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Background: The coexistence of different geometric shapes at low energies presents a universal structure
phenomenon that occurs over the entire chart of nuclides. Studies of the shape coexistence are important for
understanding the microscopic origin of collectivity and modifications of shell structure in exotic nuclei far from
stability.
Purpose: The aim of this work is to provide a systematic analysis of characteristic signatures of coexisting
nuclear shapes in different mass regions, using a global self-consistent theoretical method based on universal
energy density functionals and the quadrupole collective model.
Method: The low-energy excitation spectrum and quadrupole shape invariants of the two lowest 0+ states of
even-even nuclei are obtained as solutions of a five-dimensional collective Hamiltonian (5DCH) model, with
parameters determined by constrained self-consistent mean-field calculations based on the relativistic energy
density functional PC-PK1, and a finite-range pairing interaction.
Results: The theoretical excitation energies of the states, 2+

1 , 4+
1 , 0+

2 , 2+
2 , 2+

3 , as well as the B(E2; 0+
1 → 2+

1 )
values, are in very good agreement with the corresponding experimental values for 621 even-even nuclei.
Quadrupole shape invariants have been implemented to investigate shape coexistence, and the distribution of
possible shape-coexisting nuclei is consistent with results obtained in recent theoretical studies and available data.
Conclusions: The present analysis has shown that, when based on a universal and consistent microscopic
framework of nuclear density functionals, shape invariants provide distinct indicators and reliable predictions
for the occurrence of low-energy coexisting shapes. This method is particularly useful for studies of shape
coexistence in regions far from stability where few data are available.
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I. INTRODUCTION

Shape coexistence presents an intriguing phenomenon in
mesoscopic systems in which low-energy nearly degenerate
states occur characterized by different geometrical shapes.
Atomic nuclei, in particular, often exhibit (sets of) energy
eigenstates with very different electromagnetic properties:
moments and transition rates, and different distributions of
proton and neutron pairs with respect to their corresponding
Fermi levels [1–3]. The origin of nuclear shape coexistence lies
in the subtle interplay between two opposing trends, namely,
while shell or subshell closures stabilize spherical shapes, the
residual interactions between valence protons and neutrons
outside closed shells cause deformed configurations to become
energetically favorable. Studies of shape coexistence are im-
portant for understanding the microscopic origin of collectivity
and the apparent disappearance of shell structures in exotic
nuclei far from stability.

As summarized in Ref. [1], the most pronounced spectro-
scopic fingerprints of coexistence between spherical and/or
shapes with quadrupole deformation are the diagonal E2
matrix elements, B(E2) values, E0 transitions, isotope and
isomer shifts, and two-nucleon separation energies. Among
them, the diagonal E2 matrix elements and B(E2) values are
direct signatures of shape coexistence. In the case of even-even
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nuclei we are interested in the occurrence of significantly
different shapes belonging to the ground state 0+

1 and the
first excited 0+ state at relatively low energy. For 0+ states
the diagonal E2 matrix elements vanish but, from a complete
set of E2 matrix elements, one can calculate model indepen-
dent moments and higher-order moments of the quadrupole
operator—the shape invariants. Shape invariants were first
introduced by Kumar [4] and Cline [5] in the analysis of large
sets of E2 matrix elements obtained in Coulomb excitation
experiments. In the geometrical model, shape invariants can
be related to the polar quadrupole deformation parameters β
and γ or, to be more precise, to the effective values βeff and
γeff and their fluctuations. Quadrupole shape invariants have
been extensively used to investigate shape coexistence in many
regions of the nuclear chart [1,6–12].

Studies of shape coexistence at low energy have evolved
from isolated cases in deformed nuclei such as, for instance,
prolate-oblate coexistence, to a generic phenomenon that
occurs in nuclei over the entire mass table. It is, therefore,
interesting to perform systematic analyses of characteristic
signatures of coexisting shapes in different mass regions,
particularly using a global self-consistent approach based on
universal energy density functionals or effective interactions.
In this work we present a calculation of quadrupole shape
invariants for the two lowest 0+ states of even-even nuclei
using a five-dimensional collective Hamiltonian (5DCH) with
parameters determined by self-consistent relativistic mean-
field calculations [13,14]. This model goes beyond the simple
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mean-field approximation and takes into account correlations
related to restoration of symmetries and fluctuations in
collective coordinates. In a number of recent studies it has
successfully been applied to analyses of low-energy collective
states in various mass regions [13–23].

II. FORMULAS AND NUMERICAL DETAILS

The lowest-order quadrupole invariants that characterize
shape coexistence are defined by the following relations:

q2(0+
i ) = 〈0+

i |Q2|0+
i 〉 =

∑
j

〈0+
i ||Q||2+

j 〉〈2+
j ||Q||0+

i 〉, (1)

q3(0+
i ) =

√
35

2
〈0+

i |Q3|0+
i 〉

=
√

7

10

∑
jk

〈0+
i ||Q||2+

j 〉〈2+
j ||Q||2+

k 〉〈2+
k ||Q||0+

i 〉. (2)

These invariants can be related to the polar deformation
parameters βeff and γeff :

q2(0+
i ) =

(
3ZeR2

4π

)2

〈β2〉 ≡
(

3ZeR2

4π

)2

β2
eff, (3)

q3(0+
i )

q
3/2
2 (0+

i )
= 〈β3 cos 3γ 〉

〈β2〉3/2
≡ cos 3γeff, (4)

where R = r0A
1/3 and r0 = 1.2 fm.

To compute quadrupole shape invariants, one has to
evaluate the E2 matrix elements between states with angular
momenta 0+ and 2+. To this end, we first carry out large-scale
deformation-constrained self-consistent RMF + BCS calcu-
lation to generate mean-field single-nucleon wave functions
in the entire (β,γ ) plane. The energy density functional
PC-PK1 [24] determines the effective interaction in the
particle-hole channel, and a finite-range force that is separable
in momentum space [25] and adjusted to reproduce the density
dependence of the bell-shaped pairing gap in nuclear matter
is used in the particle-particle channel. The self-consistent
Dirac equation for the single-particle wave functions is solved
by expanding the solution in a set of eigenfunctions of a
three-dimensional harmonic oscillator potential in Cartesian
coordinates, including 12, 14, and 16 major shells for
nuclei with Z < 20, 20 � Z < 82, and Z � 82, respectively.
The single-particle wave functions, occupation probabilities,
and quasiparticle energies are used to calculate the mass
parameters, moments of inertia, and collective potentials
that determine the 5DCH, all of which are functions of the
deformation parameters β and γ . We note that the moments
of inertia are calculated using the Inglis-Belyaev formula,
and the mass parameters associated with the two quadrupole
collective coordinates are determined in the perturbative
cranking approximation. The result of the diagonalization of
the 5DCH [13,14,21] is the energy spectrum of collective
states and the corresponding eigenfunctions. The collective
wave functions are used to calculate various observables, for
instance, the quadrupole E2 reduced transition probabilities
and spectroscopic quadrupole moments.

In the present analysis, for each 0+ state the sums in
Eqs. (1) and (2) include the 30 lowest 2+ states, and this choice
ensures excellent convergence for the calculated quadrupole
shape invariants. A systematic calculation of the invariants
q2(0+

1 ), q2(0+
2 ), q3(0+

1 ), and q3(0+
2 ) and the corresponding

effective deformation parameters βeff(0
+
1 ), βeff(0

+
2 ), γeff(0

+
1 ),

and γeff(0
+
2 ) has been carried out for 621 even-even nuclei with

Z,N � 10 and for which the first 2+ state has been determined
in experiment [26]. We consider the following criteria for shape
coexistence: the difference between βeff cos 3γeff for the two
lowest 0+ states is large, and the excitation energy of 0+

2 is
low. To explore the role of triaxiality, we also consider the
difference between βeff for the two lowest 0+ states.

III. RESULTS AND DISCUSSION

Before discussing quadrupole shape invariants, in Fig. 1
we illustrate the quality of the 5DCH model calculation by
comparing the theoretical excitation energies of the low-
lying states 2+

1 , 4+
1 , 0+

2 , 2+
2 , and 2+

3 , and the corresponding
B(E2; 0+

1 → 2+
1 ) values, to available data. The theoretical

results are overall in good agreement with experiment, both
for the excitation energies and E2 transitions, especially
considering that the excitation spectra have been calculated in
the lowest-order approximation with Inglis-Belyaev moments
of inertia and perturbative cranking mass parameters. For
the B(E2) values, in particular, the calculation not only
reproduces the data in a wide interval of more than 3 orders of
magnitude but is also completely parameter free. Namely, an
important advantage of using structure models based on self-
consistent mean-field single-particle solutions is the fact that
observables, such as transition probabilities and spectroscopic
quadrupole moments, are calculated in the full configuration
space and there is no need for effective charges. This enables
model calculations to reproduce empirical properties of nuclei
characterized by shape coexistence but also, more importantly,
to make parameter-independent predictions in regions of exotic
nuclei far from the valley of β stability where few data are
available. Exceptions are found in some transitional nuclei,
and for nuclei with the number of protons Z close to the
magic numbers. One of the principal reasons is that the present
5DCH model includes only quadrupole collective degrees of
freedom and, therefore, does not explicitly take into account
two-quasiparticle configurations and, for instance, octupole
deformations. We note that the overall quality of the results
shown in Fig. 1 is comparable to that of those obtained using
the Gogny D1S effective interaction in Refs. [27,28].

Figure 2 displays the calculated absolute differences of
βeff cos 3γeff (a), and βeff (b) between the two lowest 0+ states
for 621 even-even nuclei. We also map the ratios between the
excitation energies of the states 0+

2 and 2+
1 in Fig. 3. Shape

coexistence may be expected to occur in nuclei in which
absolute values of these differences are relatively large, for
instance, >0.1, and, simultaneously, the first excited 0+

2 states
are low in energy when compared to the excitation energy
of 2+

1 . Overall, the distribution of possible shape-coexisting
nuclei shown in Figs. 2(a) and 2(b) and in Fig. 3 is consistent
with the main regions of shape coexistence summarized by
Heyde and Wood in Fig. 8 of their review paper [1]. Here
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FIG. 1. Theoretical excitation energies of the states 2+
1 , 4+

1 , 0+
2 , 2+

2 , and 2+
3 and the B(E2; 0+

1 → 2+
1 ) values (in units of e2b2) in even-even

nuclei, compared to the corresponding experimental values [26].

the aim is not to compute properties of individual shape-
coexisting nuclei, but to indicate mass regions that display
structure properties associated with the phenomenon of shape
coexistence. Based on the results obtained in the present
analysis, we discuss the occurrence of shape coexistence in
different regions of the table of nuclides.

(i) Nuclei in the vicinity of Z ∼ 50 and Z ∼ 82.
The coexistence of low-lying spherical and intruder
deformed shapes has been extensively studied and
demonstrated by numerous experiments in Sn, Cd,
Te, Pb, Hg, and Po isotopes [1,6–8,29–33]. Shape
coexistence in these regions can also be related
to triaxiality, but the number of possible triaxial
shape-coexisting nuclei is not large.

(ii) Z ∼ 64 and N ∼ 90 nuclei. The primary interest in
this region is the rapid onset of deformation in the
transition from N = 86 to N = 92 [14,16,34]. The
issue of shape coexistence here is somewhat subtle
because there are no obvious differences in band
energy spacing or B(E2) values. Moreover, the 0+

2
states are found at relatively high energies because of
strong mixing between the two lowest K = 0 bands.

(iii) Z ∼ 64 and N ∼ 76 nuclei. Medium-deformed tri-
axial ground states coexisting with highly deformed

prolate excited state are predicted in this region.
Furthermore, it is found that triaxial ground states
originate from the interaction between proton multi-
particle and neutron multihole states, and the prolate
excited states are built on a deformed neutron
shell gap with β ∼ 0.4. This result is consistent
with that obtained using the Gongy D1S effective
interaction [27,28]. New measurements of spectro-
scopic properties are suggested in this mass region,
especially for the nuclei 134Nd, 136,138Sm, 140,142Gd,
and 142,144Dy.

(iv) Z ∼ 40 and N ∼ 60 nuclei. The structure of nuclei in
this mass region is characterized by a sudden onset of
deformation in the transition from N = 58 to N =
60, as demonstrated by the dramatic change in the
isotope shifts δ〈r2〉 and two-neutron separation ener-
gies S2n. These changes occur because of the crossing
between coexisting structures, that is, highly de-
formed prolate and spherical configurations [1]. Nu-
merous measurements of spectroscopic quadrupole
moments, B(E2) values, E0 transitions, and two-
nucleon and α-cluster transfer data, have revealed
the onset of shape coexistence in Sr, Zr, and Mo
isotopes [1,35–43], while data for static and dynamic
quadrupole moments show that shape coexistence

054321-3
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FIG. 2. Absolute differences between the calculated βeff cos 3γeff

(a) and βeff (b) values for the two lowest 0+ states of 621 even-even
nuclei.

still persists in Ru and Pd isotopes [1,10,44–46].
Our calculation also indicates that heavier Ru and
Pd isotopes exhibit shape-coexisting structures, with
triaxiality playing an important role [46,47].

FIG. 3. The calculated ratios between the excitation energies of
the states 0+

2 and 2+
1 for 621 even-even nuclei.

(v) Z ∼ 40 and N ∼ 70 nuclei. These nuclei are very
neutron-rich and only limited spectroscopic informa-
tion is available. Recently the first measurement of
low-lying states in the neutron-rich 110Zr and 112Mo
was performed via in-beam γ -ray spectroscopy.
Low-lying 2+

1 states observed at excitation energies
of 185(11) and 235(7) keV, respectively, as well
as R42 values ∼3, indicate that both nuclei are
well deformed [48]. The present study has also
shown that 110Zr does not exhibit a stabilizing
shell effect corresponding to the harmonic oscillator
magic numbers Z = 40 and N = 70, thus pointing
to possible shape coexistence in this mass region.
We note that the present self-consistent mean-field
calculation predicts a spherical global minimum in
110Zr, similar to other recent mean-field results [49].
The deformed ground state is obtained by taking into
account dynamical, beyond mean-field correlations.

(vi) Z ∼ 34 and N ∼ 40 nuclei. The manifestation of
shape coexistence in this region can be attributed
to three shell gaps in the Nilsson level diagram: a
weakly deformed shell gap at Z = 34, a spherical
subshell closure at N = 40, and a highly deformed
prolate shell gap at N = 38 [50,51]. Detailed dis-
cussions of spectroscopic properties can be found
in Refs. [1,12,42,52,53] and references therein. We
note that, according to Fig. 2(a), the Z ∼ 40 and
N ∼ 40 nuclei also display shape-coexisting struc-
tures, similar to predictions in Refs. [54,55]. How-
ever, the 0+

2 excitation energies in these nuclei are
rather high (cf. Fig. 3) and, therefore, additional mea-
surements are necessary to clarify these structures.

(vii) Z ∼ 28 nuclei. Shape coexistence is observed in
nuclei with N ∼ 28, 40, and 50 [56–62], which is
consistent with our predictions.

(viii) (N,Z) ∼ (20,12), (28, 14), and (40, 24) nuclei. The
so-called “islands of inversion” have attracted con-
siderable interest in the past 2 decades. These studies
have been summarized in Refs. [1,63]. The term
island of inversion refers to the fact that 2p-2h states
are located below 0p-0h closed-shell states. This
implies inversions of states and results in phenomena
that basically do not differ from well-known struc-
tures characterized by shape coexistence. The results
obtained in the present study are generally consistent
with measurement except for the N = 20 isotones,
for which the N = 20 shell closure calculated with
the functional PC-PK1 is simply too strong.

(ix) N ≈ Z light nuclei. Our predictions are consistent
with the nuclei listed in Table III of Ref. [1],
especially for the 40Ca region.

(x) N,Z < 20 nuclei. The occurrence of shape coex-
istence is predicted in many nuclei in this region
due to a rather large effect of quadrupole deforma-
tion [27,64].

IV. SUMMARY

In summary, we have performed a systematic calcula-
tion of quadrupole shape invariants for the two lowest 0+

054321-4



GLOBAL ANALYSIS OF QUADRUPOLE SHAPE . . . PHYSICAL REVIEW C 95, 054321 (2017)

states of 621 even-even nuclei. Excitation spectra and E2
transition matrix elements have been computed using the
five-dimensional collective Hamiltonian model based on the
relativistic energy density functional PC-PK1 and a finite-
range pairing interaction. The model accurately reproduces
available data on excitation energies of the low-lying states
2+

1 , 4+
1 , 0+

2 , 2+
2 , and 2+

3 and B(E2; 0+
1 → 2+

1 ) values, over
the entire chart of nuclides. The resulting quadrupole shape
invariants q2 and q3 for the states 0+

1 and 0+
2 can be related

to the corresponding effective polar deformation parameters
βeff and γeff . A systematic comparison of shape invariants
for the lowest 0+ states indicates regions of possible shape
coexistence. The coexistence of different geometric shapes at
low energies has emerged as a universal structure phenomenon
that occurs in different mass regions over the entire chart
of nuclides. A global theoretical approach such as the one
based on energy density functionals is essential for accurate

predictions in regions far from stability where few data are
available. In this work signatures of shape coexistence have
been analyzed and compared with previous theoretical studies
and available data. It has been shown that, when based on
a universal and consistent microscopic framework of nuclear
density functionals, shape invariants provide distinct indicators
and reliable predictions for the occurrence of low-energy
coexisting shapes.
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