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Recently, multiparticle-correlation measurements of relativistic p=d=3Heþ Au, pþ Pb, and even pþ p
collisions show surprising collective signatures. Here, we present beam-energy-scan measurements of two-
, four-, and six-particle angular correlations in dþ Au collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200, 62.4, 39, and 19.6 GeV.
We also present measurements of two- and four-particle angular correlations in pþ Au collisions at
ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV. We find the four-particle cumulant to be real valued for dþ Au collisions at all four
energies. We also find that the four-particle cumulant in pþ Au has the opposite sign as that in dþ Au.
Further, we find that the six-particle cumulant agrees with the four-particle cumulant in dþ Au collisions at
200 GeV, indicating that nonflow effects are subdominant. These observations provide strong evidence that
the correlations originate from the initial geometric configuration, which is then translated into the
momentum distribution for all particles, commonly referred to as collectivity.

DOI: 10.1103/PhysRevLett.120.062302

One of the key discoveries at the Relativistic Heavy Ion
Collider (RHIC) is the identification of the quark-gluon
plasma and its characterization as a near perfect fluid via its
collective flow [1–4]. It has previously been assumed that
only nucleus-on-nucleus collisions create a system large
enough and hot enough to create the quark-gluon plasma.
However, five years ago, collective signatures were dis-
covered in pþ Pb collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV at the
large hadron collider (LHC) [5–7]. Since then, similar
evidence has been observed in p=d=3Heþ Au collisions atffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV at RHIC [8–11] and high-multiplicity
pþ p collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 2.76–13 TeV at the LHC
[12–14]. Additionally, collective signatures at the LHC
have been found not only with two-particle correlations,
but with multiparticle correlations as well [15–18].
Multiparticle correlations are not a unique signature of a
hydrodynamically flowing medium [19,20], and thus it is
imperative that all calculational frameworks make quanti-
tative predictions for these correlations. This Letter presents
the measurement of multiparticle correlations in dþ Au
collisions as part of a beam energy scan at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200,
62.4, 39, and 19.6 GeV, as well as in pþ Au collisions
at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV.
The azimuthal distribution of particles produced in a

collision can be described by a Fourier series with
harmonic coefficients vn, where n is the harmonic number
[21]. This analysis uses direct calculations of cumulants
[22]. The two-particle correlator is

h2i ¼ hcos (nðϕ1 − ϕ2Þ)i ¼ hv2ni; ð1Þ

where ϕ1;2 denote the azimuthal angles of two different
particles in a single event and the single brackets denote an
average over particles in a single event. The four-particle
correlator is

h4i ¼ hcos (nðϕ1 þ ϕ2 − ϕ3 − ϕ4Þ)i ¼ hv4ni; ð2Þ

where ϕ1;2;3;4 denote the azimuthal angles of four different
particles in a single event. Finally, the six-particle corre-
lator is

h6i ¼ hcos (nðϕ1 þ ϕ2 þ ϕ3 − ϕ4 − ϕ5 − ϕ6Þ)i ¼ hv6ni;
ð3Þ

where ϕ1;2;3;4;5;6 denote the azimuthal angles of six different
particles in a single event. Quite generally, any m-particle
correlation will have contributions from lower-order cor-
relations, and m-particle cumulants cnfmg are constructed
to remove these. In the case of the two-particle cumulant,
the relation is simply

cnf2g ¼ ⟪2⟫; ð4Þ

where the double bracket indicates first an average over
particles in a single event and then an average over events.
In the case of the four- and six-particle cumulant, the
relations are

cnf4g ¼ ⟪4⟫ − 2⟪2⟫2 and ð5Þ

cnf6g ¼ ⟪6⟫ − 9⟪4⟫⟪2⟫þ 12⟪2⟫3; ð6Þ

where it can be seen by construction that the lower-order
correlations are removed. The harmonic coefficients are
related to the cumulants by

vnf2g ¼ ðcnf2gÞ1=2; ð7Þ

vnf4g ¼ ð−cnf4gÞ1=4; and ð8Þ

vnf6g ¼
�
1

4
cnf6g

�
1=6

: ð9Þ

In this Letter we focus on the second harmonic, n ¼ 2,
which is interpreted as arising from elliptic flow. For a given
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event category, there can be event-by-event differences in
the strength of the elliptic flow. In this case the observed v2 is
not a single value but rather a distribution. The different
cumulants have different sensitivities to the fluctuations of
the v2 distribution. The v2f2g has a positive contribution
from the variance of the distribution, whereas v2f4g and
v2f6g have negative contributions from the variance.
Comparisons of the different cumulants can yield insights
into not only the central value of the v2 but also the nature of
its event-by-event fluctuations.
Not all angular correlations are global in nature. The

term nonflow is used to describe angular correlations
arising from anything not considered global or collective
in nature, and typically includes resonance decays, quan-
tum interference correlations, Coulomb interactions, jet
correlations, etc. Most of these generate correlations among
only a small subset of the total produced particles; thus,
four-particle correlations are typically much less sensitive
than two-particle correlations to nonflow effects. For that
reason, comparison between two-, four-, and six-particle
correlations can also yield insights into nonflow effects.
Considering the event-by-event v2 fluctuations (in the
Gaussian limit) and nonflow, one has

v2f2g ¼ ðv22 þ σ2 þ δ2Þ1=2 and ð10Þ

v2f4g ≈ v2f6g ≈ ðv22 − σ2Þ1=2; ð11Þ

where σ2 is the variance of the distribution and δ2 para-
metrizes the nonflow [23].
In 2016, the PHENIX experiment [24] at RHIC collected

data from dþ Au collisions at four different energies

(
ffiffiffiffiffiffiffiffi
sNN

p ¼ 200, 62.4, 39, and 19.6 GeV). In 2015, data
from pþ Au collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV were col-
lected. PHENIX triggered on minimum bias and high
multiplicity events utilizing a beam beam counter [25] at
200 and 62.4 GeV or a forward silicon detector (FVTX)
[26] at 39 and 19.6 GeV. Using information from the beam
beam counter and FVTX, we require events to have a
collision vertex within jzj < 10 cm of the nominal center of
the PHENIX coordinate system.
The particle correlations are formed from reconstructed

tracks in the FVTX, which has two arms covering −3 <
η < −1 and þ1 < η < þ3 in pseudorapidity. The FVTX
does not provide momentum information, but simulations
have determined that the efficiency is momentum indepen-
dent for pT ≳ 0.3 GeV=c. We require tracks in the FVTX to
have a distance of closest approach to the reconstructed
vertex less than 2 cm and to have hits in at least three of the
four layers of the FVTX. We evaluate all quantities as a
function of the number of reconstructed tracks in the FVTX,
NFVTX

tracks . The ⟪6⟫, ⟪4⟫, and ⟪2⟫ are evaluated in events
categorized by a single integer value of NFVTX

tracks . Event
categories are then combined into wider bins as needed to
achieve adequate statistical precision. As an illustrative
example, 10 < NFVTX

tracks < 30 corresponds to centralities in
dþ Au of 1.3%–52%, 4.1 × 10−2%–33%, 6.5 × 10−4%–
21%, and 3.3 × 10−6%–10% at 200, 62.4, 39, and 19.6 GeV
respectively, and in pþ Au at 200 GeV of 0.22%–29%.
Figures 1(a) and 1(c) show the ⟪4⟫ and 2⟪2⟫2 and

Figs. 1(b) and 1(d) the cumulant c2f4g for [Figs. 1(a) and
1(b)] pþ Au collisions and [Figs. 1(c) and 1(d)] dþ Au
collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV. In both cases, only stat-
istical uncertainties are shown. The cumulant in pþ Au is
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FIG. 1. Components ⟪4⟫ and 2⟪2⟫2 and cumulant c2f4g ¼ ⟪4⟫–2⟪2⟫2 as a function ofNFVTX
tracks . (a) and (b) show the components and

cumulant, respectively, in pþ Au collisions at
ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV. (c) and (d) show the components and cumulant, respectively, in
dþ Au collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV. (b) and (d) also show the cumulant as measured in the AMPT model for pþ Au and dþ Au,
respectively, indicated by the green line. The shaded green band indicates the statistical uncertainty on the AMPT values.
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positive, indicating that v2f4g is complex. In contrast, in
pþ Pb collisions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 5.02 TeV, the cumulant is
negative and the v2f4g is real for sufficiently high multi-
plicity [15–18]. However, the cumulant in dþ Au collisions
at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV is negative, indicating that v2f4g is
real. For now, we focus on the dþ Au results and we will
return to the pþ Au system later.
Figure 2 shows the calculated v2f2g and v2f4g in dþ

Au collisions at 200, 62.4, 39, and 19.6 GeV. Systematic
uncertainties, shown as colored bands, are point-to-point
correlated and are determined as the quadrature sum of the
following contributions. We vary the event vertex cut from
the 10 cm default to 5 cm as a check on the z dependence of
the FVTX acceptance and find a systematic uncertainty of
approximately 1% (10%) for two-particle (four-particle)
correlations. The distance of closest approach cut is varied
from the default 2 cm cut to 1.5 cm, and we find a
systematic difference of approximately 1%. The azimuthal
acceptance in the FVTX is not uniform due to detector
inefficiencies, so corrections need to be applied. We use the
Q-vector recentering method [27] as the default and
compare to the isotropic terms in Ref. [22]. We assess
an uncertainty of 10% of the value of the v2f2g and v2f4g
due to this correction, which is the dominant source of
systematic uncertainty.
Rather strikingly, we observe real-valued v2f4g in dþ

Au at all four collision energies. This is additional evidence
in support of collective behavior in small systems [8–11].
The same patterns seen in pþ Pb collisions at the LHC
appear to persist in dþ Au at collision energies a factor of
250 lower.
Further, Fig. 2 shows the v2f6g in dþ Au collisions at

200 GeV. The v2f6g is consistent with v2f4g across the full
NFVTX

tracks range. This shows that, at least at 200 GeV, the
v2f4g is dominated by flow, rather than nonflow. The
statistics at the lower energies are not enough to determine a
reliable v2f6g.
Figure 3 shows the v2f2g and v2f4g in dþ Au colli-

sions as a function of
ffiffiffiffiffiffiffiffi
sNN

p
when averaged over

10 < NFVTX
tracks < 30. We find that v2f4g < v2f2g at the

higher energies, as expected from Eqs. (10) and (11) where
both the event-to-event v2 fluctuations and nonflow con-
tribute positively to v2f2g, and the v2 fluctuations con-
tribute negatively to v2f4g while nonflow should be
significantly reduced. However, there is a trend that the
difference between the v2f2g and v2f4g decreases with
decreasing energy, with v2f2g ≈ v2f4g within uncertain-
ties at 19.6 and 39 GeV. If Eqs. (10) and (11) are valid at
these low multiplicities, the v2f2g and v2f4gmay converge
if the flow fluctuations (σ) or the nonflow (δ) decrease at
lower dþ Au energies. Monte Carlo Glauber calculations
indicate that the event-by-event fluctuations in the initial
geometry are quite similar for dþ Au collisions at all four
energies. In the case of nonflow, while jet contributions
decrease at lower energy, the expectation is that δ increases
because one has a nonflow correlation from a fixed particle
number N that is diluted by the total number of particles in
the event, M, which is smaller for lower energy dþ Au
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FIG. 2. v2f2g, v2f2; jΔηj > 2g, and v2f4g as a function of NFVTX
tracks in dþ Au collisions with
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p ¼ (a) 200 GeV, (b) 62.4 GeV,
(c) 39 GeV, and (d) 19.6 GeV; also shown in (a) is v2f6g for ffiffiffiffiffiffiffiffi

sNN
p ¼ 200 GeV. The arrowheads on the statistical uncertainties indicate

cases where the standard 1σ uncertainty on the c2f4g crosses zero. For 19.6 GeV, the combined confidence interval for v2f4g to be
real is 79%.
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collisions even at a fixed number of FVTX tracks. The
measured two- and four-particle correlations appear to be
more complex than the assumptions in Eqs. (10) and (11).
To explore these trends in more detail, we utilize the

A-Multi-Phase-Transport (AMPT) model that includes
parton production via string melting, parton scattering,
hadronization via coalescence, and hadronic scattering
[28]. The AMPT model has been successful at qualitatively
describing many signatures of collectivity in small and
large collision systems [29–31], and we utilize the identical
parameters and setup as in Ref. [31]. Modeling the FVTX
acceptance and efficiency, we find reasonable agreement
with the experimental FVTX track distribution and then
calculate the v2f2g and v2f4g from the AMPT model as
shown in Fig. 3. The AMPT calculations include event-
by-event geometry fluctuations via Monte Carlo Glauber
calculations [32], flow (defined here as momentum
anisotropy relative to the initial geometry), and nonflow.
The AMPT model gives a reasonable description of the
magnitude and trend of v2f4g, while underpredicting
the v2f2g; this may be due to an underestimation of
the nonflow.
Our measurement of v2f2g is particularly susceptible

to nonflow contributions because we allow combinations
that may be close in pseudorapidity. Analyses of LHC
data (e.g., Refs [15–18]) introduce a pseudorapidity gap
jΔηj > 2 between all pairs thus reducing contributions
from particle decays, intrajet correlations, etc. In our case,
because of the FVTX acceptance, such an η gap neces-
sitates requiring one particle per arm. In dþ Au collisions,
particularly at the lower energies, this means that the
kinematics for the v2f2; jΔηj > 2g and v2f4g are very
different and the former will be strongly effected by
asymmetries in v2 between forward and backward rapidity,
as well as longitudinal decorrelations [33,34].
Nonetheless, we calculate v2f2; jΔηj > 2g and show the

results in Fig. 2. We find that v2f2; jΔηj > 2g < v2f2g for
all four energies as expected from the reduction in nonflow
contributions; however, we also find that v2f2; jΔηj >
2g < v2f4g, which cannot be reconciled within the context
of Eqs. (10) and (11) alone. In the AMPTmodel, the true v2
at forward (d-going) rapidity vF2 is significantly lower than
v2 at backward (Au-going) rapidity vB2 . The v2f2; jΔηj >
2g ¼

ffiffiffiffiffiffiffiffiffiffi
vB2 v

F
2

p
whereas the v2f4g is heavily weighted

towards vB2 where there are more tracks in the FVTX.
This difference in kinematic sensitivity makes a quantitative
comparisonwith v2f4g challenging, while opening the door
to new sensitivity to the longitudinal structure of the
correlations.
Let us now return to the results in pþ Au collisions,

where the v2f4g is complex. Following Eq. (11), if the
event-by-event v2 fluctuations are larger in pþ Au com-
pared with dþ Au to the extent that σ > v2, this would
explain the sign change. In the case of ideal hydrodynamic
evolution, the flow v2 is proportional to the initial elliptical

geometric eccentricity ε2 [35]. Thus, we show in Fig. 4 the
ε2 distributions from Monte Carlo Glauber calculations
[32] for pþ Au and dþ Au at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV. The
average ε2 for dþ Au is almost twice the value for pþ Au,
and both distributions are highly non-Gaussian. The ε2
distribution in pþ Au collisions has large positive skew
and the ε2 distribution in dþ Au collisions is significantly
platykurtic. The exact values of the skewness s and kurtosis
k are listed in the figure. We can define cumulants of ε2
exactly as one does for the v2 in Eqs. (4)–(9). If we do not
restrict ourselves to the Gaussian approximation, but
instead include all higher moments, we find ε2f4g values
of 0.166 (0.508) in pþ Au (dþ Au) collisions when using
the exact form compared to 0.232 (0.505) in the Gaussian
approximation. The conventional Gaussian approximation
significantly overpredicts the exact calculation in pþ Au,
and slightly underpredicts it in dþ Au. These geometry
fluctuation contributions go in the right direction to
reducing the magnitude of the v2f4g in pþ Au collisions,
but not to the extent of flipping the sign of the cumulant and
generating a complex v2f4g.
It is possible that fluctuations in translating the initial

eccentricity into the final state momentum anisotropy lead
to additional fluctuations in the v2 values that could result
in c2f4g becoming positive in pþ Au collisions. In fact,
calculations utilizing the AMPT model, which describe the
negative c2f4g and thus real v2f4g in dþ Au, yield a
positive valued c2f4g in pþ Au collisions, as shown by
the green curves in Fig. 1. It is notable that these AMPT
calculations utilize the identical Monte Carlo Glauber
initial conditions as shown in Fig. 4, and thus this sign
change is definitively from additional fluctuation effects.
In summary, we have presented measurements

of v2 from multiparticle correlations in pþ Au colli-
sions at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV and in dþ Au collisions at
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FIG. 4. Eccentricity distributions for pþ Au and dþ Au atffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV as determined via Monte Carlo Glauber
calculations. The exact values for the mean hε2i, standard
deviation σ, skewness s, and kurtosis k are listed on the figure
in the caption for each distribution.
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ffiffiffiffiffiffiffiffi
sNN

p ¼ 200, 62.4, 39, and 19.6 GeV. We find real-valued
v2f4g in dþ Au collisions at all collision energies,
providing evidence for collectivity in dþ Au collisions
at all energies. At the highest energy in dþ Au collisions,
this evidence is further strengthened by the observation of
v2f4g ≈ v2f6g, indicating that nonflow contributions to
v2f4g are subdominant. We find v2f4g is complex in pþ
Au at

ffiffiffiffiffiffiffiffi
sNN

p ¼ 200 GeV. The ε2 distribution in pþ Au
collisions is highly non-Gaussian, leading to an ε2f4g
much lower than Gaussian expectations. Additional fluc-
tuations in the translation of ε2 to v2 may explain the
observation of v2f4g being complex in pþ Au collisions.
That collision systems with different initial geometries
(pþ Au and dþ Au) at fixed collision energy (200 GeV)
lead to significantly different cumulants indicates a geo-
metrical and therefore collective origin of the correlations.
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