formula5–8

=
Γ

− − Γ
A x

M W i
/2

/2
,

(2)
BW

where W is the center-of-mass energy, M −  iΓ /2 is the pole position, and xΓ /2 is the residue magnitude |r|. Here, 
the residue phase θ is taken to be zero. (Mathematically it is − 180°, but in the resonance physics this odd conven-
tion is used). It is useful to rewrite the amplitude in this form with explicitly written complex phase

ρ= ρA x e sin , (3)iBW

where phase ρ is defined by

ρ = Γ
−

.
M W

tan /2
(4)

A more realistic formula. This amplitude is not very realistic. When cross section σ is calculated, it diverges 
at the threshold since q =  0 there. Moreover, the residue phase is zero, which is hardly ever the case8. A more gen-
eral resonant amplitude would be

Σ
=

− +
. .A V W

m W W
( )

( )
,

(5)
m g

0

where m0 is the real-valued bare mass, while the vertex function V and the self-energy term Σ  are nontrivial 
complex functions of energy.

This may be a good place to stress that due to the relativity, everything should be a function of energy squared. 
However, by convention, pole positions and residues are still defined using W. We use this convention throughout 
the paper, but all of the formulas can be easily generalized to relativistic forms.

Five-parameter Breit-Wigner-like formula. Assuming there are no other resonances or thresholds 
nearby, V and Σ  can be expanded in polynomial series. We need just a few terms in the vicinity of the resonant 
pole. By keeping only constant terms, one gets the Breit-Wigner formula (2). In Ceci et al.14 two terms are kept 
instead, and that relation was then modified by comparison with the data. Here we use their semi-empirical 
five-parameter result rewritten in the same way as the Breit-Wigner formula in equation (3)

ρ δ= + .ρ β+A x e sin( ) (6)i ( )

The meanings of x and ρ have already been explained, while β and δ are parameters that build the residue phase

θ β δ= + . (7)

Note that if β and δ are zero, equation (6) will become the familiar Breit-Wigner formula (3). If phases β and δ 
are non-zero but equal to each other, one will get the Breit-Wigner formula with background phase β (or δ, since 
they are the same).

The Breit-Wigner parameters. To get the Breit-Wigner mass, we rewrite equation (6) as
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This formula belongs to a large family of equations 8,15,16 whose general form is
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where MBW is the Breit-Wigner mass, Γ par is partial decay width function, and Γ tot is total decay width function. 
The latter is usually considered to be a real function. However, that is not the case for subthreshold resonances15,17 
which may produce dubious conclusions regarding the value of MBW. From comparison of Eqs. (8) and (9) we see 
that the Breit-Wigner mass is

β= − Γ .M M /2 tan (10)BW

The Breit-Wigner width Γ BW, defined as Γ tot(MBW), is Γ /cos2β. Both results are consistent with Manley9. In addi-
tion, dividing Γ par(MBW) with Γ tot(MBW) gives us the Breit-Wigner branching fraction xBW as x cos(δ −  β).

Alternative definition of the Breit-Wigner mass. If function Σ  in equation (5) is known, there is an 
elaborate way to determine fundamental resonant parameters. The pole position is simply the complex zero of the 
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denominator, and the Breit-Wigner mass is the renormalized mass of a resonance6 defined as the real energy at 
which the real part of the denominator vanishes9,12,13,17

− + Σ = .m M MRe[ ( )] 0 (11)0 BW BW

However, there is a serious problem with this definition. In order to get equation (8) from equation (6), at some 
point we divided both numerator and denominator by eiβ. Any such transformation that does not change nei-
ther the pole position nor the residue (or any observable) will generally change the Breit-Wigner mass defined 
by equation (11). Therefore, a more consistent definition of the Breit-Wigner mass, at least in the mathematical 
sense, would be

= .A MRe ( ) 0 (12)BW

This may seem like a drastic redefinition of a physical parameter, but it merely means that MBW is the energy at 
which the phase of the resonant amplitude crosses 90°. Even with this definition there is a potential caveat: The 
same resonances contribute in different processes and while the pole parameters are independent of this choice, 
this does not have to be the case with the Breit-Wigner parameters extracted using equation (12). For this study, 
we tested it on realistic pion-nucleon elastic amplitudes, but further analyses should be done with inelastic pro-
cesses as well.

Graphical representation of the model. Before presenting the results, we will show a useful graphical 
representation of our model in Fig. 1. In it, we plot the phase of the resonant amplitude in the complex energy 
plane produced by equation (6) with parameters of Δ (1232) resonance from PDG8. Geometrical meaning of the 
phases β and δ is clearly visible. Both are negative. δ is measured from the real axis, and β from the vertical line 
crossing the pole position.

Results
Here we study nucleon resonances observed in the elastic pion-nucleon scattering because for them there is a 
substantial amount of data8 for all parameters of our model, especially θ.

The simplified resonant amplitude shown in Fig. 1 has a zero at threshold given by

δ= + ΓW M /2 cot , (13)0

which enables us to estimate δ from known M, Γ , and W0. We use 1077 MeV for the pion-nucleon threshold W0. 
To calculate β, we use equation (10) with PDG estimates8 for M, Γ , and MBW, and then predict θ using equation (7) 
for the four-star nucleon resonances with mass below 2 GeV. The results are compared to the experimental values 
in Table 1.

For the first five resonances in Table 1 the residue phases are correctly predicted using the other known res-
onant parameters. Interestingly, not only values but also the errors of θ are in accordance with the experimental 
ones. Plots of amplitudes from L+ P analysis18 are shown in Fig. 2, where we can see that the Breit-Wigner masses 
are fully consistent with equation (12).

In the second group there are three highly elastic resonances (with relatively large xBW) for which our model 
fails to predict θ. Since the model is strictly single resonance, it should not work for strongly overlapping 1/2− res-
onances N(1535) and N(1650). To tackle this problem we calculate the elastic scattering-matrix element, defined 
as S =  1 +  2iA, for each resonance. We assume that the elastic S-matrix element for two or more resonances will 
be dominated by the product of the elastic S-matrix elements of individual resonant contributions. Even though 

Figure 1. The resonant amplitude phase of our model (OM) plotted in the complex energy plane. Solid 
white curve goes where the amplitude is purely imaginary, and the dashed white where it is real. The black disk 
shows the position of the zero at the threshold, the white disk is at the pole, and the white with a black eye at the 
Breit-Wigner mass. The Breit-Wigner mass is at the intersection of the solid white line with the real axis; that is 
the (real) energy at which the real part of resonant amplitude is zero. Residue phase θ is the angle between real 
axis and the tangent to the dashed white line at the pole.
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this is a rather crude approximation, and no fitting is involved, the residue phase of N(1535) becomes − 7°, and 
that of N(1650) becomes − 48°. Both of them are now much closer to the experimental values in Table 1. We plot 
the resulting amplitude phase in the complex plane in Fig. 3 and compare it to L+ P amplitude from Švarc et al.18. 
The visual resemblance is almost striking, though we clearly see that there is something missing when we observe 
where solid white lines crosses the real axis on both figures. Incidentally, yet quite surprisingly, the predicted res-
idue phases are practically the same as those in L+ P analysis18 (− 8° and − 47°, respectively).

We built the contribution of each resonance using equation (6), but did not calculate x by its definition (i.e. 
by dividing |r| with Γ /2) because when resonant terms are combined in a mixed amplitude, it is not only residue 
phase θ that is changed, but also its magnitude |r|. Instead, we calculated each x by dividing xBW with cos(δ −  β), 
where xBW, β, and δ are taken from Table 1.

In Fig. 3, we also included the third 1/2− resonance, N(1895), for which we estimate parameters from PDG 8. 
It has no significant effect; we get roughly the same result when we completely omit it. Still, it is interesting that 
even though all the resonances in the amplitude are mixed, distant resonances with small branching fractions, 
as is N(1895), will have a nearby zero of the amplitude, and this pole-zero pair can be completely detached from 
other resonances (i.e. not connected by solid nor dashed white lines). This is important because that is exactly the 
case with the isolated resonances with small xBW in the third group of Table 1: Δ (1620), N(1720), and Δ (1910). It 
is even more interesting that the residue phase is almost exactly given by the sum of two phases that geometrically 
correspond to β and δ. We show them in Fig. 4, where the geometrically analogous phases are called δ′  and β′ .

Group

Resonance xBW
exp Mexp Γexp δ MBW

exp β θ θexp

Name Jπ (%) MeV MeV (°) MeV (°) (°) (°)

1st

Δ (1232)3/2+ 100 1210 ±  1 100 ±  2 − 21 ±  0 1232 ±  2 − 24 ±  2 − 44 ±  2 − 46 ±  2

N(1520)3/2 − 60 1510 ±  5 110 ±  10 − 7 ±  1 1515 ±  5 − 5 ±  7 − 12 ±  7 − 10 ±  5

N(1675)5/2 − 40 1660 ±  5 135 ±  15 − 7 ±  1 1675 ±  5 − 13 ±  6 − 19 ±  6 − 25 ±  6

N(1680)5/2+ 68 1675 ±  10 120 ±  15 − 6 ±  1 1685 ±  5 − 9 ±  10 − 15 ±  10 − 10 ±  10

Δ (1950)7/2+ 40 1880 ±  10 240 ±  20 − 8 ±  1 1930 ±  20 − 23 ±  9 − 31 ±  9 − 31 ±  8

2nd

N(1440)1/2+ 65 1365 190 − 18 1430 − 34 − 53 − −
+85 15

10

N(1535)1/2 − 45 1510 170 − 11 1535 − 16 − 27 − 15 ±  15

N(1650)1/2 − 60 1655 135 − 7 1655 0 − 7 − −
+70 10

20

3rd

Δ (1620)1/2 − 25 1600 130 − 7 1630 − 25 − 32 − 101 ±  9

Δ (1700)3/2 − 15 1650 230 − 11 1700 − 23 − 34 − 20 ±  20

N(1720)3/2+ 11 1675 250 − 12 1720 − 20 − 32 − 130 ±  30

Δ (1905)5/2+ 12 1820 280 − 11 1880 − 23 − 34 − 40 ±  10

Δ (1910)1/2+ 23 1855 350 − 13 1890 − 11 − 24 − 162 ±  83

Table 1.  Test of the model on the four-star nucleon resonances. Here, δ is calculated using equation (13) 
assuming W0 is 1077 MeV, β using equation (10), and θ using equation (7). Experimental parameters (exp) are 
from PDG8.

Figure 2. Phase of the amplitude near the resonances from the first group in Table 1 calculated using L+P 
results18. Breit-Wigner masses are consistent with PDG estimates8 (white bars).
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For the remaining two resonances in the third group, Δ (1700) and Δ (1905), we do get reasonable θ estimates, 
but not the Breit-Wigner masses because the resonances strongly overlap with unusually broad Δ (1940)3/2− and 
nearby Δ (2000)5/2+, respectively.

The final and hardest challenge for this model is the Roper resonance N(1440) in the second group. We cannot 
use the mixed version of the model to explain the strong discrepancy of N(1440) residue phase because the closest 
1/2+ resonance, N(1710), is too far and has too small xBW

8 to affect it at all. However, the nucleon itself is 1/2+ par-
ticle and therefore we tried to solve the problem by mixing the two. Nucleon has a pole in the subthreshold region, 
at 938 MeV. We estimate its contribution using equation (6) with β =  0°, δ =  − 180°, Γ  →  0 MeV, and x →  ∞ . We 
choose |r| =  59 MeV because with that value the amplitude at the real axis (its real and imaginary part) roughly 
resembles the realistic one in Švarc et al.18 close to N(1440). Our predicted residue phase of N(1440) is now − 83°, 
which is consistent with its experimental8 value of − 85°, as well as the L+ P18 result − 88°. Phase of the amplitude 
is shown in Fig. 5.

Conclusions
We have shown that for prominent non-overlapping nucleon resonances the residue phase crucially depends 
on the Breit-Wigner mass. Consequently, if the Breit-Wigner mass was model-dependent or non-physical, as is 
argued by the growing number of researchers, then the pole residue phase would have been model-dependent or 
non-physical as well. More interestingly, this intricate interplay between the pole and the Breit-Wigner parame-
ters provided a way to estimate the Breit-Wigner mass from the known pole parameters (and threshold). To the 
authors’ knowledge, this is the first time it was achieved.

For other resonances, the pole residue turns out to be a collective property strongly influenced by all reso-
nances with the same quantum numbers. Their strong mixing could cause the parameter values to vary drasti-
cally. Therefore, collecting such parameters in the data tables, and comparing them between different models, 
could be highly problematic.

This, however, does not mean that there is no use for such parameters. If we want to describe the scattering 
amplitude close to the resonance, we need pole positions, but also the residues, and especially zeros. If we, on the 
other hand, want to use or calculate the physical properties of the resonance, in addition to the pole position, we 
would also use the Breit-Wigner parameters. At least the Breit-Wigner mass.

Finally, it is rather intriguing that the triangle relation between phases δ, β, and θ, which is valid only for the 
prominent resonances, works really well for other resonances when geometrically analogous phases δ′  and β′  are 
used, even for the oddly shaped Roper resonance. It could be that our triangle relation is just a special case of a 
more general geometric formula.

Methods
Most methods used in the paper are standard or explained in the text. Still, it is useful to clarify some of the pro-
cedures we used.

Figure 3. Phase of the amplitude in which N(1535), N(1650), and N(1895) appear. (a) The L+ P result18 with 
residue phases (θ) for the first two resonances. (b) Our model (OM) using only PDG estimates8 and the mixing 
recipe.

Figure 4. Phase of the L+P amplitude18 close to the isolated resonances with small xBW looks somewhat like 
the Δ(1232), just entirely below the real axis. Interestingly enough, if we draw a triangle similar to the one in 
Fig. 0 and define angles β′  and δ′ , residue phase θ is almost exactly a sum of the two.
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Resonant parameter values not estimated by PDG. Whenever PDG8 provided estimate for the value 
and error of a resonant parameter, we used it. This was the case for the pole positions, Breit-Wigner masses, and 
most residue phases. However, for some values of θ we needed to calculate the mean value and estimate the error 
by ourselves. In such calculations, we have only used the so called above-the-line data, the same data PDG would 
have used in their estimates.

Error analysis. To estimate the error of some parameter f which is the function of independent variables  
x1, x2,..., xn, we use the standard error propagation formula

∑∆ ... =





∂ ...

∂





 ∆

=
f x x x f x x x

x
x( , , , ) ( , , , ) ( ) ,

(14)
n

i

n
n

i
i1 2

1

1 2
2

2

where Δ x1, Δ x2, … , Δ xn are errors of each independent variable. For each phase parameter δ, β, and θ, we do a 
separate calculation to obtain values given in Table 1. Independent variables we use are M, Γ , and MBW.

Combining the closest Riemann sheets in the figures. Realistic scattering amplitudes have numerous 
Riemann sheets, two for each channel opening, with cuts on the real axis. In all L+ P figures we show two different 
Riemann sheets. At the real axis we glue together the lower half-plane of the non-physical sheet (where the reso-
nance pole is situated) and the upper half-plane of the physical sheet (where the cross-section data is measured). 
This is why the colors on all graphs change smoothly, and the branching cut on the real axis is no longer visible.

Determining characteristic points, angles, and residues in the complex plane. In our plots and 
calculations we constructed the L+ P amplitudes using the fit function and fitting parameters provided by the 
authors of Švarc et al. paper18. We searched for poles and zeros numerically and confirmed them graphically. 
Once we determined all important points (poles, zeros, and intersections), we calculated angles by using simple 
trigonometry. All pole residues are calculated numerically, and rechecked in several points situated in the close 
neighborhood of every pole.

References
1. Dalitz, R. H. & Moorhouse, R. G. What is Resonance? Proceedings of the Royal Society of London, Series A 318, 279 (1970).
2. Capstick, S. & Roberts,W. Quark models of baryon masses and decays. Progress in Particle and Nuclear Physics 45, Supplement 2, 

S241 (2000).
3. Pascalutsa, V., Vanderhaeghen, M. & Yang, S. N. Electromagnetic excitation of the Δ (1232) resonance. Phys. Rept. 437, 205 (2007).
4. Dürr, S. et al. Ab Initio Determination of Light Hadron Masses. Science 322, 1224 (2008).
5. Breit, G. & Wigner, E. Capture of Slow Neutrons, Phys. Rev. 49, 519 (1936).
6. Maggiore, M. A Modern Introduction to Quantum Field Theory (Oxford University Press, 2005).
7. Blatt, J. M. & Weisskopf, V. F. Theoretical Nuclear Physics (Springer-Verlag, 1979).
8. Olive, K. A. et al. (Particle Data Group), Chin. Phys. C38, 090001 (2014).
9. Manley, D. M. Masses and widths of N and Δ  resonances. Phys. Rev. D51, 4837 (1995).

10. Gounaris, G. S. & Sakurai, J. J. Finite-Width Corrections to the Vector-Meson-Dominance Prediction for ρ →  e+e−. Phys. Rev. Lett. 
21, 244 (1968).

11. Höhler, G. Against Breit-Wigner parameters — A pole-emic, in Caso, et al. (Particle Data Group: Review of Particle Physics) Eur. 
Phys. J. C3, 624 (1998).

12. Sirlin, A. Theoretical considerations concerning the Z0 mass. Phys. Rev. Lett. 67, 2127 (1991).
13. Djukanovic, D., Gegelia, J. & Scherer, S. Definition of the Δ  mass and width. Phys. Rev. D76, 037501 (2007).
14. Ceci, S., Korolija, M. & Zauner, B. Model-Independent Extraction of the Pole and Breit-Wigner Resonance Parameters. Phys. Rev. 

Lett. 111, 112004 (2013).
15. Liu, B. C. & Zou, B. S. Mass and KΛ  Coupling of the N*(1535). Phys. Rev. Lett. 96, 042002 (2006).
16. Flatté, S. M. Coupled-channel analysis of the π η and K K  systems near K K  threshold, Phys. Lett. B63, 224 (1976).
17. Ceci, S., Švarc, A. & Zauner, B. Comment on “Mass and KΛ  Coupling of the N*(1535)”. Phys. Rev. Lett. 102, 209101 (2009).
18. Švarc, A., Hadžimehmedović, M., Omerović, R., Osmanović, H. & Stahov, J. Poles of Karlsruhe-Helsinki KH80 and KA84 solutions 

extracted by using the Laurent-Pietarinen method, Phys. Rev. C89, 045205 (2014).

Acknowledgements
S.C. thanks Lothar Tiator for valuable discussions, comments, and suggestions.

Figure 5. Phase of the amplitude in which N(1440) appears. (a) Our model (OM) with nucleon pole and 
N(1440). (b) Our model with only N(1440), given here for comparison. (c) The realistic L+ P result18 where we 
estimated the θ from the triangle angles to be − 85°, which is surprisingly close to the numerical result of − 85°.



www.nature.com/scientificreports/

7Scientific RepoRts | 7:45246 | DOI: 10.1038/srep45246

Author Contributions
During discussions between S.C., B.Z., and A.P. the main idea of this work was conceived. S.C. did the 
calculations, plotted the figures, and prepared the manuscript, which B.Z. and A.P. substantially edited. H.O. and 
M.H. provided the crucial L+ P results.

Additional Information
Competing Interests: The authors declare no competing financial interests.
How to cite this article: Ceci, S. et al. Fundamental properties of resonances. Sci. Rep. 7, 45246; doi: 10.1038/
srep45246 (2017).
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

This work is licensed under a Creative Commons Attribution 4.0 International License. The images 
or other third party material in this article are included in the article’s Creative Commons license, 

unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, 
users will need to obtain permission from the license holder to reproduce the material. To view a copy of this 
license, visit http://creativecommons.org/licenses/by/4.0/
 
© The Author(s) 2017

http://creativecommons.org/licenses/by/4.0/

	Fundamental properties of resonances
	Model
	Cross section formula. 
	Breit-Wigner formula. 
	A more realistic formula. 
	Five-parameter Breit-Wigner-like formula. 
	The Breit-Wigner parameters. 
	Alternative definition of the Breit-Wigner mass. 
	Graphical representation of the model. 

	Results
	Conclusions
	Methods
	Resonant parameter values not estimated by PDG. 
	Error analysis. 
	Combining the closest Riemann sheets in the figures. 
	Determining characteristic points, angles, and residues in the complex plane. 

	Acknowledgements
	Author Contributions
	Figure 1.  The resonant amplitude phase of our model (OM) plotted in the complex energy plane.
	Figure 2.  Phase of the amplitude near the resonances from the first group in Table 1 calculated using L+P results18.
	Figure 3.  Phase of the amplitude in which N(1535), N(1650), and N(1895) appear.
	Figure 4.  Phase of the L+P amplitude18 close to the isolated resonances with small xBW looks somewhat like the Δ(1232), just entirely below the real axis.
	Figure 5.  Phase of the amplitude in which N(1440) appears.
	Table 1.   Test of the model on the four-star nucleon resonances.



 
    
       
          application/pdf
          
             
                Fundamental properties of resonances
            
         
          
             
                srep ,  (2017). doi:10.1038/srep45246
            
         
          
             
                S. Ceci
                M. Hadžimehmedović
                H. Osmanović
                A. Percan
                B. Zauner
            
         
          doi:10.1038/srep45246
          
             
                Nature Publishing Group
            
         
          
             
                © 2017 Nature Publishing Group
            
         
      
       
          
      
       
          © 2017 The Author(s)
          10.1038/srep45246
          2045-2322
          
          Nature Publishing Group
          
             
                permissions@nature.com
            
         
          
             
                http://dx.doi.org/10.1038/srep45246
            
         
      
       
          
          
          
             
                doi:10.1038/srep45246
            
         
          
             
                srep ,  (2017). doi:10.1038/srep45246
            
         
          
          
      
       
       
          True
      
   




