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The propagator of a dynamically screened Coulomb interaction W in a sandwichlike structure consisting of
two graphene layers separated by a slab of Al2O3 (or vacuum) is derived from single-layer graphene response
functions and by using a local dielectric function for the bulk Al2O3. The response function of graphene is
obtained using two approaches within the random phase approximation (RPA): an ab initio method that includes
all electronic bands in graphene and a computationally less demanding method based on the massless Dirac
fermion (MDF) approximation for the low-energy excitations of electrons in the π bands. The propagator W

is used to derive an expression for the effective dielectric function of our sandwich structure, which is relevant
for the reflection electron energy loss spectroscopy of its surface. Focusing on the range of frequencies from
THz to mid-infrared, special attention is paid to finding an accurate optical limit in the ab initio method, where
the response function is expressed in terms of a frequency-dependent conductivity of graphene. It was shown
that the optical limit suffices for describing hybridization between the Dirac plasmons in graphene layers and
the Fuchs-Kliewer phonons in both surfaces of the Al2O3 slab, and that the spectra obtained from both the ab
initio method and the MDF approximation in the optical limit agree perfectly well for wave numbers up to
about 0.1 nm−1. Going beyond the optical limit, the agreement between the full ab initio method and the MDF
approximation was found to extend to wave numbers up to about 0.3 nm−1 for doped graphene layers with the
Fermi energy of 0.2 eV.

DOI: 10.1103/PhysRevB.96.075433

I. INTRODUCTION

Even though graphene is just a one-atom-thick layer of
carbon, it supports a variety of electronic excitations, ranging
from the high-energy π and π + σ transitions, which lie in the
ultraviolet (UV) to the far-ultraviolet (FUV) frequency range,
down to the low-energy excitations within the π electronic
bands in doped graphene, lying in the range of terahertz (THz)
to infrared (IR) frequencies [1–4]. It was recently shown that
the π and π + σ transitions do not behave as plasmons in
the long-wavelength (or optical) limit [5], whereas for smaller
wavelengths they become strongly damped by electron-hole
excitations [6], and thus are not interesting from a practical
point of view. On the other hand, the intraband π electron
excitations in doped graphene, which are often called Dirac
plasmons, are weakly damped and hence exhibit relatively
long propagation lengths, while being efficiently localized
in two dimensions (2D) [7–9]. Moreover, the one property
that makes graphene particularly attractive is the possibility
to tune its Dirac plasmon dispersion via changing the doping
density of graphene by simple application of an electrostatic
gate potential [3,4,6–12]. Another means of tuning the
collective modes in devices containing multiple graphene
layers is based on hybridization between Dirac plasmons in
individual graphene layers, which can be controlled by suitably
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engineered interlayer spacer materials of varying thickness
and dielectric properties [13,14]. Therefore Dirac plasmons in
graphene show great potential for applications in photonics,
optoelectronics, transformation optics, and plasmonics in the
THz to mid-IR range [8–11].

In the nanoscale devices, graphene layers typically ap-
pear in stacks [12,15] or sandwichlike structures [16] with
insulating spacers between them made of polar materials,
which often support strong Fuchs-Kliewer (FK), or surface
optical phonon modes in the THz to mid-IR frequency
range [17]. Those surface phonons strongly interact with
longitudinal plasmon modes, and may therefore completely
change the dispersion and damping of the Dirac plasmons
in graphene [18–21], thereby seriously affecting its tunability
for optoelectronic [12,17,20–22] and plasmonic [23–25] ap-
plications in the range of frequencies of technological interest.
While this provides strong motivation for a theoretical study
of plasmon-phonon hybridization between graphene and the
nearby polar insulator(s), a question arises as to how one
can most effectively probe the hybridized plasmon-phonon
modes. Using light as direct probe is not effective because
the longitudinal plasmon-phonon branches will always lie
below the (transverse) light line, ω = Qc, with Q being
an in-plane wave number in graphene [4], so that purely
optical excitation of plasmon-phonon modes will never occur.
Such excitation could occur indirectly, for example, when
light is used first to excite a Mie resonance in a metallic
tip placed in the vicinity of a graphene/insulator interface.
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Such Mie resonances are localized dipole oscillations, which
(depending on the polarization and frequency) are able to
excite plasmon-phonon resonances at a graphene/insulator
interface. This methodology is characterized as the near-field
imaging [26].

However, the most efficient way to probe surface plasmon-
phonon resonances is by means of an externally moving
charge. The most commonly used technique is the reflection
electron energy loss spectroscopy (REELS), which uses
electron beams with typical energies on the order of some
10 eV [27]. This technique was recently used to study
hybridization of a Dirac plasmon and a surface optical phonon
in a graphene layer grown epitaxially on a SiC substrate, both
experimentally [28–30] and theoretically [31,32]. Another
promising experimental technique, which could be used to
study plasmon-phonon hybridization on a surface is low-
energy ion grazing scattering (LEIGS) where the ions with
energies in the keV range are grazingly scattered with an angle
of incidence of about 1◦ (almost parallel) from a surface.
Although this technique is mainly used for probing the FK
phonons on polar insulating surfaces [33–36], it should be
noted that both REELS and LEIGS use charged particles that
move at speeds comparable to the Fermi speed vF ≈ c/300
(where c is the speed of light in vacuum) of graphene’s π

electron bands.
As a prototype structure of interest for designing photo-

electronic devices that contain multiple layers of graphene,
we focus in this work on a sandwich structure with infinitely
large area placed in vacuum, which consists of two layers
of graphene separated by a 5-nm-thick insulating layer [16],
assumed to be sapphire (aluminum oxide, Al2O3), an experi-
mentally often used dielectric spacer [25,37,38]. We designate
the sandwich as sy1-Al2O3-sy2, where the system on either side
of the sandwich, syi , may be vacuum or graphene layer gr(EF )
with Fermi energy EF . When there are two graphene layers, we
allow them to be doped with different charge carrier densities,
giving rise to different EF values. In particular, we consider
various combinations of graphene layers with EF = 1 eV,
200 meV, or 0 (neutral, or pristine graphene). We note that
the gr-Al2O3-gr composite has already found an application
as double-layer graphene optical modulator [37,38], where an
exactly 5-nm-thick Al2O3 film was fabricated [37]. In this
paper, we compute the so-called loss function, or the electron
energy loss spectrum (EELS) [2,39], of interest for a REELS
applied to one of the surfaces on our sy1-Al2O3-sy2 sandwich.
For example, the EELS of a composite structure gr1-Al2O3-gr2
with two doped graphene layers is expected to exhibit two
types of hybridization: one between the Dirac plasmons in each
graphene layer, and the other being their hybridization with the
surface phonon modes in the Al2O3 spacer. Similar theoretical
investigations were already conducted in Refs. [18,19], where
the authors investigated hybridized plasmon-phonon modes in
single-layer graphene deposited on an (experimentally often
used) SiO2 semi-infinite substrate.

The propagator of dynamically screened Coulomb interac-
tion W (Q,ω,z,z′) for a composite structure is derived in this
paper in terms of single-layer graphene response functions
χ1,2(Q,ω) and the bulk Al2O3 local dielectric function εS(ω).
The response functions χ1,2(Q,ω) are obtained using two com-
plementary methods: an ab initio random phase approximation

(RPA) method for all valence electrons in carbon, and the
RPA method for graphene’s π electrons described as massless
Dirac fermions at zero temperature [40,41], which we call
the MDF-RPA method. The propagator W is used to derive
an effective 2D dielectric function ε(Q,ω) of the composite,
giving the EELS as ∼ − �[1/ε(Q,ω)]. Special attention is
paid to comparing the ab initio RPA results for EELS with the
computationally less demanding MDF-RPA results. It should
be noted that, while the latter method is readily implemented
in the optical limit (Q ≈ 0), the ab initio RPA method has
to be treated with great care to reach this limit, which is
of primary interest for optoelectronic applications. In that
respect, it is thoroughly demonstrated in this work how to
solve the problem of ab initio calculation of the EELS in
quasi-2D crystals for a very fine Q-point mesh (i.e., when
�Q is smaller than the minimal value allowed by the k-point
sampling) in the optical limit. It is shown that, for ω < EF

and for the wave-number range Q < 0.8 nm−1 studied in this
work, the EELS obtained using both methods agree quite well.
The only disagreement arises in the Dirac plasmon dispersion
for Q > 0.3 nm−1 and ω > EF , which establish upper
bounds for the range of confidence in using the MDF-RPA
method to describe nonlocal effects in the optical response of
graphene.

Moreover, dispersion relations of the coupled plas-
mon/phonon modes for different compositions of our sandwich
structure are calculated using both the optical limit of the
MDF-RPA method [42], which we call the “optical MDF-RPA”
method, and the (analytical) Drude model, and are compared
with the EELS data from both the ab initio RPA and the full
“MDF-RPA” calculations. It is shown that for Q < 0.15 nm−1

the “optical MDF-RPA” dispersion relations agree extremely
well with the EELS intensity patterns from both types of
the RPA calculations. It is further demonstrated that even the
simple Drude model agrees very well with the EELS intensity
patterns for Q < 0.08 nm−1, which enters the THz frequency
range of practical interest, thereby reaffirming the utility of
this popular modeling approach in graphene-based photonics.

In Sec. II, we present the methodology used to calculate
dynamically screened Coulomb interaction W (Q,ω,z,z′) and
the effective 2D dielectric function ε(Q,ω) of a gr1-Al2O3-gr2
composite. In Sec. III, we analyze the EELS and the
plasmon/phonon dispersion relations in the reduced (Q <

0.08 nm−1) and extended (Q < 0.8 nm−1) wave-number in-
tervals for several composites: single-layer graphene, double-
layer graphene, as well as symmetrical (sy1 = sy2) and
asymmetrical (sy1 �= sy2) composites sy1-Al2O3-sy2 with one
and two graphene layers. In Sec. IV, we present our concluding
remarks.

II. METHODOLOGY

A. Modeling the Al2O3 slab

A possible composite structure of the gr-Al2O3-gr sandwich
is shown in Fig. 1(a). The Al2O3 slab is cut along (1,1,1)
planes, so that its thickness is a − 2h nm, while the graphene
layers occupy the z = ∓a/2 planes, and are thus located a
distance h = 0.32 nm away from the nearest aluminum planes.
Taking a = 5 nm, the unit cell for such a huge nanostructure
consists of 2878 atoms, so it is impossible to provide full
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FIG. 1. (a) Crystal structure of a gr-Al2O3-gr composite. (b)
Simplified model where the sapphire layer is approximated by a
homogeneous dielectric slab described by local dielectric function
εS(ω), whereas graphene sheets are described by 2D response
functions χ1,2(Q,ω).

ab initio ground state and structural optimization calculation.
Moreover, the ab initio calculation of the response function
would be even more tedious, so we seek some approximations,
which would still enable the response function calculations.
The easiest (and probably the best) approximation is to treat the
Al2O3 slab as homogeneous dielectric described by some local
dielectric function εS(ω), while the two graphene layers can
be considered as purely 2D systems described by the response
functions χ1,2(Q,ω), as sketched in Fig. 1(b). For simplicity,
we also take h = 0, so that the dielectric layer completely
fills the space between graphene layers; it was found that this
approximation has negligible effects on the coupled modes.

The dielectric properties (or the dynamic response) of
the bulk ionic crystals in the long-wavelength limit can be
determined in terms of their optical phonons in � point.
More complex polar crystals such as Al2O3 posses a multitude
of different optical phonons with different symmetries and
polarizations. However, here we suppose that the polarization
of the bulk crystal mainly comes from excitations of the two
optical modes, which have the largest oscillator strengths, as
proposed in Refs. [17,43]. Therefore we assume that the bulk
dielectric function of Al2O3 is [44]

εS(ω) = ε∞
ox + (

εi
ox − ε∞

ox

) ω2
TO2

ω2
TO2 − ω2 − iωγTO2

+(
ε0
ox − εi

ox

) ω2
TO1

ω2
TO1 − ω2 − iωγTO1

, (1)

where ε∞
ox , εi

ox , and ε0
ox are the optical, intermediate, and static

permittivities, ωTO1 and ωTO2 are the first and second transverse
optical (TO) angular frequencies (with ωTO1 < ωTO2), and
γTO1 and γTO2 are the damping rates of the corresponding
TO phonons.

B. Dynamic response functions of graphene layers

If the graphene layers are considered as fully 2D systems,
their nonlocal independent-electron response functions may
be written as [3]

χ0
i (Q,ω,z,z′) = χ0

i (Q,ω)δ(z − zi)δ(z′ − zi); i = 1,2, (2)

where Q is the momentum transfer vector parallel to the
x-y plane, and z1 = −a/2 and z2 = a/2. Here, the χ0

1,2(Q,ω)
functions are calculated from first principles as

χ0
i (Q,ω) = L χ

0,i
G=0G′=0(Q,ω); i = 1,2, (3)

where the 3D Fourier transform of the independent-electron
response function is given by

χ
0,i
GG′(Q,ω)

= 2

�

∑
K∈SBZ

∑
n,m

f i
n(K) − f i

m(K + Q)

h̄ω + iη + En(K) − Em(K + Q)

×ρnK,mK+Q(G) ρ∗
nK,mK+Q(G′); i = 1,2, (4)

with f
1,2
nK = [e(EnK−E

1,2
F )/kT + 1]−1 being the Fermi-Dirac dis-

tributions at the temperature T . The charge vertices in (4) have
the form

ρnK,mK+Q(G) =
∫

�

dre−i(Q+G)·r φ∗
nK(r)φnK+Q(r), (5)

where G = (G‖,Gz) are the 3D reciprocal lattice vectors
and r = (ρ,z) is a 3D position vector. Integration in (5) is
performed over the normalization volume � = S × L, where
S is the normalization surface and L is superlattice constant
in the z direction (separation between graphene layers in a
superlattice arrangement). The plane-wave expansion of the
wave function has the form

φnK(ρ,z) = 1√
�

eiK·ρ ∑
G

CnK(G)eiG·r,

where the coefficients CnK are obtained by solving the local
density approximation Kohn-Sham (LDA-KS) equations self-
consistently, as will be discussed in Sec. III A. Once the
2D response function χ0

i (Q,ω) of the ith graphene layer is
determined, a screened response function of that layer in free
space may be calculated in the RPA simply as

χi(Q,ω) = χ0
i (Q,ω)

1 − vQ(Q)χ0
i (Q,ω)

; i = 1,2, (6)

where vQ = 2π
Q

represents a 2D Fourier transform of the bare,
“intrasystem” Coulomb interaction.

C. Optical limit

The above ab initio calculation of graphene response
functions χ1,2 is straightforward, but it is not sufficient if we
want to investigate hybridization between the Dirac plasmon
and the FK phonons in a dielectric surface. Namely, due to the
very low energy of the FK phonons (∼50 meV), the crossing
with the Dirac plasmon dispersion relation occurs for very
small wave numbers, on the order of Q = 0.01 nm−1. On the
other hand, even for very dense K-point mesh sampling, such
as, for example, 601 × 601 × 1 used in this calculation, the
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minimum transfer wave number Q that can be reached (e.g.,
Q = 0.049 nm−1 in this calculation) is still larger than the FK
phonon–Dirac plasmon crossing wave number. Therefore we
have to find a way to calculate χ1,2(Q,ω) for a finer Q-point
mesh in the optical limit, i.e., when Q ≈ 0. One possibility
is that, instead of calculating the response functions χ0

i (Q,ω),
we calculate the optical conductivities σi(ω), which can be
obtained in the strict Q = 0 limit.

The optical conductivity in graphene may be written as [4]

σi(ω) = σ intra
i (ω) + σ inter

i (ω); i = 1,2, (7)

where

σ intra
i (ω) = ini

ω + iηintra
(8)

is the intraband, or Drude conductivity, and where

ni = − 2

�

∑
K,n

∂f i
n(K)

∂En(K)

∣∣jx
nK,nK(G = 0)

∣∣2
(9)

represents the effective number of charge carriers. The inter-
band conductivity is

σ inter
i (ω) = −2i

ω�

∑
K,n�=m

h̄ω

En(K) − Em(K)

× f i
n(K) − f i

m(K)

h̄ω + iηinter + En(K) − Em(K)

×jx
nK,mK(G = 0)

[
jx
nK,mK(G′ = 0)

]∗
, (10)

where the current vertices are given by

j
μ

nK,mK+Q(G) =
∫

�

dre−i(Q+G)·r j
μ

nK,mK+Q(r) (11)

and

j
μ

nK,mK+Q(r) = h̄e

2im
{φ∗

nK(r)∂μφmK+Q(r)

− [∂μφ∗
nK(r)]φmK+Q(r)}. (12)

In the optical limit, Q ≈ 0, the independent-electron response
functions can be written in terms of optical conductivities (7)
as [45]

χ0
i (Q ≈ 0,ω) = Q2

iω
σi(ω). (13)

Needless to say, this approximation for graphene’s response
function should work extremely well in the technologically
interesting range of frequencies from the mid-IR (Q ∼
0.001 nm−1) down to THz (Q ∼ 10−5 nm−1). When expres-
sions for the conductivity given in Eqs. (7)–(12) are used in
Eqs. (13) and (6) constitutes what we call “optical ab initio
RPA” method.

D. Screened Coulomb interaction

Once we have determined the screened response functions
of graphene layers, χ1,2, the next step is to determine the
propagator of the screened Coulomb interaction throughout
our sandwich structure, W (Q,ω,z,z′), where z and z′ are the
field point and the source point of a unit charge, respectively.
This function will be obtained by two equivalent methods: a

Feynman diagrammatic technique and the Dyson-Schwinger
equation for the Green’s function of the Poisson equation.

1. Diagrammatic technique

We first consider the screened Coulomb interaction in the
system consisting of just one graphene layer in vacuum, placed
at z = a/2, and described by the response function χ2(Q,ω),
as shown in Fig. 1(b). Suppose that a unit point charge is
placed somewhere in the region z > a/2 and that it fluctuates
as cos(ωt). Then, the 2D Fourier transform of the screened
Coulomb potential at the point z′ > a/2 may be written as

W (Q,ω,z,z′) = vQe−Q|z−z′ | + D(Q,ω)e−Q(z+z′−a), (14)

where

D(Q,ω) = v2
Qχ2(Q,ω) (15)

represents the propagator of the surface induced Coulomb
interaction.

Let us now examine the situation where a second graphene
layer, described by the response function χ1(Q,ω), is in-
troduced at z = −a/2, as shown in Fig. 1(b), with the
space between the two layers being vacuum. If the external
point charge is placed in the region z > a/2, then from the
many-body perturbation theory point of view, it can induce
charge density fluctuations (in two graphene sheets) in four
different ways [46]. The first class of processes corresponds to
a situation where the charge density fluctuation is created and
annihilated in the first graphene layer. This class of processes
gives the surface induced Coulomb interaction D11, as shown
by the Feynman diagrams in Fig. 2(a). To the lowest order, the
external charge creates a charge density fluctuation in the first
sheet, which annihilates in the same sheet and produces the
Coulomb field. In the next, higher order, the external charge
creates charge fluctuation in the first sheet, which annihilates
and creates a charge fluctuation in the second sheet, which
annihilates and creates a charge in the first sheet, which finally
annihilates in the same sheet and produces the field. Following
the Feynman diagrams in Fig. 2(a), the interaction D11 may
be written as

D11 = v12χ1v12 + v12χ1v12χ2v12χ1v12 + · · ·

= v2
12χ1

1 − v2
12χ1χ2

, (16)

where v12(Q) = vQe−Qa represents a 2D Fourier transform
of the bare “intersystem” Coulomb interaction. The second
class of processes corresponds to a situation where the charge
density fluctuation is created and annihilated in the second
sheet. In analogy with the term D11, this class of processes
gives the surface induced Coulomb interaction D22, which
may be written following the Feynman diagrams in Fig. 2(a)
as

D22 = v11χ2v11 + v11χ2v12χ1v12χ2v11 + · · ·

= v2
11χ2

1 − v2
12χ1χ2

, (17)

where v11(Q) = vQ represents a 2D Fourier transform of the
bare “intrasystem” Coulomb interaction in the first graphene
sheet.
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FIG. 2. The Feynman diagrams for interaction between charge density fluctuations in two graphene layers described by response functions
χ1(Q,ω) and χ2(Q,ω) in two cases, when the region between the layers is (a) vacuum and (b) dielectric slab described by the local dielectric
function εS(ω). The black dashed lines represent the bare “intrasystem” v11 and “intersystem” v12 Coulomb interactions, whereas the blue wavy
lines represent the screened intrasystem ṽ11 and intersystem ṽ12 Coulomb interactions in the presence of dielectric slab.

The third and fourth classes of processes correspond to
situations where the charge density fluctuation is created in the
first sheet and is annihilated in the second sheet and vice versa.
These classes of processes give the surface induced Coulomb
interactions D12 and D21, which may be written following the
Feynman diagrams in Fig. 2(a) as

D12 = v12χ1v12χ2v11 + · · · = v11v
2
12χ1χ2

1 − v2
12χ1χ2

,

(18)
D21 = v11χ2v12χ1v12 + · · · = D12.

Finally, the total surface induced Coulomb interaction is the
sum of four terms:

D(Q,ω) = D11 + D12 + D21 + D22. (19)

The expression for the Fourier transform of the screened
Coulomb interaction (for z,z′ > a/2) remains unchanged, i.e.,
it has the form given in Eq. (14) with D(Q,ω) derived in
Eq. (19).

The introduction of a dielectric slab with εS between
graphene layers only slightly modifies the previous formula-
tion. The only change to be made is that the bare “intrasystem”
and “intersystem” Coulomb interactions v11 and v12 should be
replaced by the corresponding interactions “screened” by the
dielectric slab, which have the following analytical form:

v11 → ṽ11 = vQ

(
1 + DS(ω)

1 − e−2Qa

1 − D2
S(ω)e−2Qa

)
, (20)

v12 → ṽ12 = vQ

1 − D2
S(ω)

1 − D2
S(ω)e−2Qa

e−Qa, (21)

where

DS(ω) = 1 − εS(ω)

1 + εS(ω)
.

From the Feynman diagrams’ point of view, this causes the
black dashed lines in Fig. 2(a) to be replaced by the blue wavy
lines, as shown in Fig. 2(b). This also causes that the RPA
screened response functions become functions of the screened

intrasystem Coulomb interaction ṽ11,

χi(Q,ω) → χ̃i(Q,ω) = χ0
i (Q,ω)

1 − ṽ11(Q)χ0
i (Q,ω)

; i = 1,2. (22)

Therefore, because all quantities that enter in the total surface
induced Coulomb interactions, Eqs. (16)–(19), become renor-
malized, D(Q,ω) itself becomes renormalized and should be
rewritten as

D̃(Q,ω) = D̃11 + D̃12 + D̃21 + D̃22, (23)

where D̃11, D̃22, D̃12, and D̃21 have the same form as those
given in Eqs. (16), (17), and (18), except that v11, v12, and
χ1,2 should be replaced by ṽ11, ṽ12, and χ̃1,2. Finally, the only
expression that changes is the Fourier transform of the screened
Coulomb interaction, which now has the form (for z,z′ > a/2)

W (Q,ω,z,z′) = vQe−Q|z−z′ |

+Wind(Q,ω)e−Q(z+z′−a), (24)

where Wind(Q,ω) ≡ ṽ11 + D̃(Q,ω) − vQ is the induced
Coulomb interaction for points z = z′ = a

2 .

2. Dyson-Schwinger equation

The screened Coulomb interaction W (Q,ω,z,z′) is equal
(in atomic units) to the Green’s function (GF) of the Poisson
equation, which may be easily derived for a layered structure
exhibiting translational invariance in directions parallel to
graphene layers by using the standard electrostatic matching
conditions at the interfaces between different dielectric re-
gions [47,48]. Accordingly, this approach is quite efficient
for rather complex layered structures, where inclusion of
graphene layers at arbitrary positions may be described by
the Dyson-Schwinger (DS) equation for W (Q,ω,z,z′) of the
form

W (z,z′) = W0(z,z′) +
∫

W0(z,z′′)V(z′′) W (z′′,z′) dz′′,

(25)
where we have dropped Q and ω to simplify the notation. Here,
W0(z,z′) ≡ W0(Q,ω,z,z′) denotes the GF for the same layered
structure without graphene, whereas the effects of N graphene
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sheets, which are placed in the planes z = zi , are described by
the “perturbation” V(z) ≡ V(Q,ω,z) given by

V(z) =
N∑

i=1

χ0
i δ(z − zi), (26)

where χ0
i ≡ χ0

i (Q,ω) is the independent-electron response
function of the ith graphene sheet.

Considering our sandwich structure with N = 2 graphene
sheets placed at z1 = −a/2 and z2 = a/2, we obtain from
Eqs. (25) and (26)

W (z,z′) = W0(z,z′) + W0(z,z1)χ0
1 W (z1,z

′)

+W0(z,z2)χ0
2 W (z2,z

′). (27)

We next set z = z1 and z = z2 in Eq. (27) to obtain a system
of algebraic equations for the unknown values of W (z1,z

′) and
W (z2,z

′),

(
1 − ṽ11χ

0
1

)
W (z1,z

′) − ṽ12χ
0
2 W (z2,z

′) = W0(z1,z
′), (28)

−ṽ21χ
0
1 W (z1,z

′) + (
1 − ṽ22χ

0
2

)
W (z2,z

′) = W0(z2,z
′), (29)

where we have defined the “coefficients” ṽij ≡ W0(zi,zj ). For
an oxide film described by a (relative) dielectric function εS(ω),
which occupies region −a/2 � z � a/2 and is surrounded
by vacuum, one obtains expressions for ṽ11 = ṽ22 and ṽ12 =
ṽ21 given in Eqs. (20) and (21), respectively. Using those
expressions in Eqs. (28) and (29), one can obtain W (z1,z

′)
and W (z2,z

′), which need to be substituted in the right-hand
side of Eq. (27) to yield a final expression for the full GF,
W (z,z′), given in Eq. (24) for z,z′ � a/2.

E. Effective 2D dielectric function in gr-Al2O3-gr composite

Having formulated screened Coulomb interaction enables
us to define an effective 2D dielectric function and the loss
function for our sandwich structure. Suppose that the structure
is probed by REELS so that the incident electron trajectory is
localized in the region z > a

2 with the reflection point at z = a
2 .

Referring to Eq. (24), the 2D Fourier transform of the induced
Coulomb interaction in the z = a

2 plane may be written as

Wind(Q,ω) = vQ

[
1

ε(Q,ω)
− 1

]
, (30)

where we introduce the effective 2D dielectric function
ε(Q,ω). Then, it can be shown [39] that the probability density
for the parallel momentum transfer Q and the energy loss
ω of the reflected electron in REELS is proportional to the
imaginary part of the induced potential in Eq. (30),

P (Q,ω) ∝ −� 1

ε(Q,ω)
, (31)

which is called the energy loss function, or the EELS.
The loss function in Eq. (31) may be calculated from

expressions for the effective 2D dielectric function in different
systems. For example, when the system consists of just one
(second) graphene layer in vacuum at z = a

2 , we have

ε(Q,ω) = 1 − v11(Q)χ0
2 (Q,ω), (32)

whereas for the system consisting of two graphene layers
placed in vacuum at z = ∓ a

2 , we have

ε(Q,ω) = 1

1 + D(Q,ω)/vQ

, (33)

where D(Q,ω) is given in Eqs. (16)–(19). Finally, when the
considered system is a gr-Al2O3-gr sandwich, the effective 2D
dielectric function is

ε(Q,ω) = vQ

ṽ11 + D̃(Q,ω)
, (34)

with ṽ11 and D̃(Q,ω) given in Eqs. (20) and (23), respectively.
After some algebra, this expression may be written in a more
explicit form as

ε(Q,ω) = 1

2

[
1 + εS coth (Qa) − 2vQχ0

2

]

−1

2

ε2
S cosech2(Qa)

1 + εS coth (Qa) − 2vQχ0
1

. (35)

F. Dispersion relations

One can obtain dispersion relations for the collective modes
in a sandwich structure with two graphene layers by setting to
zero all damping rates and by solving the equation ε(Q,ω) = 0
in regions of the (Q,ω) plane where the imaginary parts of
χ0

i (Q,ω) are (at least approximately) zero. In the special
case of graphene layers with equal polarization functions,
χ0

1 = χ0
2 = χ0, Eq. (35) gives rise to two decoupled equations

for dispersion relations for symmetric and antisymmetric
coupling, respectively, between their Dirac plasmons,

1 + εS coth

(
Qa

2

)
− 2vQχ0 = 0, (36)

1 + εS tanh

(
Qa

2

)
− 2vQχ0 = 0. (37)

We finally note that, in order to cast Eqs. (36) and (37)
in the optical limit, one may use χ0 = −iQ2σ (ω)/ω along
with analytical expressions for the conductivity of doped
graphene, σ (ω) = σ intra(ω) + σ inter(ω), which were obtained
in Ref. [42] by treating the π electron bands in the Dirac
cone approximation. In the limits of zero damping and zero
temperature, those expressions yield the intraband contribution
in a Drude form, σ intra(ω) = iEF /(πω), while the interband
contribution is given by [42]

σ inter
i (ω) = 1

4

[
�(ω − 2EF ) − i

π
ln

∣∣∣∣2EF + ω

2EF − ω

∣∣∣∣
]
, (38)

where �(ω) is a Heaviside unit step function. Using the above
result for graphene conductivity in the optical limit [42] along
with the bulk dielectric function εS(ω) for Al2O3 given by
Eq. (1) with zero damping rates, one may solve Eqs. (36)
and (37) to obtain the dispersion relations for hybridized
plasmon-phonon modes in the limit of long wavelengths.
Interestingly, when only the Drude contribution σ intra(ω) ∝
i/ω is retained for graphene, which is common practice in
photonic applications of graphene, Eqs. (36) and (37) result
in a pair of cubic equations in the square of frequency, which
give the dispersion relations of all modes in analytical form.
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III. RESULTS AND DISCUSSION

A. Computational details

The first part of our ab initio calculations consists of
determining the KS ground state of single-layer graphene
and the corresponding wave functions φnK(ρ,z) and ener-
gies En(K). For graphene’s unit-cell constant we use the
experimental value of ag = 0.245 nm [49], while for the
superlattice unit-cell constant (separation between the periodic
replicas of graphene layers) we take L = 5ag . For calculating
the KS wave functions and energies we use a plane-wave,
self-consistent field DFT code (PWSCF) within the QUANTUM

ESPRESSO (QE) package [50]. The core-electron interaction is
approximated by the norm-conserving pseudopotentials [51],
and the exchange correlation (XC) potential by the Perdew-
Zunger local density approximation (LDA) [52]. To calculate
the ground-state electronic density, we use a 21 × 21 × 1
Monkhorst-Pack K-point mesh [53] of the first Brillouin zone
(BZ), and for the plane-wave cut-off energy we choose 50 Ry.
The second part of our ab initio calculations consists of
determining the independent-electron response function (4)
and the optical conductivity (7)–(10). In order to achieve
better resolution in the long-wavelength limit (Q ≈ 0) and
the low energy (ω ≈ 0) limit, the response function [(4)
and (5)] and the conductivity (7)–(12) are evaluated from
the wave functions φnK(r) and energies En(K) calculated
for the 601 × 601 × 1 Monkhorst-Pack K-point mesh, which
corresponds to 361801 K points in the first Brillouin zone
(1BZ). The band summations (n,m) in (4), (9) and (10) are
performed over 30 bands. In the calculation, we use two kinds
of damping parameters: ηintra = 10 meV for transitions within
the same bands (n ↔ n), and ηinter = 50 meV for transitions
between different bands (n ↔ m).

For the bulk Al2O3 dielectric function given by (1),
we use the following parameters: ε0

ox = 12.53, εi
ox = 7.27,

ε∞
ox = 3.20, ωTO1 = 48.18 meV, ωTO2 = 71.41 meV, γTO1 =

1.74 meV, and γTO2 = 6.82 meV. After determining the
response function (4) [or (13) in the optical Q ≈ 0 limit]
and Al2O3 dielectric function (1), the effective 2D dielectric
functions (32)–(34) are calculated following the procedure
described in Sec. II.

The results for EELS obtained from the above ab initio RPA
method for structures including one or two graphene layers are
compared with the results based on analytical expressions for
the independent-electron response function χ0

i (Q,ω) involving
just the π electron bands in the Dirac cone approximation at
zero temperature [40,41], with the effects of damping included
via the Mermin procedure [39]. We call such a method an
‘MDF-RPA’ approximation. While the ab initio RPA method
is expected to describe EELS of graphene in a broad range
of frequencies up to FUV, the MDF-RPA method should
provide good account of nonlocal effects in doped graphene
at frequencies in the THz to IR range, which is of primary
technological interest.

Nonlocal effects in dynamic response of graphene are
often deemed unimportant in photonic applications, where
optical response of graphene is well described by a frequency-
dependent sheet conductivity. In that respect, besides the
optical limit of the ab initio RPA method given in Eqs. (7)–
(12), we also use the analytical expressions for graphene’s

conductivity obtained in Ref. [42] for the π electron bands
in the Dirac cone approximation at zero temperature, which
we call the “optical MDF-RPA” approximation. In particular,
those expressions are used to obtain the dispersion relations
of hybridized modes in our sandwich structure in the limit of
zero damping, see Eqs. (36)–(38).

B. EELS for single- and double-layer graphene in vacuum

In this section we shall first present the spectra of electronic
excitations, or the EELS in a free-standing, doped (EF = 1 eV)
single-layer graphene. Then, we shall briefly analyze the EELS
in a double-layer graphene, which consists of two graphene
layers in vacuum, separated by a distance a = 5 nm, and doped
with equal Fermi energies, EF = 200 meV. Even though the
EELS in pristine and doped graphene are widely investigated
experimentally and theoretically [1–4,6], here we provide high
accuracy calculations of the long-wavelength and the low-
energy EELS. Special attention is paid to exploring the means
to achieve continuous matching between the spectra in the
long wavelength, Q ≈ 0, limit calculated using the optical
ab initio RPA method [with χ0

i calculated using Eq. (13)] and
the spectra calculated using the full ab initio RPA method
[with χ0

i calculated using Eq. (3)].
Figure 3 shows the energy loss spectrum (31) in a single-

layer doped graphene, where EF = 1 eV. The low-energy
part of the spectrum is dominated by the Dirac plasmon, with
dispersion that starts as square root and then merges the upper
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FIG. 3. The EELS in single-layer doped graphene with EF =
1 eV. The black vertical line denotes the boundary wave number Qb =
0.34 nm−1, which separates the EELS obtained using the optical ab
initio RPA method (left region) and the full ab initio RPA method
(right region). The thin white lines show the lower, ω = vF (Q − 2kF ),
and the upper, ω = vF Q, edges of the intraband π∗ ↔ π∗ electron-
hole excitations, as well as the lower edge, ω = 2EF − vF Q, of
the interband π ↔ π∗ electron-hole excitations in the Dirac cone
approximation.
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FIG. 4. The low-energy EELS in single-layer doped graphene
(EF = 1 eV) where the optical ab initio RPA spectrum is calculated
in the region Q < Qb by using (a) only the Drude optical conductivity
σ = σ intra (8) and (b) the “full” optical conductivity σ = σ intra +
σ inter (8,10). Vertical black lines denote the boundary wave number
Qb = 0.34 nm−1. The thin white lines represent the electron-hole
excitations edges in gr(1 eV), as described in Fig. 3.

edge of the π∗ ↔ π∗ intraband continuum, ω = vF Q, denoted
by a white line. The higher-energy region is dominated by a
broad π plasmon, starting at ω = 4 eV for Q = 0. The black
vertical line denotes the boundary wave number Qb, which
separates the energy loss spectrum calculated using the optical
ab initio RPA approximation (left region) and using the full
ab initio RPA method (right region). It can be noticed that,

for the boundary wave number chosen as Qb = 0.34 nm−1,
matching between the optical ab initio RPA and the full
ab initio RPA results is perfectly smooth. However, we have
found that, as Qb increases the “matching” becomes worse
and for, e.g., Qb ≈ 1.0 nm−1, the two methods yield quite
mismatched spectra. These conclusions are very important,
suggesting that the extremely demanding ab initio calculations
of the EELS for optically small wave numbers can be obtained
by a “shortcut” using the optical ab initio RPA method, which
only requires conductivity calculations with vanishing wave
number, Q = 0.

Figures 4(a) and 4(b) show the low-energy EELS in single-
layer doped graphene (EF = 1 eV) where the boundary wave
number (denoted by a vertical black line) Qb = 0.34 nm−1

separates regions where the optical approximation and the
full ab initio RPA methods are used. In order to illustrate
how the accuracy of the optical conductivity calculation
influences the Dirac plasmon dispersion relation, in Fig. 4(a),
the EELS at Q < Qb is calculated using only the Drude optical
conductivity σ = σ intra from the optical ab initio RPA, Eq. (8),
whereas in Fig. 4(b) we use the complete optical conductivity
σ = σ intra + σ inter from the optical ab initio RPA, Eqs. (8)
and (10). It may be seen that, if the optical conductivity
includes only the intra term, the Dirac plasmon does not match
the full ab initio RPA result at Qb. However, if both the intra
and inter terms are included in the optical conductivity, the
Dirac plasmon matches the full ab initio RPA spectra quite
smoothly.

Figures 5(a) and 5(b) show the EELS for double-layer
graphene in vacuum, where the separation between the layers
is a = 5 nm and the graphene layers are equally doped such
that EF = 200 meV. In order to examine the range of validity
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FIG. 5. The EELS for two graphene layers calculated using: (a) the optical ab initio RPA method in the whole range of wave numbers,
(b) the optical ab initio RPA method for Q < Qb, and the full ab initio RPA method for Q > Qb. The solid magenta and white lines show
the dispersion relations of odd (ω−) and even (ω+) Dirac plasmons, respectively, calculated using the optical MDF-RPA model. The dotted
magenta and white lines show the dispersion relations of odd (ω0

−) and even (ω0
+) Dirac plasmons, respectively, calculated using only the Drude

model (8). The boundary wave number is Qb = 0.098 nm−1, the separation between graphene layers is a = 5 nm and both graphene layers are
doped such that EF = 200 meV. The thin white lines represent the electron-hole excitations edges in gr(200 meV), as described in Fig. 3.
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of the optical ab initio RPA method, the EELS in Fig. 5(a)
is calculated by using this approximation in the full range of
the shown wave numbers, whereas in Fig. 5(b) the EELS is
calculated using the optical ab initio RPA method for Q < Qb

and the full ab initio RPA method for Q > Qb. Here, the
boundary wave number is chosen as Qb = 0.098 nm−1.

We see two plasmon branches, which are a consequence
of hybridization between the Dirac plasmons in graphene
layers. Because the potential, which produces the 2D plasmons
decays as ∼e−Qa , a “cutoff” wave number below which
two plasmons still interact may be estimated as QC ∼ 1/a.
Therefore, for Q > QC , the plasmons interact weakly, and the
two branches become almost degenerate. As can be seen in
Fig. 5, this estimate works quite well, as the Dirac plasmon
splitting occurs below QC ∼ 0.2 nm−1, while above that
value the two plasmons tend to merge. Because the system
is symmetric (along the z axis), it supports modes with
well-defined parity, i.e., the potential produced by such modes
is either symmetric (even) or antisymmetric (odd) function of
z with respect to the origin at z = 0. Consequently, this means
that the symmetric or antisymmetric modes can only be excited
by a symmetrically or antisymmetrically designed external
perturbation. For example, the system may be imagined as
being excited by two symmetrically placed point charges, one
at z = −a/2 − 0+ that oscillates as Q1 cos ωt , and the other at
z = a/2 + 0+ that oscillates as Q2 cos ωt (here, 0+ is infinites-
imally small positive number). The lower plasmon branch,
denoted by ω−, is excited by external charges of the opposite
sign, Q1 = −Q2 = Q, which implies that those plasmons
produce antisymmetric (odd) electrical potential, accompanied
by the out-of-phase oscillations of the induced charges in
graphene layers. On the other hand, the upper plasmon branch,
denoted by ω+, is excited by two equal external charges
Q1 = Q2 = Q, so those plasmons produce symmetric (even)
electrical potential, accompanied by the in-phase oscillations
of the induced charges in graphene layers [13]. Accordingly,
the corresponding hybridized plasmon modes in double-layer
graphene with eigenfrequencies ω± will be designated as the
symmetric (or even) and the antisymmetric (or odd) modes,
respectively.

Figure 5 shows that the optical ab initio RPA EELS nicely
matches the full ab initio RPA EELS at Q = Qb. Moreover,
Fig. 5 shows that the two methods qualitatively agree, even
up to Q = QC = 0.2 nm−1, but for Q > 0.2 nm−1, they
become drastically different in two important aspects. First,
the full ab initio RPA Dirac plasmons in Fig. 5(b) continue
increasing following the upper edge of the π∗ ↔ π∗ intraband
electron-hole continuum, while the optical ab initio RPA
dispersions in Fig. 5(a) are deflected into that continuum.
This is reasonable to expect because, in the optical limit,
there is no linearly dispersing (ω = vF Q) π∗ ↔ π∗ intraband
electron-hole continuum, which would push the plasmons
towards higher energies. Second, the optical ab initio RPA
Dirac plasmons are seen to produce well-defined resonances in
the whole range of the shown Q values, while the ab initio RPA
plasmons become strongly damped already at Q ≈ 0.4 nm−1

due to Landau damping in the π ↔ π∗ interband electron-hole
continuum taking place at frequencies ω > 2EF − vF Q. On
the other hand, in the optical ab initio RPA limit, Eq. (13), the
π ↔ π∗ interband electron-hole continuum is dispersionless,

i.e., its lower edge is at ω = 2EF , so that the Dirac plasmons
are pushed down, away from the value ω = 2EF .

The solid magenta and white lines in Fig. 5 show the
dispersion relations of the odd (ω−) and even (ω+) Dirac
plasmons, respectively. Those relations were calculated by
using the optical MDF-RPA model with zero damping and
setting εS = 1 in Eqs. (36) and (37), respectively. The agree-
ment with the optical ab initio RPA EELS intensity patterns
in Fig. 5(a) is excellent in the whole Q interval, while the
agreement with the full ab initio RPA EELS intensity patterns
in Fig. 5(b) becomes, as excepted, worse for larger wave
numbers (Q � 0.2 nm−1). The dotted magenta and white lines
show the dispersion relations of the odd (labeled by ω0

−) and
even (labeled by ω0

+) Dirac plasmons, respectively, calculated
using only the Drude model of graphene conductivity, Eq. (8).
The agreement of this simple model with the optical ab initio
RPA and the full ab initio RPA Dirac plasmons is satisfactory
up to the boundary wave number (Q < Qb), but for Q > Qb,
the Drude model drastically overestimates the energy of Dirac
plasmons.

C. EELS for the gr-Al2O3-gr composite

In this section, we shall first study the EELS for a gr-
Al2O3-gr sandwich structure in a reduced (Q,ω) space in
order to emphasize and explore hybridization between four
FK phonons in sapphire and two Dirac plasmons in graphene.
The dispersion relations of such modes, calculated using
only the Drude model and the optical MDF-RPA model,
will also be presented. We shall then study the EELS in
the same gr-Al2O3-gr sandwich using the ab initio RPA and
MDF-RPA methods in an extended (Q,ω) space in order to
investigate the influence of realistic band structure on the six
hybridized modes and their interaction with the electron-hole
continua. The separation between graphene layers (or Al2O3

slab thickness) is a = 5 nm, while both graphene layers are
doped such that EF = 200 meV.

Figure 6(a) shows the EELS in the reduced (Q,ω) space
for a gr-Al2O3-gr sandwich structure calculated using the
optical ab initio RPA method, while Fig. 6(b) shows the same
spectrum obtained using the optical MDF-RPA method. It can
be clearly seen that those two spectra coincide, which justifies
the use of the computationally much simpler (semi-analytic)
optical-MDF-RPA method in the reduced (Q,ω) space. Both
EELS show intense patterns, which represent six hybridized
plasmon-phonon modes. Because the system is symmetric,
the six modes can be divided into a symmetric group and an
antisymmetric group, each containing three modes. The black
solid lines show the dispersion relations for those six modes
calculated using Eq. (1) with zero damping for εS and the
optical MDF-RPA model with zero damping for graphene lay-
ers, whereby Eq. (36) yields three antisymmetric (odd) modes
(ω−

1 , ω−
2 , and ω−

3 ) and Eq. (37) yields three symmetric (even)
modes (ω+

1 , ω+
2 , and ω+

3 ). The six dispersion curves agree
perfectly well with the EELS intensity patterns, which will
help us determine the symmetry and the phononic/plasmonic
character of the particular modes in the EELS.

The parity of the modes may be, as in the case of double-
layer graphene, probed by two fluctuating point charges,
symmetrically placed at z = ±( a

2 + 0+), which have equal
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FIG. 6. The EELS in reduced (Q,ω) space in a symmetric gr-Al2O3-gr sandwich calculated using (a) the optical ab initio RPA method and
(b) the optical MDF-RPA method. The separation between graphene layers (or the Al2O3 slab thickness) is a = 5 nm and both layers are doped
such that EF = 200 meV. The black lines show dispersion relations of six hybridized modes (ω±

1 , ω±
2 and ω±

3 ) calculated using the optical
MDF-RPA method, and the red dotted lines show dispersion relations of the two highest modes (ω0±

3 ) calculated using only the Drude model.
The thin white lines represent the upper edge, ω = vF Q, of the intraband π∗ ↔ π∗ electron-hole excitations in Dirac cone approximation.

or opposite signs. The first linear, the third horizontal, and
the more intense fifth parabolic branches, denoted by ω−

1 , ω−
2 ,

and ω−
3 , respectively, represent odd modes, i.e., the modes

which produce antisymmetric electrical potential oscillations.
On the other hand, the second and the fourth horizontal,
as well as the most intense sixth, square-root-like branches,
denoted by ω+

1 , ω+
2 , and ω+

3 , respectively, represent even
modes, i.e., the modes which produce symmetric electrical
potential oscillations. It is also appropriate to determine the
phononic/plasmonic character of these modes, which strongly
depends on the wave number Q. For larger Q values in Fig. 6, it
is clear that the branches ω±

1 and ω±
2 are purely phononlike, i.e.,

they represent the polarization oscillations, which are localized
in the two dielectric surfaces. On the other hand, modes ω±

3 are
plasmonlike, i.e., they represent the charge density oscillations
which are localized in the two graphene layers. However,
in the Q → 0 limit, strong hybridization between some of
these modes takes place, giving rise to avoided crossings,
which depend on the symmetry matching. For example, when
the symmetric phonon branches ω+

1 and ω+
2 become close

to the symmetric plasmon branch ω+
3 they strongly interact

with the branch ω+
3 and they take the plasmonic character. On

the other hand, the antisymmetric branches ω−
1 and ω−

2 cross
the symmetric plasmon branch ω+

3 without interaction and
retain their phononic behavior. Similarly, also the plasmonic
branches ω+

3 and ω−
3 cross each other without interaction

because of the symmetry mismatch. On the other hand, the
linear branch ω−

1 does not interact, or interacts very weakly
with any other modes.

The two red dotted lines in Fig. 6, denoted by ω0±
3 represent

dispersion relations of the corresponding hybridized modes
calculated using the Drude model for conductivity of graphene
layers, σ = σ intra, from Eq. (8) with zero damping. We do

not show in this figure the corresponding four branches
calculated with the Drude model for ω0±

1 and ω0±
2 because

they fully overlap with the dispersion relations for ω±
1 and ω±

2
obtained using “complete” conductivity, σ = σ intra + σ inter,
from the optical MDF-RPA. There is only a very small
disagreement between the asymmetric modes, where ω0−

3
negligibly overestimates the branch ω−

3 for the highest wave
numbers, Q ≈ 0.08 nm−1. The largest deviation is shown
for the symmetric branch ω0+

3 , which starts overestimating
the branch ω+

3 already at Q ≈ 0.01 nm−1, and continues to
overestimate it with increasing wave number, giving even
up to about 20% larger frequency for Q ≈ 0.08 nm−1. This
disagreement between the ω0+

3 and ω+
3 curves results from the

lack of edge of the interband π ↔ π∗ electron-hole transitions
in the Drude model, which would push the highest plasmon
branch ω0+

3 towards lower frequencies, as it happens to
the branch ω+

3 in the complete optical MDF-RPA model. How-
ever, the simple Drude approximation gives good dispersions
of practically all other hybridized modes in a gr-Al2O3-gr
sandwich, thereby covering the long-wavelength and the THz
limits of interest in plasmonic applications.

Figure 7 shows the EELS in the gr-Al2O3-gr sandwich in an
extended (Q,ω) region, with the EELS in Fig. 7(a) calculated
using the MDF-RPA method and in Fig. 7(b) using the ab initio
RPA method. The dotted lines show dispersion relations, which
were calculated in the same way as in Fig. 6. In both panels,
the EELS are dominated by the highest plasmon branches,
with the peak positions that agree well with the corresponding
dispersion relations ω±

3 for Q < 0.15 nm−1. For larger Q

values, the EELS peak positions from the MDF-RPA method
start to increase much faster than the corresponding dispersion
relations for ω±

3 . On the other hand, it is surprising to see
that those dispersion relations agree quite well with the peak
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FIG. 7. The EELS in a symmetric gr-Al2O3-gr sandwich calculated using (a) the MDF-RPA method and (b) a combination of the optical
ab initio RPA and the full ab initio RPA methods with the boundary wave number Qb = 0.049 nm−1. The separation between graphene layers
(or the Al2O3 slab thickness) is a = 5 nm and they are both doped with equal densities, such that EF = 200 meV. The magenta dotted lines
show dispersion relations of three odd modes (ω−

1 , ω−
2 and ω−

3 ), while the white dotted lines show dispersion relations of three even modes (ω+
1 ,

ω+
2 and ω+

3 ) calculated using the optical MDF-RPA method. The thin white lines represent the electron-hole excitations edges in gr(200 meV),
as described in Fig. 3.

positions in the EELS from the ab initio RPA method, even up
to the edge of the interband π ↔ π∗ electron-hole transitions,
ω = 2EF − vF Q. One also sees that the EELS peak positions
for ω±

3 from both RPA methods merge for Q ≈ 0.3 nm−1,
while the corresponding dispersions curves become degenerate
only for quite large wave numbers, Q ≈ 0.6 nm−1.

One can further see in Fig. 7 that the EELS from both RPA
methods agree quite well with each other for Q < 0.3 nm−1.
However, for larger wave numbers Q, the peak positions in the
EELS from the MDF-RPA method corresponding to the ω±

3
modes continue to increase in a direction parallel to the upper
edge of the intraband π∗ ↔ π∗ continuum (ω = vF Q, result-
ing from the Dirac cone approximation), while in the ab initio
RPA method those peak positions move to lower energies, and
they cross the upper edge of the intraband π∗ ↔ π∗ continuum
at Q ≈ 0.45 nm−1. The reason for this disagreement is
probably due to the use of the Dirac cone approximation in the
MDF-RPA method, as well as due to the lack of the π plasmon
in the MDF-RPA response function, which even though
energetically is positioned very high, polarizes (screens) the
system and pushes the Dirac plasmons towards lower energies
in the ab initio RPA method. Moreover, besides the transitions
within and between the π and π∗ bands, the ab initio RPA
response function in Eq. (4) also includes transitions between
higher occupied and unoccupied bands (e.g., π ↔ σ ∗ and
σ ↔ σ ∗ transitions, [6]) which represent additional polarizing
mechanisms that may affect the ω±

3 modes. In addition, the
ab initio RPA method allows a more realistic calculation of
the charge vertices in Eq. (5), with an accuracy that becomes
especially important for shorter wave numbers.

Finally, considering the dispersion relations for increasing
wave numbers Q, one can see in Fig. 7 that all three even/odd

pairs of curves ω±
i with i = 1,2,3 begin to merge due to

increasing degeneracy. While merging of the plasmonlike
curves ω±

3 occurs at quite large Q values, one sees that the
dispersion curves ω±

1 and ω±
2 become degenerate already at

Q > QC = 0.2 nm−1, and they settle at the bulk values of
the first and second TO phonon frequencies, ω±

1 ≈ ωTO1 =
48 meV and ω±

2 ≈ ωTO2 = 71 meV, respectively. However,
the EELS from both RPA methods exhibit in Fig. 7 two faint
horizontal lines at energies around 52 and 84 meV for Q >

0.4 − 0.5 nm−1, which are slightly higher in comparison with
the corresponding values reached by the phonon dispersion
curves, ω±

1,2 ≈ ωTO1,2. Since those faint lines occur at large
wave numbers, one may estimate their energies by setting
Qa � 1 in Eqs. (36) and (37), either of which then gives
a dispersion relation 1 + εS(ω) − 2vQχ0(Q,ω) = 0, which
describes single graphene layer on the surface of a semi-infinite
region filled with Al2O3. One is further tempted, at such
“low” frequencies, to invoke static approximation for the
response function of graphene layers, χ0(Q,ω) ≈ χstat(Q),
and moreover to use its large-Q form, χstat = −Q/(4vF ),
which is strictly valid for Q � kF [40,41]. As a result, we
obtain a very simple dispersion relation, 1 + εS(ω) + π/vF =
0 (recall that vF ≈ 0.46 in atomic units), giving two phonon
eigenfrequencies of about 54 and 86 meV, which are in close
agreement with the positions of the two faint horizontal lines
in the EELS in Fig. 7.

D. EELS for the sy1-Al2O3-sy2 composite

In this section, we shall concentrate on the study of the
EELS in asymmetric sy1-Al2O3-sy2 composite systems, where
syi represents either an independently doped single-layer
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FIG. 8. The EELS in four asymmetric structures: (a) vacuum-Al2O3-gr(200 meV), (b) gr(200 meV)-Al2O3-vacuum, (c) gr(0 meV)-Al2O3-
gr(200 meV), and (d) gr(200 meV)-Al2O3-gr(0 meV), calculated using the optical-RPA method. The Al2O3 slab thickness is a = 5 nm. The
black lines show dispersion relations of five modes (ω1, ω2, ω3, ω4, and ω5) calculated using the optical MDF-RPA method, while the red dotted
lines show the dispersion relations of the two highest (ω0

4 and ω0
5) modes calculated using only the Drude approximation (8). The thin white

lines represent the upper edge, ω = vF Q, of the intraband π∗ ↔ π∗ electron-hole excitations in gr(200 meV) in the Dirac cone approximation.

graphene, syi=gr(EF,i), or simply vacuum, syi=vacuum. As
in Sec. III C, we shall first study the EELS and dispersion
relations of hybridized modes in a reduced (optical) range,
followed by a study in an extended (Q,ω) range.

Figure 8 shows the EELS in the reduced (Q,ω) space
for the following structures: (a) vacuum-Al2O3-gr(200 meV),
(b) gr(200 meV)-Al2O3-vacuum, (c) gr(0 meV)-Al2O3-gr(200
meV), and (d) gr(200 meV)-Al2O3-gr(0 meV), calculated
using the optical ab initio RPA method. Because now one
side of our sandwich structure is either vacuum or pristine
graphene (EF = 0), which does not support Dirac plasmons,
there are five prominent intensity patterns in all panels of

Fig. 8, which correspond to five branches, resulting from hy-
bridization between four FK phonons in the dielectric surfaces
and the Dirac plasmon in one doped graphene. The black lines
in all four panels show the dispersion relations of the five
modes (ω1, ω2, ω3, ω4, and ω5) obtained from the equation
ε(Q,ω) = 0 by using Eq. (35) where we set one of the response
functions of graphene layers, χ0

i , to zero and calculate the
other response function using the optical MDF-RPA method
for doped graphene with zero damping [42]. Because now the
symmetry of the system is broken, the parity is not a good
quantum number, and the modes can no longer be classified
as symmetric or antisymmetric. For shorter wavelengths, the
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FIG. 9. The EELS in four asymmetric structures: (a) vacuum-Al2O3-gr(200 meV), (b) gr(200 meV)-Al2O3-vacuum, (c) gr(0 meV)-Al2O3-
gr(200 meV), and (d) gr(200 meV)-Al2O3-gr(0 meV), calculated using the MDF-RPA model. The Al2O3 slab thickness is a = 5 nm. The white
dotted lines show dispersion relations of five modes (ω1, ω2, ω3, ω4, and ω5) calculated using the optical MDF-RPA model. The thin white
lines represent the electron-hole excitation edges in gr(200 meV), as described in Fig. 3.

horizontal branches ω1, ω2, ω3, and ω4 are phononlike, while
the “square-root” branch ω5 is plasmonlike. In the long-
wavelength limit (Q → 0), a strong hybridization (indicated
by avoided crossings) between those modes occurs, such that
the modes ω1, ω3, and ω4 take plasmonic character and the
branch ω5 takes phononic character. The phonon branch ω2 has
very low intensity, so just from its dispersion relation (which
does not exhibit avoided crossing) we conclude that it does not
hybridize with the plasmon. The spectrum shown in Fig. 8(a)
is dominated by a very intense plasmonlike branch. This is
because the external probing electron, which pumps energy
into the system, is placed at the point z = a/2 + 0+, right next

to the graphene layer gr(200 meV) in the z = a/2 plane, which
supports a strong absorber–Dirac plasmon. Figure 8(b) shows
the opposite situation where the gr(200 meV) layer is placed
in the z = −a/2 plane, while the external probing electron
is located right next to a free Al2O3 surface at z = a/2. This
causes a reduction in the plasmon intensity, but the intensity of
the uppermost FK phonon ω4 becomes greatly enhanced (see
the discussion of Fig. 9 below). It can be seen that the intensity
patterns the EELS in Figs. 8(a) and 8(b) are in excellent
agreement with the dispersion relations for ω1, ω3, ω4, and ω5.

The next step is to compare Figs. 8(a) and 8(b) with
Figs. 8(c) and 8(d) in order to examine how spectra change
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when the layer of vacuum is replaced by a pristine graphene
layer, gr(0 eV). It may be clearly seen in Figs. 8(c) and 8(d) that
the presence of gr(0 eV) reduces the intensities of plasmon and
phonon modes in comparison with those shown in Figs. 8(a)
and 8(b). This is a consequence of the fact that the (Q,ω) phase
space for the allowed interband π ↔ π∗ electron-hole exci-
tations in gr(0 eV) covers the region ω > vF Q, which causes
strong Landau damping of all hybridized plasmon/phonon
modes shown in Figs. 8(a) and 8(b). Moreover, the EELS
intensity patterns in Figs. 8(c) and 8(d) no longer agree so
well with the dispersion relations ω1, ω3, ω4, and ω5. This
is because the interband π ↔ π∗ electron-hole excitations in
gr(0 eV) represent a weak but finite polarization mechanism,
which “screens” the existing plasmon/phonon modes within
the optical ab initio RPA method, while that mechanism is not
included in the optical MDF-RPA model, which treats gr(0 eV)
the same way as a vacuum layer.

The red dotted lines in Fig. 8 show the dispersion relations
of the two highest modes calculated using only the Drude part
of the conductivity in the optical MDF-RPA model, Eq. (8),
with zero damping, which are labeled by ω0

4 and ω0
5. The

corresponding dispersion relations ω0
1, ω0

2, and ω0
3 are not

shown because they perfectly overlap with the dispersion
relations ω1, ω2, and ω3, obtained from the optical MDF-RPA
model with complete conductivity. The agreement between ω0

4
and ω4 is almost perfect, whereas ω0

5 slightly overestimates ω5,
but only for large wave numbers (Q > 0.02 nm−1), which is
due to the lack of interband π ↔ π∗ transitions when only the
Drude model is used to describe gr(200 meV).

Figure 9 shows EELS in the extended (Q,ω) space for
(a) vacuum-Al2O3-gr(200 meV), (b) gr(200 meV)-Al2O3-
vacuum, (c) gr(0)-Al2O3-gr(200 meV), and (d) gr(200 meV)-
Al2O3-gr(0 meV), calculated using the MDF-RPA method.
The results obtained using the ab initio RPA method are not
shown because they are in excellent agreement with the results
from the MDF-RPA method. There is only small quantitative
disagreement that appears for larger wave numbers (Q >

0.3 nm−1), and it mostly affects the highest plasmon branch ω5

(in cases when it still retains some intensity), in such a manner
that its peak intensity appears at somewhat lower energies in
the ab initio RPA method when compared with the MDF-RPA
result. This is similar to the disagreement between the two
RPA methods seen in Figs. 7(a) and 7(b) for the branches ω±

3 ,
where the mechanism responsible for such disagreement was
discussed in some detail.

Figures 9(a) and 9(b) mostly confirm the conclusions of
Figs. 8(a) and 8(b). When doped graphene is placed next to
the external probing electron, the spectra are dominated by
the Dirac plasmon ω5, and when the bare dielectric surface
is exposed to the external probing electron, the spectra are
dominated by the topmost phonon ω4. However, the extended
spectral range reveals some intriguing features in the spectra
from the MDF-RPA method. Namely, Fig. 9(a) shows that the
Dirac plasmon is, after entering the π ↔ π∗ interband transi-
tions (i.e., after crossing the line ω = 2EF − vF Q) still quite
intense, whereas for larger wave numbers (Q > 0.4 nm−1) it
becomes broader, but still remains a well defined eigenmode.
On the other hand, Fig. 9(b) shows that the intensity of the
Dirac plasmon rapidly decreases with increasing Q, so that
soon after crossing the π ↔ π∗ edge (ω = 2EF − vF Q) it

drops to zero. There are two reasons for this behavior, one of
a quantum mechanical origin due to Landau damping in the
continuum of interband π ↔ π∗ transitions, and the other of
a purely electrostatic origin. Namely, doped graphene layer in
Fig. 9(a) is placed at z = a/2 and is probed by an external
electron right next to it, while in Fig. 9(b), graphene layer
is placed at the opposite side of the sandwich structure, a
distance a from the external probing electron. In the latter
case, the electric field produced by the Dirac plasmon in doped
graphene at the opposite side is reduced by an additional factor
e−2Qa , which acts together with Landau damping to attenuate
the intensity of the peak corresponding to the ω5 mode in
Fig. 9(b). These conclusions also suggest that the polarization
of the Al2O3 slab does not screen enough the electric field
due to the Dirac plasmon, i.e., it freely penetrates through the
Al2O3 slab.

The white dotted lines in Fig. 9 show dispersion relations
of five modes (ω1, ω2, ω3, ω4 and ω5) obtained by solving
the equation ε(Q,ω) = 0 using the optical MDF-RPA model
in Eq. (35) with zero damping rates. It should be noted that
in all panels of Fig. 9 the dispersion curves ω1 and ω3 settle
for large Q values at about the bulk TO phonon frequencies,
ω1 ≈ ωTO1 = 48 meV and ω3 ≈ ωTO2 = 71 meV, respectively.
At the same time, it may be shown that the dispersion curves ω2

and ω4 settle for large Q values at about the corresponding FK
phonon frequencies for the bare Al2O3 surface, ω2 ≈ ωFK1 ≈
56 meV and ω4 ≈ ωFK2 ≈ 110 meV, respectively, which are
obtained by solving the dispersion relation 1 + εS(ω) = 0 with
zero damping.

It is interesting that the spectrum from the MDF-RPA
method for large wave numbers Q shows in Fig. 9(a) a
phononlike mode as an intense horizontal line, placed between
the dispersion curves ω3 and ω4, which is accompanied by a
much weaker line placed between the dispersion curves ω1 and
ω2. On the other hand, one sees that the spectrum in Fig. 9(b)
exhibits a very intense horizontal line, which fits perfectly
well the upper FK phonon mode ω4 ≈ ωFK2 ≈ 110 meV for
all wave numbers Q > 0.03 nm−1 [see also Fig. 8(b)], and a
much weaker horizontal line, which fits the lower FK phonon
mode ω2 ≈ ωFK1 ≈ 56 meV.

The energies of phononlike lines in the spectra in both
Figs. 9(a) and 9(b) may be understood by considering large
wave numbers, such that Qa � 1, wherefrom Eq. (35) gives a
dispersion relation 1 + εS(ω) − 2vQχ0

2 (Q,ω) = 0 describing
a single graphene layer with the response function χ0

2 , sitting
on the surface of a semi-infinite region filled with Al2O3.
For the case in Fig. 9(a), we may again approximate the
graphene response function at large wave numbers and low
frequencies by χ0

2 ≈ χstat = −Q/(4vF ), as in the discussion
of Fig. 7. The resulting approximate dispersion relation,
1 + εS(ω) + π/vF = 0 gives two phonon frequencies of about
54 and 86 meV, which closely match the positions of the
two horizontal lines in Fig. 9(a) for Q > 0.4 nm−1. For the
case in Fig. 9(b), we simply obtain the dispersion relation
1 + εS(ω) = 0 for two FK phonons on the surface of a
semi-infinite Al2O3, ωFK1 ≈ 56 meV and ωFK2 ≈ 110 meV,
which closely match the energies of two horizontal lines
in that figure. Finally, we note that the large difference in
intensity of those lines comes from the fact that the spectral
weights of two narrow lines in the corresponding loss function,
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−�{1/[1 + εS(ω)]}, obtained with vanishing damping, result
in the ratio ∼1 : 22 for the FK1:FK2 phonons.

Figures 9(c) and 9(d) exhibit quite strong impact of the
replacement of the vacuum layer by a pristine graphene layer.
Its effect is mainly manifested as additional Landau damping in
the region ω > vF Q due to the interband π ↔ π∗ transitions
in pristine graphene, so that the Dirac plasmon originating
from the doped graphene layer exhibits reduced intensity in
comparison to Figs. 9(a) and 9(b). It is interesting that this
damping of the Dirac plasmon is not so strong in Fig. 9(c)
when pristine graphene is placed at the opposite side from
the probing electron. On the other hand, intrinsic graphene
in Fig. 9(d) practically destroys the Dirac plasmon for Q >

0.04 nm−1 [see also Fig. 8(d)] when the doped graphene is
placed at the opposite side from the probing electron.

Considering the two phononlike horizontal lines, which are
present in the spectra in both Figs. 9(c) and 9(d) for large
wave numbers, one notices that they lie at approximately the
same energies in both figures, albeit with different spectral
weights. As in Fig. 9(a), the stronger line in Figs. 9(c) and 9(d)
is positioned between the phonon dispersions ω3 and ω4, and
the weaker line between ω1 and ω2. Again as in Fig. 9(a),
positions of the two horizontal lines in the spectra may
be estimated in the limit of large wave numbers, Qa � 1,
giving a semi-infinite layer of Al2O3 with its surface covered
by either doped graphene in Fig. 9(c) or intrinsic graphene
Fig. 9(d). By using the static limit, χstat = −Q/(4vF ), for the
graphene response function in both figures, we again obtain
the dispersion 1 + εS(ω) + π/vF = 0, giving two phonon
energies of about 54 and 86 meV, which closely match the
positions of the two horizontal lines in Figs. 9(c) and 9(d).
Noting that χstat = −Q/(4vF ) is an exact representation of
the static response function for intrinsic graphene in Fig. 9(d),
but is only approximately valid for doped graphene for Q �
kF ≈ 0.3 nm−1 in Fig. 9(c), it is remarkable that the energies
of the horizontal lines coincide in those figures. This indicates
that the Dirac plasmon in doped graphene plays negligible
role in screening of the substrate phonons at wave numbers
greater than the Fermi wave number, where the regime of
static screening by graphene prevails.

It is further interesting that the phononlike horizontal lines
emerge in Figs. 9(a) and 9(c) already for wave numbers
Q � kF ≈ 0.3 nm−1, whereas in Fig. 9(d) they emerge
right after crossing the edge ω = vF Q of the interband
π ↔ π∗ transitions in pristine graphene. This behavior of
the phononlike lines in Fig. 9(d) shows that the main
role of pristine graphene layer is to provide a screening
mechanism, which shifts phonon modes at large wave
numbers without a significant reduction of their spectral
weight.

IV. CONCLUSIONS

We have presented an ab initio calculation of the dynamic
response function of single-layer graphene at the level of
random phase approximation (RPA) that includes all elec-
tronic transitions within and between σ and π bands and
covers a broad range of wave vectors [4]. The results of
such ab initio RPA approach were compared with simpler,
analytical and semianalytical approaches at different levels

of approximation by using the model system of a sandwich
structure consisting of two graphene layers separated by a
slab of Al2O3 between them. Our main focus is on the range
of frequencies from THz to midinfrared (MIR), where such
sandwich structures represent a typical building block for
devices used in nanophotonic and nanoplasmonic applications
of graphene. With the Dirac plasmon in doped graphene
being of the foremost interest in those applications, its
hybridization with the Fuchs-Kliewer phonons in the nearby
insulating layers, such as Al2O3, presents an ideal testing
ground for various theoretical approaches to the dynamic
response.

Using a typical thickness of 5 nm for the Al2O3 layer,
we have neglected the direct electron coupling between two
graphene layers, and evaluated the dynamically screened
Coulomb interaction of interest for probing the surface of our
sandwich structure, e.g., via the reflection electron energy loss
spectroscopy. Given the special interest for graphene-based
devices in nanophotonic applications in the THz to MIR
frequency range, we have focused on exploring the limit of
long wavelengths in our theoretical approaches. Since ab initio
calculations are extremely demanding for optically small wave
numbers [4], we have devised a “shortcut” by using what
we call optical ab initio RPA method, which only requires
calculation of the conductivity of graphene with a vanishing
wave number, Q = 0. Moreover, we have shown that the
electron energy loss spectra obtained with the optical ab initio
RPA method at small wave numbers can be seamlessly sewn
together with the full ab initio RPA method at a wave number
on the order of 0.1 nm−1. Since ab initio calculations of
the frequency-dependent conductivity of graphene are far less
demanding than the full ab initio RPA calculations, we offer
in this way a faster yet accurate extension of the ab initio RPA
method in the optical limit.

Next, we have made a comparison of ab initio calculations
of the spectra with those obtained by using the response
function at the RPA level for graphene’s π electron bands
in the Dirac cone approximation, where electrons behave
as massless Dirac fermions (MDF) [40,41]. We have found
that the “sewn-together” ab initio RPA method agrees quite
well with the MDF-RPA method for wave numbers up to
about 0.3 nm−1 (approximately the Fermi wave number kF

when graphene layers are doped with the Fermi energy
of EF = 0.2 eV). Moreover, we have explored the optical,
Q = 0, limit of the MDF-RPA method as well, where simple
analytical expressions are available for a frequency-dependent
conductivity of graphene in the form of a sum of the intraband
(i.e., Dirac) contribution and the interband contribution [42].
It was found that the optical ab initio RPA and the optical
MDF-RPA methods are in perfect agreement for wave numbers
up to about 0.1 nm−1. Both methods gave rather rich spectra
exhibiting intricate patterns corresponding to eigenmodes due
to plasmon-phonon hybridization taking place in our sandwich
structure.

The exact character of those hybridized modes was further
assessed by using dispersion relations based on the optical
MDF-RPA expressions for graphene conductivity with zero
damping, along with a model dielectric function for the bulk
of Al2O3, which supports two principal transverse optical
phonons. Besides the symmetric graphene-Al2O3-graphene

075433-15



VITO DESPOJA et al. PHYSICAL REVIEW B 96, 075433 (2017)

structure, where both graphene layers were doped with EF =
0.2 eV, we have also studied in some detail hybridization taking
place in asymmetric structures where one of the graphene
layers is either pristine (EF = 0) or is replaced with vacuum.
While the complete plasmon-phonon hybridization picture
was clearly explained by the dispersion relations from the
“optical MDF-RPA” method for wave numbers Q � 0.1 nm−1,
we have shown that using only the Drude contribution
in graphene’s conductivity suffices at wave numbers Q �
0.01 nm−1. In this way, we have reaffirmed the widespread
popularity of the Drude model for doped graphene in the THz
applications.

On the other hand, it was also found that, while the
Dirac plasmonlike modes generally subside with increasing
wave numbers, Q � kF = 0.3 nm−1, due to Landau damping,
i.e., upon entering the continuum of interband electron-hole
transitions in graphene, there are nondispersing, phononlike
modes that emerge in the same range of wave numbers.
Energies of those phononlike modes could be reproduced by
considering conditions for the Fuchs-Kliewer phonons in the
surface of a semi-infinite Al2O3 layer, where the presence of
a graphene layer on that surface provides a mechanism for
additional static screening of those phonon modes.

We believe that our work sheds light on the mechanism
of plasmon-phonon hybridization in a sandwichlike structure
with two graphene layers and, more importantly, provides
a thorough assessment of a broad range of methods and

approximations that can be used in calculations of the response
function of graphene in the optical limit for such structures.
In particular, our findings reinforce confidence in using
approaches based on the frequency-dependent conductivity of
graphene, where analytical expressions of the optical MDF-
RPA method provide an accurate description of the dynamic
response even up to wave numbers on the order of 0.1 nm−1.
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