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In this paper, we numerically study the impact heavy field degrees of freedom have on vacuum 
metastability in a toy model, with the aim of better understanding how the decoupling theorem extends 
to semiclassical processes. We observe that decoupling applies to partial amplitudes associated with fixed 
final state field configurations emerging from the tunneling processes, characterized by a scale such as 
the inverse radius of a spherically symmetric bubble, and not directly on the total lifetime (as determined 
by the “bounce”). More specifically, tunneling amplitudes for bubbles with inverse radii smaller than the 
scale of the heavier fields are largely insensitive to their presence, while those for bubbles with inverse 
radii larger than that scale may be significantly modified.

© 2017 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

Recently, Branchina et al. [1–4] has observed that in contrast 
to the perturbative contributions to a physical process derived 
from an effective theory conforming to the decoupling theorem 
[5], non-perturbative tunneling contributions may exhibit much 
greater sensitivity to the scale of new physics than intuition would 
suggest.

The observation was made in the context of electroweak vac-
uum metastability, where additional higher-dimensional operators 
added to the Coleman–Weinberg effective potential parameteriz-
ing new physics near the Planck scale appeared to increase the 
zero-temperature tunneling rate by over 700 orders of magnitude 
relative to the Standard Model rate [6–8]. This effect was subse-
quently confirmed in [9,10], and can be traced down to the mod-
ification of the bounce solution that is much smaller in size with 
field values reaching the Planck scale. Although we do not dispute 
the effect, since the field value in the center of the bounce solution 
reaches values on the order of �UV, we believe that the analy-
sis is somewhat inconsistent from the effective field theory (EFT) 
point of view. More specifically, the finite set of operators alone 
no longer appropriately parametrize new physics appearing at that 
scale. In [11] Branchina et al. studied an UV complete model, but 
the techniques used lacked argumentation. Additionally, we find it 
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concerning from the standpoint of the decoupling theorem, where 
intuition suggests that the addition of new physics should not sig-
nificantly affect rates at the low scale.

We revisit this phenomenon to improve our conceptual under-
standing of how decoupling operates for semiclassical processes in 
a toy φ4 theory. To avoid the inconsistency associated with a naive 
EFT parametrization, we couple the theory to a heavy scalar or to a 
heavy fermion as representative models of short distance physics. 
To consistently capture the effect of heavy physics on tunneling, 
we work with a more complete functional form of the action ap-
proximated by an expansion in the coupling constant. We find 
that the addition of a fermion with a sufficiently large coupling 
constant can significantly modify tunneling rates, as originally ob-
served by Branchina et al.

Below, we argue that vacuum tunneling is not necessarily a 
low energy process, and therefore decoupling does not necessar-
ily apply to the total rate. Rather, it applies to partial amplitudes 
associated with fixed final state field configurations emerging from 
the tunneling processes. As a result, one should not expect the to-
tal tunneling rate of the metastable vacuum to be insensitive to 
new physics.

2. Particle decay

To motivate this discussion, we illustrate in a hypothetical sce-
nario how new physics could have a drastic effect in the more 
familiar process of neutron decay:

�1 : n → pe−ν̄

� : n → π0ν̄
2
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The neutron initial state represents the unstable electroweak vac-
uum in our analogy, while the individual modes of decay corre-
spond to two possible emerging field configurations in a tunneling 
event. The first listed channel is the familiar neutron beta decay 
with a Q -value of 0.782 MeV. The second channel is the forbidden 
B-violating process with a much larger Q -value of 805 MeV. The 
total width of the neutron is given by the sum of partial widths 
� = �1 + �2. In the low energy theory, the total width is domi-
nated by �1.

Consider the addition of a heavy particle, representing new 
physics, of mass M = 500 MeV that couples to both channels. How 
would the total lifetime of the neutron be altered by this new 
degree of freedom? Although the contribution to �1 would be 
suppressed by Q 2/M2 ∼ 10−6, it would be incorrect to conclude 
that the total width � would be insensitive to new physics. The 
second channel has a much larger Q -value, and the contributing 
virtualities would sample the presence of new physics, effectively 
generating a very large �2. As a result, the lifetime of the neutron 
in our hypothetical example would be significantly shortened by 
the presence of new physics.

Applying this to the problem of vacuum metastability, the pres-
ence of new physics at a scale � may magnify the “high energy” 
partial width tunneling amplitudes which were small before the 
addition of new physics. Below, we show how this happens in a 
toy φ4 theory.

3. Low energy theory

Throughout this study, our low energy theory will be the real 
scalar φ4 theory, with the potential

V (φ) = 1

2
m2

φφ2 − ηφφ3 + 1

8
λφφ4 (1)

suitably modified to exhibit an instability. We will consider this 
theory in two separate cases. In the first case, which we call the 
“asymmteric double well potential” the low energy constants m2

φ , 
ηφ and λφ are all taken positive. In the second case, which we call 
the “unbounded potential”, we take λφ negative and, for simplicity, 
ηφ = 0. In both cases, the low energy metastable phase is at φ = 0.

4. Evaluation of partial tunneling amplitudes

Instead of the full width as calculated semiclassically by meth-
ods developed originally by Coleman and Callan [12,13], we are 
interested in the effect of new physics on amplitudes for exclu-
sive final states, corresponding to specific profiles of the field that 
emerges upon tunneling. This is because we would like to study 
the sensitivity of new physics on these amplitudes separately. 
Technically, we expect that upon a consistent evaluation of such 
amplitudes, the sum over the corresponding partial widths should 
yield the full width that matches the method of Coleman and 
Callan. However we are not aware of a method in the literature 
to compute these amplitudes.1 Fortunately, we will not need the 
full machinery for the careful evaluation of partial widths. Instead 
we will be content to investigate just the representative contribu-
tions to an exclusive amplitude, which we summarize here.

We are interested in calculating the amplitude for the system to 
make a transition from the false vacuum φFV = 0 at time ti → −∞
to a specified final state φf at time tf . The Feynman path integral 
representation of this amplitude is

1 A preliminary formalism has been outlined in [14] in the context of studying 
the effect of Lorentz transformation of tunneling rates.
〈φf(x)|e−iH(tf−ti)|φFV(x)〉 =
φf∫

φFV

Dφ eiS[φ(x)] , (2)

S[φ(t,x)] =
tf∫

ti

dt

∫
d3xL[φ(t,x)] , (3)

L[φ(t,x)] = 1

2

(dφ

dt

)2 − 1

2
(∇φ)2 − V (φ) . (4)

A proper evaluation of this amplitude in the stationary phase ap-
proximation would require one to solve a partial differential equa-
tion with insufficient symmetry to reduce it to an ordinary dif-
ferential equation. To make analytic progress we shall compute a 
representative contribution to this amplitude by transforming the 
field theoretic problem to a one dimensional quantum mechani-
cal problem2 by restricting the integral to a single family of paths 
parametrized by one dynamical coordinate f (t). This is arranged 
by fixing the spatial field profile up to one free dynamical coordi-
nate f (t) at each point in time.

In what follows, we will use, for convenience, the family of 
Gaussian bubbles

φG(t,x) = f (t)e−r2/R2
, (5)

dependent upon the dynamical coordinate f (t), and a scale param-
eter R which will be related to the specific final state for the tun-
neling process. The dynamical coordinate satisfies f (t → −∞) = 0
corresponding to the false vacuum as the initial state φ = φFV ≡ 0, 
and f (tf) = f f corresponding to the emerging bubble as the final 
state

φf = f fe
−r2/R2

. (6)

The scale parameter R and the field value at the center of the final 
state bubble f f are connected by energy conservation

E[φf(x)] =
∫

d3x[1

2
(∇φf(x))2 + V (φf(x))] = 0 , (7)

and ultimately fixes f f ∼ R−1. The precise form we take for the 
family of field configurations is not crucial to our analysis, and we 
have reached similar conclusions with choices other than Gaus-
sian bubbles. We emphasize that the parameter R−1 which sets 
the scale of the final state bubble is like the Q -value of the par-
ticle decay analogy of the previous section. That is, we will find 
that tunneling processes for large R is like the particle decay pro-
cess with small Q -value and is insensitive to new physics, while 
those that tunnel to small R are like particle decay processes with 
large Q -value making them more sensitive to new physics. This is 
not surprising since Fourier modes of the field profile are peaked 
at f f/R .

From the field theory Lagrangian in (4), we obtain the reduced 
Lagrangian for the dynamical variable f

LR[ f (t)] = 1

2

(df

dt

)2 π3/2 R3

2
√

2
− 1

2
f 2 3π3/2 R

2
√

2

−
∫

d3x V ( f e−r2/R2
) . (8)

We achieve canonical normalization for the kinetic term by making 
the change of variables t = π3/2 R3

2
√

2
tR yielding

LR[ f (tR)] = 1

2

( df

dtR

)2 − U ( f ) , (9)

2 For a similar idea used to analyze electroweak sphaleron transitions, [15,16].
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where the reduced potential for f is

U ( f ) = 3π3 R4

16
f 2 + π3/2 R3

2
√

2

∫
d3x V ( f e−r2/R2

) . (10)

Using this action, we can compute the tunneling amplitude in the 
WKB approximation,

A ff ∼ e
− ∫ ff

fi

√
2U ( f )df

, (11)

subject to

U ( f i) = U ( f f) = 0 . (12)

In this picture, the reduced potential U can be understood as the 
one the system has to effectively tunnel through to emerge as the 
profile given in (6), and therefore depends on R .

5. Introducing new physics

We would like to avoid characterizing the effect of new physics 
by a limited set of high dimensional operators for consistency rea-
sons explained in the introduction. Instead, we will consider the 
effect of a heavy scalar S or a heavy fermion ψ to represent new 
physics. We couple the heavy scalar S to φ by the addition of the 
potential

V (φ, S) = 1

2
m2

S S2 + 1

8
λS S4 + 1

2
ηP φS2 + 1

2
λP φ2 S2 . (13)

Alternatively, we couple the heavy fermion ψ of mass mψ by 
adding a Yukawa coupling of the form

L(φ,ψ) = −yφψ̄ψ . (14)

We now decide on how to compute the effects of new physics 
on tunneling amplitudes. Our strategy follows that of Weinberg 
[17], wherein the heavy degrees of freedom are integrated out in 
matter analogous to the Born–Oppenheimer approximation

Z =
∫

DφDS eiS[φ,S] =
∫

Dφ eiW [φ] , or (15)

Z =
∫

DφDψDψ̄ eiS[φ,ψ̄,ψ] =
∫

Dφ eiW [φ] (16)

yielding an action functional W [φ] which is equal to the sum of 
connected diagrams with external φ lines and internal S or ψ

lines. The partial tunneling amplitude will subsequently be eval-
uated based on W [φ] as outlined in the previous section. However 
W [φ] is a complicated nonlocal functional of φ(x), and evaluating 
it for an arbitrary profile as in (5) is impossible. However, as Wein-
berg argues, a tractable approximation can be made based on the 
coupling constant expansion if the quartic self coupling λφ and 
the coupling to new physics λportal = {λP or y2} satisfy the rela-
tionship

λ2
φ ∼ λportal , (17)

similar to the one used to analyze the Coleman–Weinberg mech-
anism [18]. In that case, the leading contribution in the coupling 
constant expansion is the one loop effective potential (with only 
new physics integrated out) evaluated at the Gaussian bubble

W [φG ] =
∫

d4x
[1

2
∂μφ∂μφ − V 1-loop

eff (φG(x)) + . . .
]

(18)

and will be the order to which all subsequent calculations are 
accurate. Corrections to the kinetic terms and terms including ad-
ditional powers of derivatives are subleading because the radius of 
the bubble depends on the coupling constant, typically R ∼ λ

−1/2. 
φ
Fig. 1. The double well potential for φ alone in blue, with scalar S in red, and 
fermion ψ in green. The upper panel shows the potentials for small field values, 
and are visually indistinguishable. (For interpretation of the references to color in 
this figure, the reader is referred to the web version of this article.)

We emphasize that apart from the coupling constant expansion, 
we do not make any further approximations. Retaining just the 
first few terms in the inverse mass expansion is inconsistent since 
the field strengths in the bubbles may be large.

Finally, since the low energy constants determine the measured 
masses and couplings of scalar quanta in the metastable point, we 
will work in the effective potential scheme where the renormal-
ized parameters satisfy

V ′′
eff(0) = m2

φ , V ′′′
eff(0) = −6ηφ , V ′′′′

eff (0) = 3λφ (19)

to prevent them from being modified upon the addition of new 
physics.

6. Asymmetric double well potential

We begin our analysis for the asymmetric double well poten-
tial given in (1), with positive low energy constants m2

φ , ηφ and 
λφ . Throughout this and the next section we work in units nor-
malized by the φ mass, so that mφ = 1 and all other dimensional 
parameters are quoted in units of mφ . Furthermore in this section, 
we fix the model parameters to be ηφ = 0.25, λφ = 0.01, mS = 15, 
ηP = 0.25, λP = 1, mψ = 15 and y = 0.8.

The tree-level potential (corresponding to no new physics) and 
the one-loop effective potentials (with only S or ψ integrated out) 
are displayed in Fig. 1. Since they are evaluated in the effective po-
tential scheme (19), the potential near the metastable point (upper 
panel) remains unaffected by the addition of new physics. How-
ever, at larger field values (lower panel) the effect of new physics 
is apparent.

Following the method in Sec. 4, we calculate the partial ampli-
tude of the false vacuum decay at φ = 0 into a final state bubble of 
the form in (6). The requirement of energy conservation fixes the 
relationship between the bubble size R and amplitude f f . In the 
absence of new physics, this relationship is determined by the tree 
level action and is given by
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Fig. 2. The final state bubbles for f f = 47 without new physics in blue, and with new 
physics scalar S in red, fermion ψ in green. (For interpretation of the references to 
color in this figure, the reader is referred to the web version of this article.)

R2( f f) = 216
√

2

−72
√

2m2
φ + 64

√
3ηφ f f − 9λφ f 2

f

. (20)

The relationship in the presence of new physics requires the effec-
tive potential and we determine it numerically.

In Fig. 2 we show the profile for a final state bubble with and 
without new physics for a fixed value of the field at the center of 
f f = 47. Although the final states are not exactly the same, we see 
that there is a characteristic scale f f ∼ R−1 associated with the fi-
nal state bubbles. The addition of a boson S stabilizes the effective 
potential. Therefore to maintain energy conservation, the bubble 
must have a larger radius. The addition of a fermion ψ has the 
opposite effect, forcing a smaller bubble. Note that bubbles with f f
much larger than the true minimum are not possible. Furthermore, 
since the scalar S stabilizes the potential bringing the minimum to 
lower field values, some bubbles which were previously possible 
are no longer available as final states.

We proceed to evaluate the partial amplitude by reducing the 
field theory problem to a quantum mechanical problem by restrict-
ing the path integral to the family of Gaussian bubbles given in (5). 
Without new physics, reduced quantum mechanical potential U ( f )
for the dynamical variable f (t) is

U ( f ) = π3 R6

16

( 3

R2
f 2 + m2

φ f 2 − 8ηφ

3
√

6
f 3 + λφ

8
√

2
f 4

)
. (21)

With new physics, there is an additional contribution from the 
effective potential, which we evaluate numerically. We show the 
reduced potential U the system must tunnel through in Fig. 3 for 
two representative final state bubbles, f f = 47 and f f = 147. Ob-
serve that new physics significantly changes this potential for final 
state bubbles which are smaller than the scale set by new physics 
at mS = mψ = 15.

In Fig. 4 we plot the WKB exponent 
∫ f f

0

√
2U ( f )df which con-

trols the partial tunneling rate as a function of f f characterizing 
the scale of the final state bubble. The minimum of WKB exponent 
at a low scale of f crit

f ≈ 9 corresponds to a close approximation 
of the Coleman–Callan bounce which dominates the total rate. 
Notice that for bubbles of smaller radius (large f f), the WKB ex-
ponent is greatly modified by the presence of new physics. But, 
the amplitude for the decay into the dominant final state bub-
ble f crit

f remains relatively unaffected. Therefore, in this model, the 
total metastable decay rate (summed over all final states) will re-
main unaffected. Although not displayed here, we have numerically 
confirmed that new physics decouples from the low energy WKB 
exponent like m−2 or m−2.
S ψ
Fig. 3. Reduced potential U ( f ) which a final state bubble has to tunnel through. 
Upper panel: f f = 47, lower panel: f f = 147. Without new physics in blue, and with 
new physics scalar S in red and with fermion ψ in green. Note that the stabilizing 
effect of the scalar S has shut down the decay channel to an f f = 147 bubble. (For 
interpretation of the references to color in this figure, the reader is referred to the 
web version of this article.)

7. Unbounded potential

We now turn to the case of the unbounded potential where we 
take (1) with λφ negative and small, and for simplicity ηφ = 0. This 
is similar to the Standard Model potential for high field values. For 
our numerical study, we fix the model parameters to be mφ = 1, 
ηφ = 0, λφ = −0.1, mS = 30, ηP = 0, λP = 1, mψ = 30 and y = 0.8. 
We display the form of the tree-level potential (no new physics) 
and one-loop effective potentials (with S or ψ integrated out) in 
Fig. 5. As before, since the renormalized parameters are defined in 
the effective potential scheme, the shape of the potential remains 
unchanged near the location of the metastable vacuum.

Before we continue, we remind the reader the situation for this 
theory in the absence of new physics [19]. The total rate is conven-
tionally determined by solving for the field configuration (bounce) 
that minimizes the Euclidean action. However, by simple scaling 
arguments, one can show no such solution is to be found since a 
lower action can be obtained for smaller bounces. However, a lim-
iting value of the action exists and can be extracted by temporarily 
imposing a constraint∫

d4xφn(x) = ρ4−n , (22)

to the bounce. This allows one to solve for the minimum for the 
action, corresponding to the constrained bounce. The result can be 
inserted in the action, and upon taking the limit ρ → 0, the limit-
ing value of

S = 8π2

3|λφ | (23)

is obtained.
What does this imply when new physics is added to the model? 

Since the dominant contribution to the tunneling amplitude comes 
from a narrow configuration with an infinite field strength at the 
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Fig. 4. WKB exponent for different final state bubbles, characterized by scale f f
without new physics in blue, and with new physics scalar S in red, and fermion 
ψ in green. (For interpretation of the references to color in this figure, the reader is 
referred to the web version of this article.)

center, we expect amplitudes to small Gaussian bubbles (large f f) 
to be significantly modified. We confirm this expectation below by 
evaluating the partial amplitudes to Gaussian bubbles as outlined 
in Sec. 4.

In Fig. 6 we show an example final state Gaussian bubble with 
and without new physics for fixed field value of f f = 100 inside 
the bubble. In Fig. 7 we display the reduced potential U ( f ) which 
the system must tunnel through to reach the final state bubble. As 
in the case of the asymmetric double well, new physics makes a 
substantial modification to the reduced potential since the size of 
the chosen final state bubble is much smaller than the scale set by 
new physics (mS = mψ = 30).

In Fig. 8 we plot the WKB exponent 
∫ f f

0

√
2U ( f )df which con-

trols the partial tunneling rate as a function of f f characterizing 
the scale of the final state bubble. The blue curve corresponds to 
the low energy theory, and is monotonically decreasing without 
exhibiting a local minimum. This is a reflection of the absence of 
a stationary solution. Note that the limiting value as f f → ∞ is 
larger than the value given in (23), because the constrained bounce 
exactly minimizes the action whereas the limiting value is derived 
from the Gaussian bubble profile. This does not affect our conclu-
sions, since we are only interested on the relative change induced 
by new physics.
Fig. 5. The unbounded potential for φ alone in blue, with the scalar S in red, and 
with the fermion ψ in green. The upper panel shows the potentials for small field 
values, and are visually indistinguishable. (For interpretation of the references to 
color in this figure, the reader is referred to the web version of this article.)

Fig. 6. The final state bubble with f f = 100 with only scalar φ in blue and with new 
physics scalar S in red and fermion ψ in green. (For interpretation of the references 
to color in this figure, the reader is referred to the web version of this article.)

Fig. 7. Reduced potential U ( f ) which a final state bubble with f f = 100 has to 
tunnel through in blue, with scalar S in red and with fermion ψ in green. (For 
interpretation of the references to color in this figure, the reader is referred to the 
web version of this article.)
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Fig. 8. WKB exponent for different final state bubbles for only φ in blue, with S in 
red and with ψ in green. (For interpretation of the references to color in this figure, 
the reader is referred to the web version of this article.)

The addition of new physics significantly modifies the ampli-
tudes corresponding to final states of small bubbles which we now 
elaborate. The red curve in Fig. 8 is the result of adding the heavy 
scalar S . The WKB exponent has a local minimum corresponding 
to a critical bubble f crit

f due to the presence of a new stabilizing 
scale mS , and gives the dominant contribution to the total width of 
the metastable vacuum. Furthermore, the WKB exponent for bub-
bles whose inverse radius is larger than the scale of new physics 
have been significantly modified, exhibiting the expected sensitiv-
ity to new physics.

One might wonder how the critical bubble and the associated 
WKB exponent behaves as mS is increased. We can find the behav-
ior by first retaining the leading term of the large mS expansion of 
the one loop effective potential to construct the action functional

W [φ] =
∫

d4x
[1

2
∂μφ∂μφ − V (φ)

− 1

64π2

λ3
P

3

φ6

m2
S

+O
( 1

m4
S

)]
. (24)

Then the asymptotic behavior of the WKB exponent follows, which 
allows us to find the asymptotic behavior of the critical Gaussian 
bubble, its size, and the critical WKB exponents

f crit
f ∼ a

1

λ
3/4
P

√
mφmS , (25)

Rcrit ∼ b
1√
λφ

( f crit
f )−1 , (26)

ff∫

0

√
2U ( f crit

f )df ∼ 1

λφ

+ c
λ

3/2
P

λ2
φ

mφ

mS
, (27)

as mS → ∞, with a, b, and c positive. Since f crit
f in (25) only grows 

like 
√

mS , it is never able to reach the scale of new physics mS , a 
posteriori justifying the approximation in (24). Furthermore, as mS

is raised, the scalar S representing new physics decouples from 
the WKB exponent in (27), and the critical bubble goes over to 
the massless case that is obtained by the method of constrained 
bounce. We note that the scaling derived above may be different 
for other theories, such as if ηφ = 0. But because the scalar S ef-
fectively raises the potential, it must decouple from the full width 
as mS → ∞. That the lifetime is unmodified by new bosonic de-
grees of freedom at scales beyond the scale of the critical bubble 
was recognized earlier in [20,21].

For fermionic new physics, the effect is the opposite. For a 
heavy fermion ψ , the WKB exponent is given by the green curve 
in Fig. 8. The destabilizing effect of adding a fermion prevents a 
local minimum from developing. As a result, the total width con-
tinues to be dominated by infinitesimally small bubbles with field 
strengths that lie far beyond the scale of new physics, but with-
out a limiting value. While the heavy fermion decouples from the 
partial amplitude as mψ → ∞ for any given final state Gaussian 
bubble of fixed f f , it does not decouple from the total decay width. 
We point out that the reason for the drastic change in the total 
width is due to the unboundedness of the low energy potential 
V (φ) with λ < 0.

We have not resummed large logarithms through the renor-
malization group equations (RGEs). While its inclusion can quan-
titatively change the impact of new physics on the total width, 
our point concerning the decoupling of new physics from partial 
amplitudes is unchanged. This is because for final state bubbles 
with an inverse radius smaller than the scale of new physics, the 
running of coupling constants are induced by RGEs with beta func-
tions appropriate only to low energy physics. The effect of new 
physics on the WKB exponent will continue to be non-logarithmic 
as in (27), and will decouple from the amplitude. However, for in-
verse radii larger than the scale of new physics, the beta function 
is altered, causing a sizeable change in the WKB exponent.

We close this section with a few remarks concerning the impli-
cations of our findings on the vacuum instability in the standard 
model. In the standard model the inverse radius of the domi-
nant bounce is 1017 GeV. In this regime, the scalar potential is 
well approximated by the quartic term, making it similar the case 
of the “unbounded potential” studied above. Our findings suggest 
that adding a fermionic degree of freedom above that scale with 
a sufficiently large coupling would lead to a large change in the 
total width of the vacuum, confirming the original observation 
by Branchina et al. However, our result does not suffer from the 
breakdown of the effective theory.

8. Discussion and summary

In this paper, we numerically studied the impact new physics 
at the high scale may have on vacuum metastability in the φ4 the-
ory without resorting to an effective theory description which is 
liable to break down. We showed that some form of the decou-
pling theorem applies to partial amplitudes for decay processes to 
specific final state bubbles of a characteristic size. Amplitudes for 
decay to final state bubbles of inverse radii larger than the scale 
of new physics can be significantly modified by the addition of 
new physics, while those for bubbles of smaller inverse radii are 
insensitive to new physics. Because the total lifetime is given by 
the sum over partial rates across the whole spectrum of scales, the 
inclusion of new physics may have the unexpected effect of signif-
icantly altering the total lifetime even though its effect is confined 
to bubbles of small radii.

Our findings suggest that the addition of scalar degrees of free-
dom at a fixed mass scale has a stabilizing effect, but decouples 
from the total lifetime in the large mass limit. On the other hand, 
the addition of fermionic degrees of freedom with large Yukawa 
couplings can destabilize the system to the extent that its effect 
does not decouple.
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