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The lowest positive- and negative-parity bands of 20Ne and neutron-rich even-even Ne isotopes are investigated
using a theoretical framework based on energy density functionals. Starting from a self-consistent relativistic
Hartree-Bogoliubov calculation of axially symmetric and reflection-asymmetric deformation energy surfaces,
the collective symmetry-conserving states are built using projection techniques and the generator coordinate
method. Overall a good agreement with the experimental excitation energies and transition rates is obtained.
In particular, the model provides an accurate description of the excitation spectra and transition probabilities in
20Ne. The contribution of cluster configurations to the low-energy states is discussed, as well as the transitional
character of the ground state. The analysis is extended to 22Ne and the shape-coexisting isotope 24Ne, and to the
drip-line nuclei 32Ne and 34Ne. The role of valence neutrons in the formation of molecular-type bonds between
clusters is discussed.

DOI: 10.1103/PhysRevC.97.024334

I. INTRODUCTION

The formation of cluster states, a transitional phenomenon
between the quantum-liquid and solid phases in nucleonic
matter, stellar matter, and finite nuclei presents a very active
topic of experimental and theoretical research in nuclear
physics and astrophysics [1–8]. In addition to dedicated mi-
croscopic approaches that have been mainly applied to light
nuclei, more recently clustering phenomena have also been
analyzed using the universal framework of energy density
functionals (EDFs) [8]. Very interesting results have been
obtained but, although one can perform qualitative studies of
the formation and evolution of cluster structures already on
the mean-field level [9–12], for a quantitative analysis that
can be compared to experiment, the basic EDF framework
has to be extended by including collective correlations related
to symmetry restoration and nuclear shape fluctuations. In
the present study we develop an EDF-based framework that
includes configuration mixing of angular momentum- and
parity-projected axially symmetric and reflection-asymmetric
deformed mean-field states. The generator coordinate method
(GCM) is employed in a systematic calculation of low-energy
spectroscopic properties for the chain of neon isotopes, starting
from the self-conjugated 20Ne and extending to the drip-line
nucleus 34Ne. This analysis is entirely based on a universal
EDF, without any parameter of the interaction, basis states, or
method adjusted specifically to nuclei under consideration.

The self-conjugate nucleus 20Ne exhibits admixtures of
cluster configurations already in the ground state, that is, it is
characterized by a transition between homogeneous nucleonic
matter and cluster structures. Various theoretical approaches
have been used to analyze the low-energy structure of 20Ne:
the angular momentum projected Hartree-Fock model [13],
the resonating group method [14], the 5α generator coordinate

method [15], the antisymmetrized molecular dynamics (AMD)
model [16–18], and the generalized Tohsaki-Horiuchi-Schuck-
Röpke (THSR) wave function model [19]. An interesting
feature of this isotope is the dissolution of the reflection-
asymmetric α + 16O structure in higher angular-momentum
states by decreasing the equilibrium distance between two
clusters, α and 16O. This is unexpected because centrifugal
effects should in principle elongate the nucleus. Very recently
a beyond mean-field study of reflection-asymmetric molecular
structures and, in particular, of the antistretching mechanism in
20Ne was performed based on the relativistic EDF framework
[20]. It has been pointed out that a special deformation-
dependent moment of inertia, governed by the underlying shell
structure, could be responsible for the rotation-induced disso-
lution of the α + 16O cluster structure in the negative-parity
states. Furthermore, the formation of the cluster structures in
N �= Z nuclei includes, in addition to the N = Z clusters,
quasi-molecular bonding by the valence neutrons. One such
example is the chain of even-even Ne isotopes that can be
described as an α + 16O + xn system. The structure of the
lightest isotope with such a structure, 22Ne, was previously
analyzed with the AMD model [21], and both the molecular
orbital bands and the α + 18O molecular bands were predicted.

This study is organized as follows. In Sec. II we briefly
outline the theoretical framework of symmetry-conserving
configuration mixing calculation based on nuclear EDFs.
Section III presents an extensive analysis of the structure
of low-energy positive- and negative-parity bands of 20–34Ne
isotopes, and Sec. IV summarizes the results.

II. THEORETICAL FRAMEWORK

Nuclear energy density functionals (NEDFs) provide a
global theoretical framework for studies of ground-state
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properties and collective excitations that is applicable across
the entire nuclide chart, from relatively light systems to super-
heavy nuclei, and from the valley of β stability to the nucleon
drip lines. Modern NEDFs are typically determined by about
ten to twelve phenomenological parameters that are adjusted
to a nuclear matter equation of state and to bulk properties
of finite nuclei. Based on this framework, various structure
models have been developed that go beyond the mean-field
approximation and include collective correlations related to
restoration of broken symmetries and fluctuations of collective
variables [22–24]. These models have become standard tools
for nuclear structure calculations, providing accurate micro-
scopic predictions for many low-energy nuclear phenomena.

The present study of cluster configurations in the Ne
isotopic chain is based on the relativistic functional DD-
PC1 [25]. Starting from microscopic nucleon self-energies in
nuclear matter and empirical global properties of the nuclear
matter equation of state, the coupling parameters of DD-
PC1 were fine-tuned to the experimental masses of a set of
64 deformed nuclei in the mass regions A ≈ 150–180 and
A ≈ 230–250. The DD-PC1 functional has been further tested
in calculations of ground-state properties of medium-heavy
and heavy nuclei, including binding energies, charge radii,
deformation parameters, neutron skin thickness, and excitation
energies of giant multipole resonances. Furthermore, a quan-
titative treatment of open-shell nuclei requires the inclusion
of pairing correlations. The relativistic Hartree-Bogoliubov
(RHB) framework [26,27], in particular, provides a unified
description of particle-hole (ph) and particle-particle (pp)
correlations on a mean-field level by combining two average
potentials: the self-consistent mean field that encloses all the
long-range ph correlations, and a pairing field that sums up
the pp correlations. The ph effective interaction is derived
from the DD-PC1 functional, while a pairing force separable
in momentum space [28,29]: 〈k| V 1S

0 |k′〉 = −Gp(k)p(k′) is
used in the pp channel. By assuming a simple Gaussian ansatz
p(k) = e−a2k2

, the two parameters G and a were adjusted to
reproduce the density dependence of the gap at the Fermi
surface in nuclear matter, as calculated with the Gogny D1S
parametrization [30]. The separable pairing force reproduces
pairing properties in spherical and deformed nuclei calculated
with the original Gogny D1S force, yet significantly reducing
the computational cost.

The Dirac-Hartree-Bogoliubov equations are solved by
expanding the nucleon spinors in the basis of an axially
symmetric harmonic oscillator. The map of the energy surface
as a function of quadrupole and octupole deformation is
obtained by imposing constraints on the quadrupole Q20 and
octupole Q30 moments. The method of quadratic constraint
uses an unrestricted variation of the function

〈H 〉 +
∑
λ=2,3

Cλ0(〈Q̂λ0〉 − qλ0)2, (1)

where 〈H 〉 is total energy, 〈Q̂λ0〉 denotes expectation val-
ues of the mass multipole operators Q̂λ0 ≡ rλYλ0, qλ0 are
the constrained values of multipole moments, and Cλ0 the
corresponding stiffness constants. In general, the values of
the multipole moments 〈Q̂λ0〉 coincide with the constrained

values qλ0 only at the stationary point. The difference between
a multipole moment 〈Q̂λ0〉 and the constrained qλ0 depends
on the stiffness constant. Smaller values of Cλ0 lead to larger
deviations of 〈Q̂λ0〉 from the corresponding constrained values
qλ0. Increasing the value of the stiffness constant, on the other
hand, often destroys the convergence of the self-consistent
procedure. This deficiency is resolved by implementing the
augmented Lagrangian method [31]. In addition, the position
of the center of mass coordinate is fixed at the origin to
decouple the spurious states. In the following we will also use
dimensionless deformation parameters βλ, defined as

βλ = 4π

3ARλ
qλ0, R = r0A

1/3. (2)

To obtain quantitative predictions that can be compared to
data, the self-consistent RHB approach has to be extended
to include symmetry restoration and allow for nuclear shape
fluctuations. This can be accomplished by configuration mix-
ing of symmetry-conserving wave functions. Starting from a
set of mean-field states |φ(q)〉 that depend on the collective
coordinate q, one can build approximate eigenstates of the
nuclear Hamiltonian. In the present study the basis states
|φ(q)〉 are obtained by solving deformation-constrained RHB
equations, that is, the generator coordinate q denotes the
discretized deformation parameters β2 and β3. Since the RHB
states |φ(q)〉 are not eigenstates of the angular momentum or
parity operators, it is necessary to construct basis states with
good angular momentum and parity that are used to diagonalize
the nuclear Hamiltonian:

|JMπ ; α〉 =
∑

j

∑
K

f JKπ
α (qj )P̂ J

MKP̂ π |φ(qj )〉 . (3)

P̂ J
MK denotes the angular momentum projection operator:

P̂ J
MK = 2J + 1

8π2

∫
d�DJ∗

MK (�)R̂(�), (4)

where the integral is carried out over the three Euler angles
� = (α,β,γ ), DJ

MK (�) = e−iMαdJ
MK (β)e−iKγ is the Wigner

D matrix [32], and the active rotation operator reads R̂(�) =
e−iαĴz e−iβĴy e−iγ Ĵz . Good parity quantum number is restored by
choosing the reflection-symmetric basis, that is, by ensuring
that for each (β2,β3) state the basis always contains the
corresponding (β2, − β3) state as well. Taking into account
axial symmetry imposed on the RHB basis states (Ĵz |φ(qj )〉 =
0,∀j ), the integral in Eq. (4) simplifies considerably, since
the integrals over the Euler angles α and γ can be carried
out analytically. This, in turn, restricts the angular momentum
projection to K = 0 and the states in Eq. (3) from now on
read |Jπ ; α〉. Additionally, an approximate particle number
correction is performed by applying the transformation of the
Hamiltonian kernel introduced in Refs. [33,34].

The weight functions f Jπ
α in Eq. (3) are determined by the

variational equation:

δEJπ = δ
〈Jπ ; α| Ĥ |Jπ ; α〉

〈Jπ ; α|Jπ ; α〉 = 0, (5)

that is, by requiring that the expectation value of the nuclear
Hamiltonian in the state (3) be stationary with respect to an

024334-2



QUADRUPOLE AND OCTUPOLE COLLECTIVITY AND … PHYSICAL REVIEW C 97, 024334 (2018)

arbitrary variation δf Jπ
α . This leads to the Hill-Wheeler-Griffin

(HWG) equation [35]:∑
j

[HJπ (qi,qj ) − EJπ
α N Jπ (qi,qj )

]
f Jπ

α (qj ) = 0. (6)

The norm kernel N Jπ (qi,qj ) and the Hamiltonian kernel
HJπ (qi,qj ) are given by the generic expression

OJπ (qi,qj ) = 2J + 1

2
δM0δK0

∫ π

0
dβ sin(β)dJ∗

00 (β)

× 〈
(qi)| Ôe−iβĴy P̂ π |
(qj )〉 . (7)

The HWG equation (6) presents a generalized eigenvalue
problem, thus the functions f Jπ

α (qj ) are not orthogonal and
cannot be interpreted as collective wave functions for the
variable q. Therefore, one rewrites Eq. (6) in terms of another
set of functions, gJπ

α (qj ), defined by

gJπ
α (qi) =

∑
j

(N Jπ )
1/2

(qi,qj )f Jπ
α (qj ). (8)

The HWG equation now defines an ordinary eigenvalue prob-
lem: ∑

j

H̃Jπ (qi,qj )gJπ
α (qj ) = EJπ

α gJπ
α (qi), (9)

with

H̃Jπ (qi,qj ) =
∑
k,l

[(N Jπ )−1/2(qi,qk)HJπ (qk,ql)

× (N Jπ )−1/2(ql,qj )]. (10)

The functions gJπ
α (qj ) are orthonormal and play the role of

collective wave functions. In practice, one first diagonalizes
the norm overlap kernel:∑

j

N Jπ (qi,qj )uJπ
k (qj ) = nJπ

k uJπ
k (qi). (11)

Because the basis functions |φ(qi)〉 are not linearly indepen-
dent, many of the norm overlap kernel eigenvalues nk have val-
ues close to zero. The corresponding eigenfunctions uk(qi) are
rapidly oscillating and do not carry any physical information.
However, such states can lead to numerical problems and thus
need to be removed from the basis. The collective Hamiltonian
is built from the remaining states,

HJπc
kl = 1√

nk

1√
nl

∑
i,j

uJπ
k (qi)H̃Jπ (qi,qj )uJπ

l (qj ), (12)

and subsequently diagonalized,∑
l

HJπc
kl gJπα

l = EJπ
α gJπα

k . (13)

The solution determines both the ground state and the energies
of the excited states, for each value of the angular momentum
J and parity π . The collective wave functions gJπ

α (qj ) and
weight functions f Jπ

α (qj ) are calculated from the norm overlap
eigenfunctions

gJπ
α (qi) =

∑
k

gJπα
k uJπ

k (qi) (14)

and

f Jπ
α (qi) =

∑
k

gJπα
k√
nJπ

k

uJπ
k (qi). (15)

Once the weight functions f Jπ
α (qj ) are known, it is straight-

forward to calculate all physical observables, e.g., transition
probabilities and spectroscopic quadrupole moments [34]. The
spectroscopic quadrupole moment of a state |Jπ ; α〉 is defined
as

Q
spec
2 (Jπ,α) = e

√
16π

5

(
J 2 J
J 0 −J

)

×
∑
qi ,qj

f Jπ∗
α (qi) 〈Jπqi ||Q̂2||Jπqj 〉 f Jπ

α (qj ).

(16)

The reduced electric multipole transition probability for a
transition between an initial state |Jiπi ; αi〉 and a final state
|Jf πf ; αf 〉 reads

B(Eλ; Jiπiαi → Jf πf αf )

= e2

2Ji + 1

∣∣∣∣
∑
qi ,qf

f
Jf πf ∗
αf (qf )

×〈Jf πf qf ||Q̂λ||Jiπiqi〉f Jiπi
αi

(qi)

∣∣∣∣
2

. (17)

We emphasize that, since these quantities are calculated in the
full configuration space, there is no need to introduce effective
charges and e denotes the bare value of the proton charge.

III. EVOLUTION OF CLUSTER CONFIGURATIONS IN
THE NEON ISOTOPIC CHAIN

A. Spectroscopic properties of 20–34Ne

Our analysis of the evolution of cluster configurations
in the chain of isotopes 20–34Ne starts with a microscopic
self-consistent relativistic Hartree-Bogoliubov calculation of
quadrupole-octupole deformation energy surfaces. The Dirac-
Hartree-Bogoliubov equations are solved by expanding nu-
cleon spinors in the basis of an axially symmetric harmonic
oscillator in cylindrical coordinates. To avoid the occurrence
of spurious states, the large and small components of nucleon
spinors are expanded in bases of Nsh = 10 and Nsh = 11 major
oscillator shells, respectively [36]. The map of the energy
surface as a function of quadrupole and octupole deformation
is obtained by imposing constraints on the mass multipole
moments q20 and q30 [cf. Eq. (1)].

Figure 1 displays the RHB energy maps of the even-even
20–34Ne isotopes in the β2-β3 plane. For each isotope, energies
are normalized with respect to the absolute minimum. At
the mean-field level the equilibrium state of all considered
isotopes is axially symmetric. 20Ne and 22Ne exhibit prolate
equilibrium minima with deformationβ2 ≈ 0.5. By adding two
more neutrons, an oblate-deformed minimum (β2 = −0.27)
develops in 24Ne with an additional prolate-deformed local
minimum (β2 = 0.28). These two minima are separated in
energy by only 240 keV. Additional neutrons at first lead
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FIG. 1. Self-consistent RHB binding energies of even-even 20–34Ne isotopes, in the β2-β3 plane. For each nucleus, energies are normalized
with respect to the corresponding absolute minimum. Dashed contours are separated by 2 MeV.

to nearly spherical minima in 26Ne and 28Ne, and finally
to a spherical equilibrium in 30Ne isotope caused by the
N = 20 neutron shell closure. Moving further away from the
N = 20 magic number, the neutron-rich isotopes 32Ne and
34Ne display prolate minima with deformation β2 = 0.33 and
β2 = 0.44, respectively. It is interesting to note that the RHB
model predicts both of these isotopes to be stable against the
two-neutron emission, in agreement with data. The stability of
Ne isotopes against neutron emission will be further analyzed
using the configuration mixing framework.

In the next step, some of the symmetries broken on the
mean-field level are restored by performing angular momen-
tum and parity projection. The integrals involved in angular
momentum projection are evaluated using an equidistant mesh
for the Euler angle β ∈ [0,π ]. We have verified that Nβ = 27
mesh points ensures convergent results for all values of angular
momenta J � 7 and a broad range of quadrupole and octupole
deformations.

Figures 2 and 3 show the angular momentum- and parity-
projected energy maps for the positive parity states Jπ = 0+
and 2+. For each isotope, the energies are normalized with
respect to the binding energy of the Jπ = 0+ minimum. We
note that the angular momentum projection for the spherical
(β2 = 0,β3 = 0) configuration is well defined only for Jπ =
0+, in other cases this point is omitted from the plots. In
addition, on each energy map we have denoted by a circle
the position of the average deformation for the lowest col-
lective state obtained in the configuration mixing calcula-
tion. For collective states with significant contribution from
oblate deformations (�10%), the positions of the average
prolate and oblate deformations are denoted separately by the
square and diamond symbols. A prominent feature in Fig. 2
is the fact that parity projection shifts the position of the
minimum towards octupole deformations. Angular momentum

projection also modifies the topography of mean-field energy
maps by lowering deformed configurations, thus forming
additional local minima for all isotopes. For higher values of
angular momentum (Jπ = 2+, Jπ = 4+, etc.), the absolute
minimum is always prolate-deformed, except for the 24Ne and
28Ne isotopes that display shallow oblate minima for Jπ = 2+.

In Figs. 4 and 5 we plot the angular momentum- and
parity-projected energy maps for the negative parity states
Jπ = 1− and Jπ = 3−. Again, for each isotope energies are
normalized with respect to the binding energy of the minimum
of the surface Jπ = 0+. Notice that parity projection for
reflection-symmetric (β3 = 0) configurations is well defined
only for positive parity, hence these configurations are omitted
in Figs. 4 and 5. The negative parity-projected surfaces are
rather soft in the octupole direction, with absolute minima
located on the prolate side and separated at least by 4 MeV from
the Jπ = 0+ minima. We note that angular momentum and
parity projection modifies the topography of the energy maps
and, therefore, indicates that configuration mixing calculations
will play a crucial role for a quantitative description of the
structure of Ne isotopes.

Correlation effects related to fluctuations of collective
coordinates are taken into account by performing configuration
mixing calculations of projected RHB states. The equidistant
two-dimensional mesh covers a wide range of deformations
in both the quadrupole and the octupole directions: β2 ∈
[−0.8,1.6] and β3 ∈ [−2.0,2.0]. For the step size on the
quadrupole and octupole grids we use �β2 = 0.2 and �β3 =
0.25, respectively. In addition, a cutoff in the RHB binding
energy is introduced, that is, configurations with energy more
than 30 MeV above the RHB equilibrium state are not included
in the GCM calculation. We have verified that this choice for
the energy cutoff does not influence the final results. As a
result, the number of basis states included in the configuration
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FIG. 2. Angular momentum- and parity-projected energy surfaces of even-even 20–34Ne isotopes, for spin and parity J π = 0+ in the β2–β3

plane. For each nucleus, energies are normalized with respect to the binding energy of the corresponding absolute minimum. Dashed contours
are separated by 2 MeV. See text for the explanation of symbols.

mixing calculation reads 157 (20Ne), 149 (22Ne), 151 (24Ne),
143 (26Ne), 139 (28Ne), 123 (30Ne), 139 (32Ne), and 135 (34Ne).

Following the diagonalization of the norm overlap kernel,
those eigenvectors which correspond to eigenvalues smaller
than a given positive constant ζ are eliminated from the basis.
This is necessary to prevent possible numerical instabilities
occurring in the diagonalization of the collective Hamiltonian
(see, for example, Sec. 3.2. of Ref. [33]). In Table I we
show the calculated ground-state energies for the even-even

20–34Ne isotopes as a function of the parameter ζ . Obviously,
for the values ζ = 5 × 10−4 and ζ = 1 × 10−3 the results
are not stable, and the corresponding eigenvectors contain
a considerable number of spurious components. For values
between ζ = 5 × 10−3 and ζ = 5 × 10−2 stable results for
the ground-state energy are obtained. Therefore, in all further
calculations the cutoff parameter ζ = 5 × 10−3 is used.

To analyze the predicted stability of Ne isotopes against
two-neutron emission, in Fig. 6 we plot the two-neutron separa-

FIG. 3. Same as in the caption to Fig. 2, but for spin and parity J π = 2+.
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FIG. 4. Angular momentum- and parity-projected energy surfaces of even-even 20–34Ne isotopes, for spin and parity J π = 1− in the β2-β3

plane. For each nucleus, energies are normalized with respect to the binding energy of the corresponding 0+ minimum. Dashed contours are
separated by 2 MeV. See text for the explanation of symbols.

tion energies S2n = E0+
1
(A − 2,Z) − E0+

1
(A,Z) for the even-

even 22–34Ne isotopes. The full GCM configuration mixing re-
sults are compared with the available data [37] and, to quantify
correlation effects, with the mean-field RHB results. The RHB
results for the two-neutron separation energy, that is, the differ-
ences between binding energies of the corresponding equilib-
rium minima, generally overestimate the experimental values,
except for 32Ne. It appears that for A � 30 configuration mix-
ing does not produce a significant impact on the calculated two-
neutron separation energies. Closer to the drip line, however,

one notices that the inclusion of collective correlations through
GCM configuration mixing becomes much more important
and brings the theoretical S2n values within the experimental
error bars. In addition, we have verified that 34Ne is the last
Ne isotope predicted to be stable, since both the two-neutron
(S2n = −1.16 MeV) and the four-neutron (S4n = −0.58 MeV)
separation energies for 36Ne isotope are negative. A similar
improvement of the predicted two-neutron separation energies
for Ne isotopes was also obtained in the angular momentum-
projected GCM study of Ref. [38], based on the Gogny D1S

FIG. 5. Same as in the caption to Fig. 4, but for spin and parity J π = 3−.
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TABLE I. Calculated ground-state energies (in MeV) for the even-
even 20–34Ne isotopes, as a function of the cutoff parameter ζ for the
smallest eigenvalue of the norm overlap kernel matrix.

ζ 5 × 10−4 1 × 10−3 5 × 10−3 1 × 10−2 5 × 10−2

20Ne −173.49 −166.15 −162.49 −162.46 −162.35
22Ne −202.69 −192.70 −181.36 −181.33 −181.28
24Ne −195.75 −195.69 −195.56 −195.51 −195.47
26Ne −207.59 −207.54 −207.44 −207.41 −207.37
28Ne −215.69 −215.66 −215.59 −215.56 −215.39
30Ne −221.82 −221.76 −221.63 −221.59 −221.27
32Ne −223.93 −223.88 −223.81 −223.72 −223.55
34Ne −224.46 −224.46 −224.43 −224.41 −224.34

effective interaction. However, the calculated S2n value for
34Ne in Ref. [38] was slightly negative, that is, this isotope was
predicted to be unstable against the two-neutron emission.

Even though the ground-state spectroscopic quadrupole
moments identically vanish in even-even nuclei, it is instructive
to calculate the expectation values of the quadrupole deforma-
tion parameter in the correlated ground state:

〈β2〉Jπ
α =

∑
i

∣∣gJπ
α (qi)

∣∣2
β2i , (18)

where gJπ
α (qi) denotes the collective wave function [cf.

Eq. (14)]. In Fig. 7 we display the amplitudes squared of
the ground-state collective wave functions for 20–34Ne. This
quantity is not an observable, but still it provides useful insight
into the structure of correlated ground states. In contrast to
the mean-field RHB equilibrium minimum which corresponds
to a single configuration in the (β2,β3) plane, the amplitude
of the ground state collective wave function manifests the
degree of shape fluctuations in both quadrupole and octupole
directions. In the left panel of Fig. 8 we plot the average β2

deformation values (18) for 20–34Ne isotopes in comparison to
the deformations that correspond to the self-consistent mean-
field RHB minima. Since the contributions of oblate-deformed

22 24 26 28 30 32 34
A

0
-2

2
4
6
8

10
12
14
16
18
20
22

S 2n
 [M

eV
]

RHB
GCM
Exp.

FIG. 6. Two-neutron separation energies of 22–34Ne isotopes. The
RHB values obtained on the mean-field level (squares), and results of
the full angular momentum- and parity-projected GCM calculation
(triangles), are compared to the available data [37].

TABLE II. Calculated ground-state band spectroscopic
quadrupole moments (in e fm2) for J π = 2+,4+,6+ in the even-even
20–34Ne isotopes.

J π
α 2+

1 4+
1 6+

1

20Ne −16.61 −19.85 −20.96
22Ne −15.01 −18.89 −20.27
24Ne −6.72 −16.42 −20.55
26Ne −9.59 −16.85 −19.80
28Ne −4.43 −17.70 −24.01
30Ne −13.59 −19.72 −22.25
32Ne −13.79 −18.02 −19.62
34Ne −15.86 −20.20 −21.52

configurations to the total collective wave functions are larger
than 15% over the entire Ne isotopic chain, we additionally
display the β2 deformations obtained by averaging over only
prolate (left triangle) and oblate (right triangle) configurations.
In parentheses we include the respective contributions to the
average β2 deformation calculated from both prolate and
oblate configurations. One notices that oblate configurations
give a non-negligible contribution for all isotopes, and this
contribution is more pronounced in 24–32Ne. The nucleus 24Ne,
which exhibits nearly degenerate oblate and prolate minima
on the mean-field level, preserves this structure even after
symmetry restoration and configuration mixing. In particular,
the dominant component is still prolate deformed and peaks
at β2 ≈ 0.4, but about 1/3 of the collective wave function
spreads over the oblate side and peaks at β2 ≈ −0.3. A similar
behavior is also found in the 26Ne isotope. The semimagic
nucleus 30Ne is found to be very weakly prolate deformed,
in contrast to the large ground-state quadrupole deformation
deduced from experiment [39]. By removing two neutrons,
the nearly spherical structure of the ground state appears to
be preserved in 28Ne. The addition of two neutrons, however,
leads to the formation of a barrier at the spherical configuration
of 32Ne and a shape-coexisting structure in the collective wave
function appears again. In the right panel of Fig. 8 we plot the
corresponding values of the octupole deformation parameter
in the RHB minima and correlated ground states, calculated
analogously to Eq. (18). Since 〈β3〉 vanishes identically for all
collective states with good parity, we plot instead the average
values of the corresponding modulus, that is, the 〈|β3|〉 values.
The 〈|β3|〉 values quantify the role of octupole deformation
in the analyzed ground states. Obviously, octupole collectivity
is very pronounced in 20Ne, while it is somewhat weaker and
approximately constant over the rest of the isotopic chain, with
the average 〈|β3|〉 value varying between 0.30 and 0.35.

In Table II we display the calculated spectroscopic
quadrupole moments for the ground-state bands (Jπ =
2+,4+,6+ states) of 20–34Ne. The theoretical values for the 2+

1
states in 20Ne and 22Ne are in fair agreement with the experi-
mental results: −23 ± 3 e fm2 for 20Ne and −19 ± 4 e fm2 for
22Ne [40]. The 2+

1 states in 24–28Ne isotopes are built on either
mixed prolate and oblate configurations or weakly deformed
prolate ground states, thus yielding somewhat smaller absolute
values for the spectroscopic quadrupole moments. Increasing
angular momentum stabilizes the prolate-deformed shapes
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FIG. 7. Amplitudes of collective wave functions squared |g(β2,β3)|2 of the ground states of 20−34Ne isotopes. Dashed contours in the β2 − β3

plane successively denote a 10% decrease starting from the largest value of the amplitude.

and this is consistent with the larger absolute values for the
spectroscopic quadrupole moments of the 4+

1 and 6+
1 states.

Finally, in the left panel of Fig. 9 we plot the calculated
excitation energies for the 2+

1 and 4+
1 states of 20–34Ne in

comparison to the available experimental values [41]. Our
results for the lighter isotopes 20–24Ne are in rather good
agreement with data. However, when approaching the N = 20
neutron shell the theoretical results begin to diverge from ex-
periment, and this is especially pronounced in the 30Ne isotope.
This discrepancy originates from the fact that the functional

DD-PC1 predicts the N = 20 neutron shell closure even for the
very neutron-rich isotopes. On the other hand, the breakdown
of the N = 20 neutron magic number, leading to the large
quadrupole deformation in the ground state of the 30Ne isotope,
is experimentally a well-established phenomenon [39]. We
notice that a similar problem occurred in a previous study of
32Mg based on the relativistic functional PC-F1 [42], and also
in some calculations based on nonrelativistic EDFs, e.g., the
SLy4 effective interaction [43]. In addition, the present study
is restricted to axial shapes, whereas in some of the heavier Ne

3420 22 24 26 28 30 32
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<β2>-

(0.16) (0.16)
(0.33)

(0.33)

(0.24)
(0.24) (0.28) (0.16)

(0.84) (0.84)

(0.84)

(0.67)
(0.67)

(0.76)
(0.76) (0.72)
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0
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FIG. 8. Deformation parameters β2 (left panel (a)) and β3 (right panel (b)) that correspond to RHB mean-field minima of 20−34Ne, in
comparison with the expectation values 〈β2〉 and 〈|β3|〉 in the corresponding angular momentum- and parity-projected GCM ground states. The
deformations obtained by taking the expectation values over only prolate (triangle left) and only oblate (triangle right) configurations, as well
as their respective contributions, are also shown.
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FIG. 9. Calculated excitation energies of the states 2+
1 and 4+

1 [left panel (a)] and the transition probabilities B(E2; 2+
1 → 0+

1 ) [right panel
(b)] in the even-even 20–34Ne isotopes, compared with the available experimental data [41].

isotopes additional degrees of freedom, e.g., triaxial, could be
important. Similar results were also obtained in the study of
quadrupole collectivity of neutron-rich neon isotopes based
on the Gogny force [38]. The calculated B(E2; 2+

1 → 0+
1 )

transition probabilities in the Ne isotopic chain are displayed
in the right panel of Fig. 9 and compared with the available data
[41]. The theoretical results reproduce the experimental values
except for 30Ne. Because of the predicted N = 20 neutron shell
closure, the calculated B(E2; 2+

1 → 0+
1 ) value is much smaller

than the corresponding experimental value.

B. The self-conjugate nucleus 20Ne
20Ne presents a very interesting example of a nucleus that

exhibits admixtures of cluster configurations already in the
ground state. Previous studies based on the relativistic EDF
framework have shown that the reflection-asymmetric α +

16O structure indeed appears already on the mean-field level
[10,11]. However, to obtain a quantitative description of the
low-energy structure of 20Ne, correlations related to symmetry
restoration and shape fluctuations have to be taken into account.
In Fig. 10 we display the calculated low-lying spectrum of
20Ne in comparison to available data and predictions of two
other theoretical beyond mean-field studies. The results of
the present calculation are shown in the first column, and
the experimental excitation spectrum in the second. The third
column includes results obtained in a recent study of 20Ne
based on the relativistic EDF PC-PK1 [20]. In contrast to
the present analysis, in Ref. [20] pairing correlations were
treated in the BCS approximation, and configuration mixing
calculation was performed using a set of 54 prolate-deformed
mean-field basis states with projection on angular momentum,
parity, and particle number. In addition to this set of basis states,
denoted as full configuration, an additional set was considered
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FIG. 10. Theoretical low-energy excitation spectrum of 20Ne compared with available data. The calculated E2 transition probabilities within
the bands (red color, in e2fm4), and E3 transition probabilities between the bands (blue color, in e2fm6) are also shown. Results obtained with
two other beyond mean-field models [17,20] are also shown for comparison. See text for details.
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FIG. 11. Amplitudes of collective wave functions squared |g(β2,β3)|2 of the low-energy levels of 20Ne. Dashed contours in the β2 − β3

plane successively denote a 10% decrease starting from the largest value of the amplitude.

that contains only six configurations whose mixing yields opti-
mal results in comparison to experiment. This set of basis states
was denoted as optimal configuration and contains four prolate
configurations, one oblate configuration, and the spherical
configuration. Although the excitation energies obtained with
both sets of basis states are very similar, one finds significant
differences in the calculated transition probabilities. Results
obtained with the optimal configuration set are shown in green
in Fig. 10, whereas those obtained with the full configuration
set are shown in red (intraband) and blue (interband). Note that
the present GCM calculation uses a total of 157 configurations,
both oblate and prolate. Finally, in the fourth column we show
results obtained using the deformed basis antisymmetrized
molecular dynamics model (AMD) [17]. This model employs
a triaxially deformed Gaussian function for the spatial part of
the single-particle wave packet and, although the formation of
cluster states is not assumed a priori in this model, nucleon
localization is inbuilt by using Gaussian wave packets.

The yrast-band energies are reproduced reasonably well
by all three models, with the excitation spectra somewhat
compressed in comparison to the experiment. The two GCM
models slightly underestimate the moment of inertia for the
negative-parity band, that is, the energy levels in the negative-
parity band are a bit spread out compared to the experimental
values. The best agreement with data for the transition rates
within the yrast band is obtained with the AMD model. Even
though the present calculation predicts a marginally smaller
B(E2; 2+

1 → 0+
1 ) value, and overestimates the B(E2; 4+

1 →
2+

1 ) and B(E2; 6+
1 → 4+

1 ) values, it reproduces the overall
trend for the B(E2) values within the yrast band. On the other
hand, the PC-PK1 calculation with the full configuration set

fails to reproduce the observed increase in the E2 transition
probabilities from 2+

1 → 0+
1 to 4+

1 → 2+
1 , while the same

model with the optimal configuration set does not reproduce
the decrease in the E2 transition probabilities from 4+

1 → 2+
1

to 6+
1 → 4+

1 transitions.
These differences between the present calculation and

the PC-PK1-based study could probably be attributed to the
different selection of basis states used in the configuration
mixing calculation. In the upper row of Fig. 11 we plot
the amplitudes of collective wave functions squared for the
yrast-band states in the (β2,β3) plane. One notices that, while
the collective wave function for 0+

1 displays a significant
contribution from oblate configurations, the wave functions
of the states with higher angular momenta are concentrated
around the prolate deformation β2 ≈ 0.5. Omitting oblate
configurations from the basis space (full configuration set in the
PC-PK1 calculation) will produce a prolate-deformed ground
state hence overestimating the B(E2; 2+

1 → 0+
1 ) value. By

including just one oblate configuration (optimal configuration
set in the PC-PK1 calculation) this value is reduced.

The E2 transition probabilities for the Kπ = 0− band
obtained in the present study agree with the AMD calculation,
particularly for the 3−

1 → 1−
1 and 5−

1 → 3−
1 transitions. One

also notices the agreement between the predicted and exper-
imental B(E2; 3−

1 → 1−
1 ) value. On the other hand, the tran-

sition probabilities obtained in the PC-PK1 calculation based
on the full configuration set differ considerably from the other
two models and experiment. This problem can be resolved
by including one oblate configuration (optimal configuration
set in the PC-PK1 calculation) in the basis set. In the lower
row of Fig. 11 we plot the amplitudes of collective wave
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FIG. 12. Characteristic intrinsic nucleon densities of states of the ground-state band and the Kπ = 0− band in 20Ne. See text for description.

functions squared for the negative-parity band, and these can be
compared with the right column in Fig. 5 of Ref. [20], where the
same amplitudes were calculated using the PC-PK1 interaction
with the full configuration set. We notice that the present
calculation predicts that all wave functions are concentrated
around (β2 ≈ 0.8, β3 ≈ 0.7), while the study of Ref. [20]
predicts a broader distribution of the wave functions of the
Kπ = 0− band, with the peak position shifting towards smaller
values of β2 with increasing angular momentum. Finally, our
predictions for the E3 transition probabilities between the
Kπ = 0− and Kπ = 0+ bands are in fair agreement with the
results obtained in Ref. [20] using the optimal configuration
set.

To illustrate the evolution of cluster structures in the
collective states, in Fig. 12 we display the characteristic
intrinsic nucleon densities of the ground-state band and the
Kπ = 0− band in 20Ne. For each state, the corresponding
prolate and/or oblate deformation parameters (β2,β3), shown
in parentheses, are calculated by averaging over the prolate-
deformed and oblate-deformed configurations separately [see

Eq. (18)]. For the average prolate or oblate (β2,β3) we plot
the corresponding intrinsic total nucleon density in the xz
plane. These densities are obtained by axial RHB calculations
constrained to the average (β2,β3). In each panel we also
include the percentage of prolate or oblate configurations in
the collective wave function. Only in the ground state there is
a significant contribution of oblate configurations, while for all
other yrast states the intrinsic structure is dominated by prolate
configurations. The major contribution to the 20Ne ground
state comes from the reflection-asymmetric prolate-deformed
α + 16O configuration, but it also contains a 16% admixture of
oblate-deformed configurations with a characteristic intrinsic
density resembling the 2α + 12C structure. The predicted
transitional character of 20Ne ground state between mean-
field and cluster-like structures is in agreement with AMD
analyses [2,17]. It is remarkable that, starting from a basis
of more than 150 mean-field states, the GCM calculation
brings out the two main components of the collective state
that are used as a priori basis states in custom built cluster
models. The transitional nature of the ground state is usually
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FIG. 13. Calculated low-energy spectra of 22,24Ne (left panel) and 32,34Ne (right panel). The E2 reduced transition probabilities within the
bands (red color, in e2fm4) and E3 transition probabilities between the bands (blue color, in e2fm6) are also shown.

invoked to explain the relatively high excitation energy of
its parity-doublet 1−

1 state, which is predicted to exhibit a
pronounced α + 16O structure by both the present study and
AMD calculations. Increasing angular momentum leads to a
gradual dissipation of the α + 16O structure in the Kπ = 0−
band. However, this process appears to develop faster in the
AMD [17] and PC-PK1+BCS [20] calculations. A similar
trend is observed in the ground-state band, particularly for the
Jπ = 6+ state shown in Fig. 12, for which a weak α-12C-α–like
structure appears.

C. Neutron-rich Ne isotopes

In the remainder of this study we analyze the structure of a
selected set of heavier Ne isotopes: 22,24Ne and 32,34Ne. In the
left panel of Fig. 13 the excitation spectra of 22Ne and 24Ne
are shown. Compared to the spectrum of 20Ne, adding two
neutron does not significantly modify the collective structure
and both the energy spectrum and the transition rates in 22Ne
are very similar to the ones predicted for 20Ne. The yrast band
of 24Ne, however, is considerably more stretched compared to
both 20Ne and 22Ne. Shape mixing in the ground-state band
of the 24Ne isotope is also reflected in the reduced transition
probabilities. The lowest negative-parity bands, on the other
hand, are rather similar in all three isotopes 20,22,24Ne. The
Kπ = 0−

1 excitation energies increase with neutron number,
and the E2 transition rates generally decrease, reflecting a
reduction of octupole collectivity.

Further insight into the structure of the lowest positive- and
negative-parity collective states is gained from the characteris-
tic intrinsic nucleon densities, determined as described in the
previous subsection. In the lower panels of Figs. 14 and 15 we
plot the total intrinsic nucleon densities that correspond to the
average prolate and oblate deformations of the ground state,
and average prolate deformation of the Kπ = 0−

1 bandhead in
22Ne and 24Ne isotopes, respectively. The entire ground-state
band of 22Ne exhibits a structure very similar to the one of
20Ne, with slightly reduced values of the octupole deformation.

For 24Ne, in addition to the ground state, shape coexistence is
rather pronounced also in the 2+

1 and 4+
1 states. In particular,

oblate-deformed configurations account for 35% and 12%,
respectively, of the corresponding collective wave functions. It
is also interesting to point out that, even though the prominent
α + 16O structure is predicted in the negative-parity bands
of both 22Ne and 24Ne, for the latter the calculated octupole
deformation does not decrease for higher angular momenta
and the quadrupole deformation in fact increases, that is, the
opposite trend as compared to 20Ne and 22Ne.

22Ne and 24Ne are also interesting in the context of excess
neutrons playing the role of molecular bonding between cluster
structures. This analysis is based on the picture of nuclear
molecular states, that emerges if the total nucleon density is
decomposed into the density of clusters and the density of
additional valence neutrons. For covalent bonding, a negative-
parity orbital perpendicular to the axis connecting the two
clusters is called a π orbital, while a positive-parity orbital
parallel to this axis is called a σ orbital (cf. Fig. 7 of Ref. [44]).
To qualitatively determine the density of the valence neutrons,
after solving the relativistic Hartree-Bogoliubov equations for
a given deformation (β2,β3), the solution is transformed into
the canonical basis which diagonalizes the density matrix
[45]. For the neon isotopes considered in this analysis, the
five deepest proton and neutron orbitals exhibit occupation
numbers ni > 0.99, hence their contribution is interpreted as
the 20Ne core density, while the remaining orbitals compose
the valence density. In the upper panels of Figs. 14 and 15 we
plot the intrinsic valence neutrons densities that correspond to
the average oblate and/or prolate deformations of the ground
state and the Kπ = 0−

1 bandhead in 22Ne and 24Ne isotopes.
The ground-state band of 22Ne exhibits a characteristic π
bonding, in agreement with the AMD analysis of Ref. [21].
The same study predicted a pronounced σ bond already for
the bandhead of the Kπ = 0−

1 band. In our case, however, the
1−

1 state still appear to preserve the π -bond-like molecular
bonding, and only the increase of angular momentum leads to
a development of the σ bond, particularly pronounced for the
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FIG. 14. Characteristic intrinsic nucleon densities of the ground state and the Kπ = 0−
1 bandhead in 22Ne. Total nucleon densities (lower

panel) and valence neutrons densities (upper panel) are shown.

7−
1 state. The situation is different in the 24Ne isotope, where

the ground-state band is characterized by π bonding, while the
entire negative-parity band exhibits a pronounced σ bond.

We conclude the present analysis by focusing on the two
most neutron-abundant neon isotopes, that is, 32Ne and 34Ne.
Both isotopes are predicted to be stable against two-neutron
emission and, moreover, the calculated two-neutron separation
energies are found within their respective experimental error
bars (see Fig. 6). In the right panel of Fig. 13 we plot
the corresponding low-energy spectra and electromagnetic
transition probabilities. The ground-state band spectrum of
32Ne is rather similar to those of lighter isotopes, namely 20Ne
and 22Ne. However, because of a significant presence of oblate
deformation in the corresponding ground state, the calculated
E2 transition probability is rather small and closer to that of
the shape-coexisting 24Ne. The ground-state band spectrum of
34Ne, which is built on a strongly prolate-deformed 0+ state,
is much more compressed. In particular, the energies of the 2+
and 4+ states are found to be the lowest in the whole isotopic
chain, while the corresponding E2 transition rate to the ground

state is the largest. The negative-parity spectra of these isotopes
are rather similar and the corresponding bandheads are found
at relatively low energies, indicating pronounced collectivity.
Because of the different structure of their ground states, the
octupole transition to the ground state in 34Ne is almost three
times larger than the one in 32Ne. In fact, it is only the ground
states of these isotopes that exhibit pronounced prolate-oblate
shape coexistence. Excited states, on the other hand, are built
on stable prolate and reflection-asymmetric configurations.

IV. SUMMARY

The structure of the lowest positive- and negative-parity
bands of 20Ne and the neutron-rich Neon isotopes has
been analyzed using a beyond mean-field approach based
on relativistic energy density functionals. Starting from
self-consistent axially symmetric quadrupole and octupole
deformed relativistic Hartree-Bogoliubov states, projections
on angular momentum and parity are carried out, and the
resulting symmetry-conserving states are subsequently used

FIG. 15. Same as in the caption to Fig. 14, but for 24Ne.

024334-13



MAREVIĆ, EBRAN, KHAN, NIKŠIĆ, AND VRETENAR PHYSICAL REVIEW C 97, 024334 (2018)

in a configuration mixing calculation that employs the
generator coordinate method. This model enables a consistent,
parameter-free calculation of excitation spectra and electric
transition probabilities, both for the ground-state band as
well as for the excited Kπ = 0± bands. A good agreement
with experimental results for the energies of the lowest
positive-parity states and for the quadrupole transition rates
has been obtained over the chain of isotopes considered, as
well as with available data on low-energy negative-parity
states. In particular, the spectroscopic properties of 20Ne have
been calculated at a level of accuracy comparable to those
obtained using more specific models, such as antisymmetrized
molecular dynamics. In addition, the contribution of cluster
configurations to the intrinsic nucleon density distributions
has been examined and, particularly, the ground state of 20Ne
has been shown to exhibit a transitional character between
homogeneous matter and a cluster phase. Furthermore, the
low-lying spectra of 22Ne and 24Ne have been calculated and
their characteristic intrinsic nucleon densities and valence-
neutron bonds analyzed, as well as spectroscopic properties
of the two isotopes at the neutron drip line: 32Ne and 34Ne.

The model that has been used in this study, the an-
gular momentum- and parity-projected generator coordinate
method, is based on the universal framework of energy density
functionals. Rather than using specific effective interactions
adjusted to a particular mass region and optimized basis states,
it implements functionals that are applicable across the entire
nuclear chart, and does not make any assumption about single-

nucleon localization. The advantages of using EDFs—global
effective interactions, an intuitive interpretation of results in
terms of intrinsic shapes, and calculations performed in the full
space of occupied single-nucleon states—are obvious already
at the mean-field level. It is, however, the development of
beyond mean-field methods, including collective correlations
related to symmetry restoration and shape fluctuations, that
enables an accurate description of spectroscopic properties. Of
course, global effective interactions might not describe particu-
lar properties determined by shell evolution in a specific mass
region such as, in this case, the erosion of the N = 20 shell
closure in very neutron-rich nuclei. However, this framework,
especially when extended to restore further symmetries, e.g.,
particle number, and include additional collective variables,
presents one of the most promising theoretical tools for studies
of the coexistence of the quantum-liquid and cluster states in
nuclei.
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