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Quadrupole and octupole deformation energy surfaces, low-energy excitation spectra, and transition rates in
14 isotopic chains: Xe, Ba, Ce, Nd, Sm, Gd, Rn, Ra, Th, U, Pu, Cm, Cf, and Fm, are systematically analyzed
using a theoretical framework based on a quadrupole-octupole collective Hamiltonian (QOCH), with parameters
determined by constrained reflection-asymmetric and axially symmetric relativistic mean-field calculations.
The microscopic QOCH model based on the PC-PK1 energy density functional and δ-interaction pairing is
shown to accurately describe the empirical trend of low-energy quadrupole and octupole collective states, and
predicted spectroscopic properties are consistent with recent microscopic calculations based on both relativistic
and nonrelativistic energy density functionals. Low-energy negative-parity bands, average octupole deformations,
and transition rates show evidence for octupole collectivity in both mass regions, for which a microscopic
mechanism is discussed in terms of evolution of single-nucleon orbitals with deformation.
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I. INTRODUCTION

Even though most deformed medium-heavy and heavy
nuclei exhibit quadrupole, reflection-symmetric equilibrium
shapes, there are regions in the mass table where octupole
deformations (reflection-asymmetric, pearlike shapes) occur,
in particular, nuclei with neutron (proton) number N (Z) ≈
34,56,88, and 134. Reflection-asymmetric shapes are charac-
terized by the occurrence of low-lying negative-parity bands,
as well as pronounced electric dipole and octupole transitions
[1–4]. The physics of octupole correlations was extensively
explored in the 1980s and 1990s (see the review of Ref. [1]),
but there has also been a strong revival of interest in octupole
shapes more recently, as shown by a number of experimental
[5–17] and theoretical [18–46] studies.

In a simple microscopic picture strong octupole correlations
arise through a coupling of orbitals near the Fermi surface
with quantum numbers (l, j ) and (l + 3, j + 3). This leads
to reflection-asymmetric intrinsic shapes that develop either
dynamically (octupole vibrations) or as static octupole equilib-
rium deformations. For instance, in the case of heavy (Z ≈ 88
and N ≈ 134) nuclei, the coupling of the neutron orbitals
g9/2 and j15/2, and that of the proton single-particle states f7/2

and i13/2, can lead to octupole mean-field deformations. In
particular, evidence for pronounced octupole deformation
in 224Ra [6], 144Ba [16], and 146Ba [17] was recently reported in
Coulomb excitation experiments with radioactive ion beams.
The renewed interest in studies of reflection-asymmetric
nuclear shapes using accelerated radioactive beams point to
the importance of a timely systematic theoretical analysis of
quadrupole-octupole collective states of nuclei in different
mass regions.

Coexistence of different shapes, and shape transitions as
a function of nucleon number, present universal phenomena

*zpliphy@swu.edu.cn

that occur in light, medium-heavy, and heavy nuclei. A
unified description of the evolution of quadrupole and octupole
states necessitates a universal theory framework that can be
applied to different mass regions. Nuclear energy density
functionals (EDFs), in particular, enable a complete and
accurate description of ground-state properties and collective
excitations over the entire chart of nuclides [47–52]. Both
nonrelativistic and relativistic EDFs have successfully been ap-
plied to the description of the evolution of single-nucleon shell
structures and related nuclear shapes and shape transitions. In
the literature one finds a number of detailed self-consistent
mean-field studies of nuclei with static or dynamic octupole
deformations, e.g., based on the Skyrme [53,54] and Gogny
[21–27,55] effective interactions, and relativistic mean-field
(RMF) models [18,20,30,32,33,41–46]. To compute excitation
spectra and transition rates, however, the EDF framework
has to be extended to take into account the restoration of
symmetries broken in the mean-field approximation, and
fluctuations in the collective coordinates. A straightforward
approach is the generator coordinate method (GCM) combined
with projection techniques, and recently it was implemented
for reflection-asymmetric shapes, based on both nonrelativis-
tic [27] and relativistic [45,46] EDFs. Using this method,
however, it is rather difficult to perform a systematic study
of low-lying quadrupole and octupole states in different
mass regions, because implementations of GCM are very
time-consuming for heavy systems. Possible alternative ap-
proaches are the EDF-based interacting boson model [32–34],
or the quadrupole-octupole collective Hamiltonian [43,44].
In particular, the EDF-based collective Hamiltonian can be
derived from the GCM in the Gaussian overlap approximation
[56], and the validity of this approximate method was recently
demonstrated in a comparison with a full GCM calculation for
the shape coexisting nucleus 76Kr [57].

In this study we employ the recently developed EDF-
based quadrupole-octupole collective Hamiltonian (QOCH)
[43,44] to perform a systematic calculation of even-even
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medium-heavy (54 � Z � 64 and 84 � N � 100), and heavy
nuclei (86 � Z � 100 and 130 � N � 152). Low-energy
spectra and transition rates for both positive- and negative-
parity states of 150 nuclei are calculated using the QOCH
with parameters determined by self-consistent reflection-
asymmetric relativistic mean-field calculations based on the
PC-PK1 energy density functional [58]. The relativistic func-
tional PC-PK1 was adjusted to the experimental masses of a
set of 60 spherical nuclei along isotopic or isotonic chains,
and to the charge radii of 17 spherical nuclei. PC-PK1 was
successfully employed in studies of nuclear masses [59,60],
and spectroscopy of low-lying quadrupole states [61].

The article is organized as follows. Section II describes
the theoretical framework, and an illustrative calculation
of 224Ra is presented in Sec. III A. The systematics of
collective deformation energy surfaces, excitation energies of
low-lying positive- and negative-parity states, electric dipole,
quadrupole, and octupole transition rates, calculated with the
EDF-based QOCH, are discussed in Sec. III B. Section IV
contains a summary and concluding remarks.

II. THEORETICAL FRAMEWORK

A. The quadrupole-octupole collective Hamiltonian

Nuclear excitations characterized by quadrupole and oc-
tupole vibrational and rotational degrees of freedom can
be simultaneously described by considering quadrupole and
octupole collective coordinates that specify the surface of a
nucleus R = R0[1 + ∑

μ α2μY ∗
2μ + ∑

μ α3μY ∗
3μ]. In addition,

when axial symmetry is imposed, the collective coordinates
can be parametrized in terms of two deformation parameters
β2 and β3, and three Euler angles � ≡ (φ,θ,ψ):

αλμ = βλD
λ
0μ(�), λ = 2,3. (1)

The classical collective Hamiltonian is expressed as the sum
of the vibrational kinetic energy, rotational kinetic energy, and
the collective potential Vcoll. The vibrational and rotational
kinetic energies read

Tvib = 1

2
B22β̇

2
2 + B23β̇2β̇3 + 1

2
B33β̇

2
3 , (2)

Trot = 1

2

3∑
k=1

Ikω
2
k, (3)

respectively, where the mass parameters B22, B23, and B33, and
the moments of inertia Ik , are functions of the quadrupole and
octupole deformations β2 and β3.

After quantization the collective Hamiltonian takes the
form,

Ĥcoll = − h̄2

2
√

wI

[
∂

∂β2

√
I
w

B33
∂

∂β2
− ∂

∂β2

√
I
w

B23
∂

∂β3

− ∂

∂β3

√
I
w

B23
∂

∂β2
+ ∂

∂β3

√
I
w

B22
∂

∂β3

]

+ Ĵ 2

2I + Vcoll(β2,β3), (4)

where w = B22B33 − B2
23 and the corresponding volume

element in the collective space reads∫
dτcoll =

∫ √
wIdβ2dβ3d�. (5)

To solve the eigenvalue problem of the collective Hamil-
tonian Eq. (4), an expansion of eigenfunctions in terms of a
complete set of basis functions is employed. For each value of
the angular momentum I the basis is defined by the following
relation:

|n2n3IMK〉 = (wI)−1/4φn2 (β2)φn3 (β3)|IMK〉, (6)

where φn2 (φn3 ) denotes the one-dimensional harmonic oscil-
lator wave function of β2 (β3). For positive (negative) parity
states, n3 and I are even (odd) numbers. Because we consider
only axially deformed shapes, the intrinsic projection of the
total angular momentum K = 0. Finally, the collective wave
function can be written as

IMπ
α (β2,β3,�) = ψIπ

α (β2,β3)|IM0〉, (7)

and the corresponding probability density distribution reads

ρIπ
α (β2,β3) =

√
wI|ψIπ

α (β2,β3)|2, (8)

with the normalization,∫
ρIπ

α (β2,β3)dβ2dβ3 = 1. (9)

The reduced Eλ values are calculated from the relation,

B(Eλ,Ii → If )

= 〈Ii0λ0|If 0〉2

∣∣∣∣
∫

dβ2dβ3

√
wIψiMEλ(β2,β3)ψ∗

f

∣∣∣∣
2

, (10)

where MEλ(β2,β3) denotes the electric moment of or-
der λ. In microscopic models it is calculated as
〈�(β2,β3)|M̂(Eλ)|�(β2,β3)〉, where �(β2,β3) is the nuclear
wave function. For the electric dipole, quadrupole, and
octupole transitions, the corresponding operators M̂(Eλ) read

D1 =
√

3

4π
e

(
N

A
zp − Z

A
zn

)
, (11)

Q
p
2 =

√
5

16π
e
(
2z2

p − x2
p − y2

p

)
, (12)

Q
p
3 =

√
7

16π
e
[
2z3

p − 3zp

(
x2

p + y2
p

)]
, (13)

respectively.

B. Parameters of the collective Hamiltonian

The entire dynamics of the collective Hamiltonian Eq. (4) is
governed by five functions of the intrinsic deformations β2 and
β3: the collective potential, the three mass parameters B22, B23,
B33, and the moment of inertia I. These functions are deter-
mined by constrained self-consistent mean-field calculations
for a specific choice of the nuclear energy density functional
and pairing interaction. In the present study the energy density
functional PC-PK1 [58] determines the effective interaction in
the particle-hole channel, and in the particle-particle channel
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we use a δ force: V (r,r′) = Vp,nδ(r − r′), where Vp,n are
the pairing strengths for protons and neutrons, respectively
[62].

The entire map of the energy surface as a function of the
quadrupole and octupole deformations is obtained by imposing
constraints on the quadrupole and octupole mass moments,
respectively. The method of quadratic constraints uses an
unrestricted variation of the function,

〈H 〉 +
∑
λ=2,3

Cλ(〈Q̂λ〉 − qλ)2, (14)

where 〈H 〉 is the total energy, and 〈Q̂λ〉 denotes the expectation
value of the mass quadrupole and octupole operators:

Q̂2 = 2z2 − x2 − y2 and Q̂3 = 2z3 − 3z(x2 + y2).

(15)

qλ is the constrained value of the multipole moment, and Cλ

the corresponding stiffness constant [56]. The corresponding
deformation parameters β2 and β3 are determined from the
following relations:

β2 =
√

5π

3AR2
0

〈Q̂2〉, (16)

β3 =
√

7π

3AR3
0

〈Q̂3〉, (17)

with R0 = r0A
1/3 and r0 = 1.2 fm.

The single-nucleon wave functions, energies, and occu-
pation factors, generated from constrained self-consistent
solutions of the relativistic mean-field plus BCS-pairing
equations (RMF+BCS), provide the microscopic input for the
parameters of the collective Hamiltonian.

The moments of inertia are calculated according to the
Inglis-Belyaev formula [63,64]:

I =
∑
i,j

(uivj − viuj )2

Ei + Ej

|〈i|Ĵ |j 〉|2, (18)

where Ĵ is the angular momentum along the axis perpendicular
to the symmetric axis, and the summation runs over the proton
and neutron quasiparticle states. The quasiparticle energies Ei ,
occupation probabilities vi , and single-nucleon wave functions
ψi are determined by solutions of the constrained RMF+BCS
equations. The mass parameters associated with q2 = 〈Q̂2〉
and q3 = 〈Q̂3〉 are calculated in the perturbative cranking
approximation [65],

Bλλ′(q2,q3) = h̄2

2

[
M−1

(1)M(3)M−1
(1)

]
λλ′ , (19)

with

M(n),λλ′ (q2,q3) =
∑
i,j

〈i|Q̂λ|j 〉〈j |Q̂λ′ |i〉
(Ei + Ej )n

(uivj + viuj )2.

(20)

The deformation energy surface (DES) includes the energy
of zero-point motion that has to be subtracted. The vibrational

and rotational zero-point energy (ZPE) corrections are calcu-
lated in the cranking approximation [65–67]:

�Vvib(β2,β3) = 1
4 Tr

[
M−1

(3)M(2)
]
, (21)

and

�Vrot(β2,β3) = 〈Ĵ 2〉
2I , (22)

respectively. The potential Vcoll in the collective Hamiltonian
(4) is obtained by subtracting the ZPE corrections from the
total mean-field energy:

Vcoll(β2,β3) = Etot(β2,β3) − �Vvib(β2,β3) − �Vrot(β2,β3).
(23)

III. RESULTS AND DISCUSSION

A. Illustrative study of 224Ra

As an illustrative example, the EDF-based quadrupole-
octupole collective Hamiltonian (QOCH) is used to calculate
the low-energy excitation spectrum and transitions of 224Ra.
To determine the microscopic input for the QOCH, we perform
a constrained reflection-asymmetric RMF+BCS calculation,
with the effective interaction in the particle-hole channel
defined by the relativistic point-coupling density functional
PC-PK1, and a density independent δ force is the effective in-
teraction in the particle-particle channel. The strength parame-
ter of the δ force, Vn = 319.0 MeV fm3 (Vp = 358.3 MeV fm3)
for neutrons (protons), is determined to reproduce the corre-
sponding pairing gap of the spherical configuration of 224Ra,
calculated using the relativistic Hartree-Bogoliubov (RHB)
model with the finite-range separable pairing force [68]. The
RHB model with the finite-range separable pairing force was
successfully used in the description of octupole deformations
[38] and low-energy excitation spectra [33]. For the systematic
calculations reported in Sec. III B, the same pairing strengths
of the δ force are used for heavy nuclei with 86 � Z � 100,
whereas for the medium-heavy nuclei with 54 � Z � 64 the
strength parameters Vn(Vp) = 353.0(367.0) MeV fm3 have
been determined by adjusting to the pairing gaps of the
spherical configuration of 144Ba.

Figure 1 displays the deformation energy surface (DES),
moment of inertia, and the collective masses B22 and B33 of
224Ra in the β2 − β3 plane, obtained by imposing constraints
on the expectation values of the quadrupole moment 〈Q̂2〉
and octupole moment 〈Q̂3〉. The DES exhibits a global
minimum at (β2,β3) = (0.18,0.14), and is rather soft along
the octupole direction. Similar patterns are also predicted by
the RHB calculation with the DD-PC1 functional [33], and the
Hartree-Fock-Bogoliubov (HFB) calculation with the Gogny
D1S and D1M forces [25]. Generally, the moment of inertia
increases with deformation. The mass parameters, on the other
hand, display a more complex dependence on β2 and β3,
caused by the fluctuations of pairing correlations. In Fig. 2
we plot the contour maps of the neutron and proton pairing
gaps in the β2 − β3 plane. The fluctuations of pairing gaps
reflect the underlying shell structure, and pairing is strongly
reduced wherever the level density around the Fermi level is
small. As a result, mass parameters are locally enhanced in
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FIG. 1. The deformation energy surface, moment of inertia, and
the collective masses B22 and B33 of 224Ra in the β2-β3 plane,
calculated with the RMF+BCS model.

regions of weak pairing. For instance, the anomalous value of
B22 at (β2,β3) ∼ (0.22,0.30) can be related to the collapse of
proton pairing at this deformation. To avoid such anomalous
behavior of collective mass, in other words to avoid pairing
collapse, one can perform particle number projection [69,70].
However, this procedure is outside the scope of the present
study. It is, in fact, found that the anomalous value of B22 has
negligible effect on the low-lying spectrum of 224Ra because

FIG. 2. Neutron and proton pairing gaps (in the unit of MeV) of
224Ra as functions of deformation in the β2-β3 plane.

FIG. 3. The excitation spectrum, intraband B(E2) (in W.u.), and
interband B(E3) (in W.u.) values calculated with the QOCH based
on PC-PK1 relativistic density functional (middle), compared to
experimental results (left) [6]. The results obtained using the QOCH
with B23 = 0 in Eq. (4) are also shown in the right column.

the corresponding deformed configuration contributes very
little to the total collective wave function (cf. Fig. 5).

In Fig. 3 we compare the low-energy excitation spectrum
of positive- and negative-parity states, the corresponding
B(E2) values for intraband transitions, and the interband
B(E3) values calculated with the QOCH based on PC-PK1
relativistic density functional, with recent data for the octupole
deformed nucleus 224Ra obtained in the Coulomb excitation
experiment of Ref. [6]. To illustrate the effect of dynamical
quadrupole-octupole coupling, we also plot the theoretical
results obtained with the QOCH by setting the collective mass
B23 = 0 in Eq. (4). The difference between the two calculations
is indeed very small, indicating that the dynamical coupling in
this nucleus is rather weak. The level scheme of 224Ra shows
that the lowest negative-parity band is located close in energy
to the ground-state positive-parity band. One notices that
the lowest positive- and negative-parity bands form a single,
alternating-parity band, starting with angular momentum J =
5. Overall, a good agreement between theory and experiment
is obtained for the excitation spectrum of 224Ra. The calculated
E2 and E3 transition rates are also in reasonable agreement
with the experimental values. Furthermore, in Fig. 4 we
plot the E2 and E3 intrinsic moments determined from the
corresponding B(E2) and B(E3) values, respectively, using

the relation Qλ(J → J ′) =
√

16π
2λ+1

B(Eλ;J→J ′)
(Jλ00|J ′0) . One notes a

weak staggering in the calculated Q2(J → J − 2) values,
and their average value ∼650 efm2 is consistent with the
measured value 632 ± 10 efm2 [6]. The three theoretical
Q3 moments are almost constant, ∼ 2950 efm3, while they
underestimate the measured Q3(J → J − 1) and overestimate
the Q3(J → J − 3).

Figure 5 displays the probability density distributions
ρIπ

α (β2,β3) defined in Eq. (8), for the ground state 0+ and the
first negative-parity state 1−. The distributions are, of course,
symmetric with respect to β3. A peak at (β2,β3) ∼ (0.18,0.14)
for the ground state is consistent with the global minimum
of the DES, as shown in Fig. 1. The probability density
distribution of the first negative-parity state is similar to that
of the ground state, except for the symmetry requirement that
the collective wave function is zero along the β3 = 0 line.
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FIG. 4. Comparison between the calculated (open symbols) and
experimental (solid symbols) quadrupole and octupole intrinsic
moments of 224Ra, as functions of the angular momentum.

The peaks of the 1− state are calculated at slightly larger |β3|
compared to those of the ground state.

FIG. 5. Probability density distributions ρIπ
α (β2,β3) for the

ground state 0+, and the first negative-parity state 1− of 224Ra, in
the β2-β3 deformation plane.

FIG. 6. Deformation energy surfaces of 138−154Xe and 140−156Ba
in the β2-β3 deformation plane, calculated with the RMF+BCS model
using the PC-PK1 functional and δ-force pairing.

B. Systematics of quadrupole and octupole states

The principal objective of this study is a systematic
analysis that includes collective deformation energy surfaces,
excitation energies and average quadrupole and octupole
deformations of low-lying states, electric dipole, quadrupole,
and octupole transitions for even-even medium-heavy (54 �
Z � 64 and 84 � N � 100) and heavy (86 � Z � 100 and
130 � N � 152) nuclei.

Figures 6, 7, and 8 display the DESs of the even-even
Xe, Ba, Ce, Nd, Sm, and Gd isotopes in the β2-β3 plane,
calculated with the RMF+BCS model using the functional
PC-PK1 [58] and δ-force pairing with the strength parame-
ters: Vn(Vp) = 353.0(367.0) MeV fm3. The quadrupole and
octupole deformations that correspond to the global minima
are also plotted in Fig. 11. Along the Xe isotopic chain
the equilibrium quadrupole deformation increases gradually,
from nearly spherical to well-deformed shapes as the neutron
number increases from 84 to 100. The deformation energy
surfaces are soft with respect to the octupole degree of freedom
for 142−148Xe, but a nonzero equilibrium octupole deformation
is not predicted in these isotopes. Moving to the Ba and Ce
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FIG. 7. Same as in the caption to Fig. 6 but for the isotopes of Ce
and Nd.

isotopes, one finds a similar shape transition as in the Xe
isotopic chain but, in addition, a finite value of the equilibrium
octupole deformation is predicted for 144−152Ba and 146−150Ce.
The octupole deformation β3 at the equilibrium minimum
ranges between 0.13 and 0.16, and the gain in binding caused
by the octupole deformation is ∼0.5 MeV. For Nd, Sm, and Gd
isotopes the model calculation does not predict stable octupole
minima. An interesting result is the soft energy surfaces with
respect to both quadrupole and octupole deformations for the
transitional nuclei with N ∼ 90, which can be related to the
phenomenon of quantum shape phase transitions. A similar
topography of the DES for 150Sm was obtained in the HFB
calculation using the Gogny D1S and D1M forces [23].

In Figs. 9 and 10 we plot the deformation energy surfaces of
the even-even Rn, Th, Pu, and Cf isotopes. Considering their
similarity, those for Ra, U, Cm, and Fm isotopes are included
in the Supplemental Material [71]. In addition, the equilibrium
quadrupole and octupole deformation parameters for the eight
isotopic chains are shown in Fig. 11. All the isotopic chains ex-
cept Rn exhibit a very interesting shape evolution: from nearly
spherical to octupole deformed, octupole soft, and, finally,
well-deformed prolate quadrupole equilibrium shapes. Stable

FIG. 8. Same as in the caption to Fig. 6 but for the Sm and Gd
isotopic chains.

equilibrium octupole deformations are calculated in 222−228Ra,
224−232Th, 226−232U, 228−232Pu, 228−232Cm, 230−234Cf, and
234,236Fm. For the Rn isotopic chain, weak octupole defor-
mation is predicted in 222−226Rn (cf. Fig. 11) but the energy
surfaces are very shallow with respect to the octupole degree
of freedom. Similar shape transitions in the 14 isotopic chains
have also been obtained in studies based on different relativistic
energy density functionals [33,38], nonrelativistic functionals
[25,34], and macroscopic+microscopic (MM) models [19,72].
Some differences between these calculations are found in the
exact location of nonzero equilibrium octupole deformation
and the corresponding octupole deformation energies. This
can be attributed to the details of the single-particle spectra,
especially energy differences between levels with �j = 3 and
�l = 3, and also to different treatment of pairing correlations
[38].

Figure 12 displays the expectation values of the quadrupole
〈β2〉 and octupole 〈β3〉 deformations, as well as the octupole

variance δβ3 =
√

〈β2
3 〉 − 〈β3〉2, in the QOCH ground states

0+
1 , as functions of the neutron number. Initially the ground-

state quadrupole deformation 〈β2〉 increases rapidly and then
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FIG. 9. Deformation energy surfaces of 216−238Rn and 220−242Th
in the β2-β3 plane, calculated with the RMF+BCS model using the
PC-PK1 functional and δ-force pairing.

more gradually with neutron number, in both mass regions.
The corresponding ground-state octupole deformation 〈β3〉
increases at first, and then decreases with peaks at N ∼ 90
for medium-heavy nuclei, and at N ∼ 136 for heavy nuclei. In
our calculation 〈β3〉 � 0.12 is predicted for octupole deformed
nuclei, whereas 〈β3〉 ∼ 0.09 for nuclei with octupole soft
DESs. Both octupole deformed and octupole soft nuclei
exhibit large shape fluctuations, quantified by the variance

δβ3 =
√

〈β2
3 〉 − 〈β3〉2 that is shown in the bottom panel of

Fig. 12.

FIG. 10. Same as in the caption to Fig. 9 but for Pu and Cf
isotopes.

In Fig. 13 we illustrate the general quality of the QOCH
model calculation based on the PC-PK1 functional and δ-force
pairing, by comparing the theoretical excitation energies
of low-lying states 2+

1 , 4+
1 , and 3−

1 , and the B(E2; 2+
1 →

0+
1 ) values, to available data. The theoretical results are in

reasonable agreement with experiment, both for the excitation
energies and E2 transition rates, especially considering that
the excitation spectra have been calculated in the lowest order
approximation with the Inglis-Belyaev moments of inertia
and perturbative cranking mass parameters. Exceptions are
found in some spherical nuclei, where the theoretical excitation
energies are too high compared to the data (c.f. Figs. 14 and
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FIG. 11. Calculated values of the equilibrium quadrupole β2 and
octupole β3 deformations as functions of the neutron number, for the
14 isotopic chains analyzed in the present study.

15). One of the reasons is that the present implementation of the
QOCH model includes only quadrupole and octupole degrees
of freedom with the additional constraint of axial symmetry.
It does not take into account other, in some cases important,
degrees of freedom such as two-quasiparticle configurations
and triaxial deformations.

Figures 14 and 15 display the energy spectra of low-lying
even-spin positive-parity states up to Jπ = 10+, and the
odd-spin negative-parity states up to Jπ = 9−, for the 14
isotopic chains. The theoretical results are overall in reasonable
agreement with the available data, except for the fact that
the calculated spectra are too stretched in nuclei that are
nearly spherical. For the positive-parity bands the excitation
energies decrease rapidly up to N ∼ 90 and N ∼ 136 for the
lighter and heavier mass regions, respectively, and then vary
slowly with the addition of more neutrons. This is consistent
with the evolution of the average quadrupole deformation
〈β2〉 (cf. Fig. 12). For the Kπ = 0− negative-parity bands
in Fig. 14, the excitation energies in the lighter mass region
decrease up to N ∼ 88, show little variation until N ∼ 94,
and then increase gradually with neutron number. Similar
results were also predicted by the interacting boson model
(IBM) mapped from the mean-field potential energy surfaces
using the Gongy interaction or relativistic EDFs [33,34].

FIG. 12. Mean values of the quadrupole 〈β2〉 and octupole 〈β3〉
deformations, as well as the octupole variance δβ3 =

√
〈β2

3 〉 − 〈β3〉2,
computed for the QOCH ground states 0+

1 , as functions of the neutron
number.

Deviations are found in the Sm and Gd isotopes with N > 90,
where the experimental excitation energies decrease along the
isotopic chains whereas the theoretical values increase. This
correlates with the diminishing of octupole fluctuations around
the equilibrium minima of the DESs (cf. Fig. 8).

In the heavier mass region the excitation energies of
the negative-parity bands exhibit a parabolic behavior with
minima at N ∼ 136. For the Ra and Th isotopes, minima
are observed at N ∼ 136 for the experimental negative-parity
states, whereas the functional PC-PK1 predict the minima at
N ∼ 138. The theoretical minima gradually evolve to N ∼
134 for the heavier isotopic chains. This is related to the onset
of octupole minima in the deformation energy surfaces (cf.
Figs. 9 and 10). The appearance of plateaus in the calculated
excitation energies of negative parity states at N = 142 ∼ 146
is attributed to the softness of the corresponding energy
surfaces in the octupole direction, and is consistent with the
available data for Th, U, and Pu isotopes.
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FIG. 13. Comparison between the theoretical excitation energies
of the states 2+

1 , 4+
1 , and 3−

1 , and the B(E2; 2+
1 → 0+

1 ) values, and
their experimental counterparts [73].

A microscopic picture of the onset of octupole deformation
and octupole softness emerges from the dependence of the
single-nucleon levels on the two deformation parameters.
In Fig. 16 we plot the single neutron and proton levels of
226Th along a path in the β2-β3 plane. The path follows
the quadrupole deformation parameter β2 up to the position
of the equilibrium minimum β2 = 0.18, with the octupole
deformation parameter kept constant at zero value. Then,
for the constant value β2 = 0.18, the path continues from
β3 = 0 to β3 = 0.3. In the mean-field approach there is
a close relation between the total binding energy and the
level density around the Fermi level in the Nilsson diagram
of single-particle energies. A lower-than-average density of
single-particle levels around the Fermi energy results in extra
binding, whereas a larger-than-average value reduces binding.
Therefore, the onset of octupole minima around 226Th can be
attributed to the low neutron-level density around the Fermi
surface at N ∼ 136 and low proton-level density at Z ∼ 90.
One notices the repulsion between the � = 1/2 pairs of levels
that originate from the (g9/2,j15/2) spherical neutron levels and
(f7/2,i13/2) spherical proton levels, respectively. A rather low
neutron-level density is also predicted at N ∼ 142, induced
by the repulsion between the � = 3/2 pair that originates
from the (g9/2,j15/2) levels, which could cause the octupole
softness in the isotopes with N = 142 ∼ 146. Moreover, a
low proton-level density at Z ∼ 100, characterized by the
repulsion between the � = 3/2 pair of levels originating
from the (f7/2,i13/2) spherical levels, may lead to the onset
of octupole deformation around 234Fm. We have also analyzed
single-nucleon levels for the lighter mass region, and found that
the onset of octupole minima around 144Ba can be attributed
to the low neutron-level density around the Fermi surface at

N ∼ 88 and low proton-level density at Z ∼ 56, characterized
by the repulsion of the � = 1/2 pair from the (f7/2,i13/2)
spherical neutron levels and the (d5/2,h11/2) spherical proton
levels, respectively.

In Fig. 17 we compare the experimental and theoretical
B(E3; 3−

1 → 0+
1 ) values as functions of neutron number for

14 isotopic chains. The calculation generally reproduces the
empirical values. Quantitatively, the QOCH underestimates
the electric octupole transition rates of isotopes with N ≤ 88.
This could be because the present model only includes the
K = 0 components (axial symmetry), and the mixing with
K �= 0 might become important in nearly spherical nuclei [22].
On the other hand, it appears that the QOCH overestimates the
electric octupole transition rates in the heavier mass region.
This indicates that the predicted octupole deformations and
corresponding deformation energies are probably too large in
this mass region, which is possibly related to weaker pairing
correlations [38]. Smaller values of the calculated B(E3)
for weakly deformed nuclei, and larger B(E3) values for
well-deformed nuclei have also been obtained in a systematic
calculation based on the generator-coordinate extension of the
Hartree-Fock-Bogoliubov self-consistent mean-field theory
with the Gogny D1S effective interaction [22].

To illustrate the relation between octupole deformation
and pairing correlations, for 224Ra in Fig. 18 we display
the evolution of the calculated 〈β3〉 of the ground state, the
B(E3; 3−

1 → 0+
1 ), and the octupole deformation energy �Eoct,

as functions of the pairing strength Vτ (τ = n,p). Note that all
three quantities characteristic for octupole correlations exhibit
a marked decrease as pairing strength increases.

Finally, Fig. 19 displays the experimental and theoretical
intrinsic electric dipole moments D0 as functions of neutron
number for 14 isotopic chains. The theoretical D0 is calculated
from the corresponding reduced transition probability using
the relation,

B(E1; 1−
1 → 0+

1 ) = 3

4π
D2

0〈1010|00〉2. (24)

We note that for one isotope there may be more than
one experimental D0, which correspond to different angular
momenta. The theoretical results are of the same order of
magnitude as the available data. However, large fluctuation
with Z and N in the values of D0 can occur due to shell effects
and occupancy of different orbitals [1,17], and the theoretical
predictions fail to reproduce the detailed N (Z) dependence
of D0.

IV. SUMMARY

In the present study we have performed a microscopic
analysis of octupole shape transitions in 14 isotopic chains
characteristic for two regions of octupole deformation and
collectivity: Xe, Ba, Ce, Nd, Sm, Gd, Rn, Ra, Th, U, Pu,
Cm, Cf, and Fm. Starting from self-consistent binding energy
maps in the β2-β3 plane, calculated with the RMF+BCS
model based on the functional PC-PK1 and δ-interaction
pairing, a recent implementation of the quadrupole-octupole
collective Hamiltonian for vibrations and rotations was used
to calculate the excitation spectra and transition rates of
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FIG. 14. The energy spectra of the low-lying even-spin positive-parity states up to J π = 10+ (a) and (b), and odd-spin negative-parity
states up to J π = 9− (c) and (d), as functions of the neutron number for the Xe, Ba, Ce, Nd, Sm, and Gd isotopes. The experimental values are
from the NNDC compilation [73].
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FIG. 15. Same as in the caption to Fig. 14 but for the Rn, Ra, Th, U, Pu, Cm, Cf, and Fm isotopes.
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FIG. 16. Single neutron and proton levels of 226Th as functions
of deformation parameters. Each plot follows the quadrupole defor-
mation parameter β2 up to the position of the equilibrium minimum
β2 = 0.18, with the octupole deformation parameter kept constant at
zero value. Then, for the constant value β2 = 0.18, the path continues
from β3 = 0 to β3 = 0.3. The thick dashed (black) curves denote the
Fermi levels.

150 even-even nuclei. The parameters that determine the
collective Hamiltonian: The vibrational inertial functions, the
moments of inertia, and the zero-point energy corrections,
are calculated using single-quasiparticle energies and wave

FIG. 17. The experimental and theoretical B(E3; 3−
1 → 0+

1 ) val-
ues as functions of neutron number for the 14 isotopic chains analyzed
in this study. The experimental values are from Refs. [6,16,17,74].

FIG. 18. The calculated average octupole deformation 〈β3〉 of
the ground state (a), B(E3; 3−

1 → 0+
1 ) (b), and octupole deformation

energy �Eoct (c), defined as the energy difference between the
quadrupole deformed local minimum at β3 = 0 and the global
minimum, for 224Ra as functions of the ratio of the pairing strength
Vτ to the original value V 0

τ used in this study (τ = n,p).

functions that correspond to each point on the self-consistent
RMB+BCS deformation energy surface of a given nucleus.
The diagonalization of the collective Hamiltonian yields the
excitation energies and wave functions used to calculate
various observables.

The microscopic deformation energy surfaces exhibit char-
acteristic transitions with increasing neutron number: from
spherical quadrupole vibrational to stable octupole deformed
nuclei, to octupole vibrations typical for β3-soft potentials, and
finally to well-deformed prolate shapes in the Ba, Ce, Ra, Th,
U, Pu, Cm, Cf, and Fm isotopic chains. For Nd, Sm, and Gd
isotopes one finds soft energy surfaces with respect to both
quadrupole and octupole degrees of freedom in transitional
nuclei with N ∼ 90. The systematics of the energy spectra and
transition rates, associated with both positive- and negative-
parity yrast states, points to the appearance of prominent
octupole correlations around N ∼ 90 and N ∼ 136, and the
corresponding lowering in energy of negative-parity bands
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FIG. 19. The experimental and theoretical electric dipole mo-
ments D0 as functions of neutron number. The experimental values
are from Ref. [1].

with respect to the positive-parity ground-state band. The
energy plateaus of negative-parity bands at N = 142 ∼ 146
can be related to the soft energy surfaces in octupole direction
in the heavier mass region. In addition, the spectroscopic
properties predicted by the QOCH model are generally
in reasonable agreement with the systematics of available
data, and consistent with previous GCM calculations and
IBM results. Differences between empirical properties and
theoretical results, especially for the electric octupole tran-
sition rates and electric dipole moments, indicate that the
theoretical framework necessitates further development, such
as the inclusion of the triaxial degree of freedom and two-
quasiparticle configurations.
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[68] T. Nikšić, D. Vretenar, and P. Ring, Comp. Phys. Comm. 185,

1808 (2014).
[69] J. L. Egido and P. Ring, Nucl. Phys. A 383, 189 (1982); 388, 19

(1982).
[70] M. Anguiano, J. L. Egido, and L. M. Robledo, Nucl. Phys. A

696, 467 (2001).
[71] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevC.96.054303 for the deformation energy sur-
faces of Ra, U, Cm, and Fm isotopes.

[72] W. Nazarewicz, P. Olanders, I. Ragnarsson, J. Dudek, G. A.
Leander, P. Moller, and E. Ruchowsa, Nucl. Phys. A 429, 269
(1984).

[73] NNDC National Nuclear Data Center, Brookhaven National
Laboratory [http://www.nndc.bnl.gov/].

[74] T. Kibédi and R. H. Spear, At. Data Nucl. Data Tables 80, 35
(2002).

054303-14

https://doi.org/10.1103/PhysRevC.82.047301
https://doi.org/10.1103/PhysRevC.82.047301
https://doi.org/10.1103/PhysRevC.82.047301
https://doi.org/10.1103/PhysRevC.82.047301
https://doi.org/10.1103/PhysRevC.81.034315
https://doi.org/10.1103/PhysRevC.81.034315
https://doi.org/10.1103/PhysRevC.81.034315
https://doi.org/10.1103/PhysRevC.81.034315
https://doi.org/10.1103/PhysRevC.84.054302
https://doi.org/10.1103/PhysRevC.84.054302
https://doi.org/10.1103/PhysRevC.84.054302
https://doi.org/10.1103/PhysRevC.84.054302
https://doi.org/10.1103/PhysRevC.86.034336
https://doi.org/10.1103/PhysRevC.86.034336
https://doi.org/10.1103/PhysRevC.86.034336
https://doi.org/10.1103/PhysRevC.86.034336
https://doi.org/10.1088/0954-3899/39/10/105103
https://doi.org/10.1088/0954-3899/39/10/105103
https://doi.org/10.1088/0954-3899/39/10/105103
https://doi.org/10.1088/0954-3899/39/10/105103
https://doi.org/10.1103/PhysRevC.88.051302
https://doi.org/10.1103/PhysRevC.88.051302
https://doi.org/10.1103/PhysRevC.88.051302
https://doi.org/10.1103/PhysRevC.88.051302
https://doi.org/10.1088/0954-3899/42/5/055109
https://doi.org/10.1088/0954-3899/42/5/055109
https://doi.org/10.1088/0954-3899/42/5/055109
https://doi.org/10.1088/0954-3899/42/5/055109
https://doi.org/10.1103/PhysRevC.93.061302
https://doi.org/10.1103/PhysRevC.93.061302
https://doi.org/10.1103/PhysRevC.93.061302
https://doi.org/10.1103/PhysRevC.93.061302
https://doi.org/10.1103/PhysRevC.85.034306
https://doi.org/10.1103/PhysRevC.85.034306
https://doi.org/10.1103/PhysRevC.85.034306
https://doi.org/10.1103/PhysRevC.85.034306
https://doi.org/10.1103/PhysRevC.86.024319
https://doi.org/10.1103/PhysRevC.86.024319
https://doi.org/10.1103/PhysRevC.86.024319
https://doi.org/10.1103/PhysRevC.86.024319
https://doi.org/10.1103/PhysRevC.86.057304
https://doi.org/10.1103/PhysRevC.86.057304
https://doi.org/10.1103/PhysRevC.86.057304
https://doi.org/10.1103/PhysRevC.86.057304
https://doi.org/10.1088/0031-8949/91/6/063008
https://doi.org/10.1088/0031-8949/91/6/063008
https://doi.org/10.1088/0031-8949/91/6/063008
https://doi.org/10.1088/0031-8949/91/6/063008
https://doi.org/10.1103/PhysRevC.88.021303
https://doi.org/10.1103/PhysRevC.88.021303
https://doi.org/10.1103/PhysRevC.88.021303
https://doi.org/10.1103/PhysRevC.88.021303
https://doi.org/10.1103/PhysRevC.89.024312
https://doi.org/10.1103/PhysRevC.89.024312
https://doi.org/10.1103/PhysRevC.89.024312
https://doi.org/10.1103/PhysRevC.89.024312
https://doi.org/10.1103/PhysRevC.92.014312
https://doi.org/10.1103/PhysRevC.92.014312
https://doi.org/10.1103/PhysRevC.92.014312
https://doi.org/10.1103/PhysRevC.92.014312
https://doi.org/10.1103/PhysRevC.91.014317
https://doi.org/10.1103/PhysRevC.91.014317
https://doi.org/10.1103/PhysRevC.91.014317
https://doi.org/10.1103/PhysRevC.91.014317
https://doi.org/10.1103/PhysRevC.92.024303
https://doi.org/10.1103/PhysRevC.92.024303
https://doi.org/10.1103/PhysRevC.92.024303
https://doi.org/10.1103/PhysRevC.92.024303
https://doi.org/10.1103/PhysRevC.88.011305
https://doi.org/10.1103/PhysRevC.88.011305
https://doi.org/10.1103/PhysRevC.88.011305
https://doi.org/10.1103/PhysRevC.88.011305
https://doi.org/10.1103/PhysRevC.93.044304
https://doi.org/10.1103/PhysRevC.93.044304
https://doi.org/10.1103/PhysRevC.93.044304
https://doi.org/10.1103/PhysRevC.93.044304
https://doi.org/10.1103/PhysRevC.94.011303
https://doi.org/10.1103/PhysRevC.94.011303
https://doi.org/10.1103/PhysRevC.94.011303
https://doi.org/10.1103/PhysRevC.94.011303
https://doi.org/10.1088/1402-4896/aa6c4c
https://doi.org/10.1088/1402-4896/aa6c4c
https://doi.org/10.1088/1402-4896/aa6c4c
https://doi.org/10.1088/1402-4896/aa6c4c
https://doi.org/10.1088/1674-1137/34/8/011
https://doi.org/10.1088/1674-1137/34/8/011
https://doi.org/10.1088/1674-1137/34/8/011
https://doi.org/10.1088/1674-1137/34/8/011
https://doi.org/10.1103/PhysRevC.81.034302
https://doi.org/10.1103/PhysRevC.81.034302
https://doi.org/10.1103/PhysRevC.81.034302
https://doi.org/10.1103/PhysRevC.81.034302
https://doi.org/10.1016/j.physletb.2013.09.035
https://doi.org/10.1016/j.physletb.2013.09.035
https://doi.org/10.1016/j.physletb.2013.09.035
https://doi.org/10.1016/j.physletb.2013.09.035
https://doi.org/10.1088/0954-3899/43/2/024005
https://doi.org/10.1088/0954-3899/43/2/024005
https://doi.org/10.1088/0954-3899/43/2/024005
https://doi.org/10.1088/0954-3899/43/2/024005
https://doi.org/10.1103/PhysRevC.92.041304
https://doi.org/10.1103/PhysRevC.92.041304
https://doi.org/10.1103/PhysRevC.92.041304
https://doi.org/10.1103/PhysRevC.92.041304
https://doi.org/10.1016/j.physletb.2015.12.028
https://doi.org/10.1016/j.physletb.2015.12.028
https://doi.org/10.1016/j.physletb.2015.12.028
https://doi.org/10.1016/j.physletb.2015.12.028
https://doi.org/10.1103/RevModPhys.75.121
https://doi.org/10.1103/RevModPhys.75.121
https://doi.org/10.1103/RevModPhys.75.121
https://doi.org/10.1103/RevModPhys.75.121
https://doi.org/10.1016/j.physrep.2004.10.001
https://doi.org/10.1016/j.physrep.2004.10.001
https://doi.org/10.1016/j.physrep.2004.10.001
https://doi.org/10.1016/j.physrep.2004.10.001
https://doi.org/10.1016/j.ppnp.2005.06.001
https://doi.org/10.1016/j.ppnp.2005.06.001
https://doi.org/10.1016/j.ppnp.2005.06.001
https://doi.org/10.1016/j.ppnp.2005.06.001
https://doi.org/10.1016/j.ppnp.2006.07.001
https://doi.org/10.1016/j.ppnp.2006.07.001
https://doi.org/10.1016/j.ppnp.2006.07.001
https://doi.org/10.1016/j.ppnp.2006.07.001
https://doi.org/10.1016/j.ppnp.2011.01.055
https://doi.org/10.1016/j.ppnp.2011.01.055
https://doi.org/10.1016/j.ppnp.2011.01.055
https://doi.org/10.1016/j.ppnp.2011.01.055
https://doi.org/10.1016/0370-2693(86)90609-X
https://doi.org/10.1016/0370-2693(86)90609-X
https://doi.org/10.1016/0370-2693(86)90609-X
https://doi.org/10.1016/0370-2693(86)90609-X
https://doi.org/10.1016/0375-9474(91)90016-Y
https://doi.org/10.1016/0375-9474(91)90016-Y
https://doi.org/10.1016/0375-9474(91)90016-Y
https://doi.org/10.1016/0375-9474(91)90016-Y
https://doi.org/10.1103/PhysRevC.89.054306
https://doi.org/10.1103/PhysRevC.89.054306
https://doi.org/10.1103/PhysRevC.89.054306
https://doi.org/10.1103/PhysRevC.89.054306
https://doi.org/10.1103/PhysRevC.82.054319
https://doi.org/10.1103/PhysRevC.82.054319
https://doi.org/10.1103/PhysRevC.82.054319
https://doi.org/10.1103/PhysRevC.82.054319
https://doi.org/10.1007/s11467-014-0413-5
https://doi.org/10.1007/s11467-014-0413-5
https://doi.org/10.1007/s11467-014-0413-5
https://doi.org/10.1007/s11467-014-0413-5
https://doi.org/10.1103/PhysRevC.91.027304
https://doi.org/10.1103/PhysRevC.91.027304
https://doi.org/10.1103/PhysRevC.91.027304
https://doi.org/10.1103/PhysRevC.91.027304
https://doi.org/10.1103/PhysRevC.95.054321
https://doi.org/10.1103/PhysRevC.95.054321
https://doi.org/10.1103/PhysRevC.95.054321
https://doi.org/10.1103/PhysRevC.95.054321
https://doi.org/10.1007/s10050-000-4504-z
https://doi.org/10.1007/s10050-000-4504-z
https://doi.org/10.1007/s10050-000-4504-z
https://doi.org/10.1007/s10050-000-4504-z
https://doi.org/10.1103/PhysRev.103.1786
https://doi.org/10.1103/PhysRev.103.1786
https://doi.org/10.1103/PhysRev.103.1786
https://doi.org/10.1103/PhysRev.103.1786
https://doi.org/10.1016/0029-5582(61)90384-4
https://doi.org/10.1016/0029-5582(61)90384-4
https://doi.org/10.1016/0029-5582(61)90384-4
https://doi.org/10.1016/0029-5582(61)90384-4
https://doi.org/10.1016/0375-9474(79)90535-9
https://doi.org/10.1016/0375-9474(79)90535-9
https://doi.org/10.1016/0375-9474(79)90535-9
https://doi.org/10.1016/0375-9474(79)90535-9
https://doi.org/10.1103/PhysRevC.79.034303
https://doi.org/10.1103/PhysRevC.79.034303
https://doi.org/10.1103/PhysRevC.79.034303
https://doi.org/10.1103/PhysRevC.79.034303
https://doi.org/10.1103/PhysRevC.79.054301
https://doi.org/10.1103/PhysRevC.79.054301
https://doi.org/10.1103/PhysRevC.79.054301
https://doi.org/10.1103/PhysRevC.79.054301
https://doi.org/10.1016/j.cpc.2014.02.027
https://doi.org/10.1016/j.cpc.2014.02.027
https://doi.org/10.1016/j.cpc.2014.02.027
https://doi.org/10.1016/j.cpc.2014.02.027
https://doi.org/10.1016/0375-9474(82)90447-X
https://doi.org/10.1016/0375-9474(82)90447-X
https://doi.org/10.1016/0375-9474(82)90447-X
https://doi.org/10.1016/0375-9474(82)90447-X
https://doi.org/10.1016/0375-9474(82)90506-1
https://doi.org/10.1016/0375-9474(82)90506-1
https://doi.org/10.1016/0375-9474(82)90506-1
https://doi.org/10.1016/S0375-9474(01)01219-2
https://doi.org/10.1016/S0375-9474(01)01219-2
https://doi.org/10.1016/S0375-9474(01)01219-2
https://doi.org/10.1016/S0375-9474(01)01219-2
http://link.aps.org/supplemental/10.1103/PhysRevC.96.054303
https://doi.org/10.1016/0375-9474(84)90208-2
https://doi.org/10.1016/0375-9474(84)90208-2
https://doi.org/10.1016/0375-9474(84)90208-2
https://doi.org/10.1016/0375-9474(84)90208-2
http://www.nndc.bnl.gov/
https://doi.org/10.1006/adnd.2001.0871
https://doi.org/10.1006/adnd.2001.0871
https://doi.org/10.1006/adnd.2001.0871
https://doi.org/10.1006/adnd.2001.0871



