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First results on the longitudinal asymmetry and its effect on the pseudorapidity distributions in Pb–Pb
collisions at √sNN = 2.76 TeV at the Large Hadron Collider are obtained with the ALICE detector. The 
longitudinal asymmetry arises because of an unequal number of participating nucleons from the two 
colliding nuclei, and is estimated for each event by measuring the energy in the forward neutron-Zero-
Degree-Calorimeters (ZNs). The effect of the longitudinal asymmetry is measured on the pseudorapidity 
distributions of charged particles in the regions |η| < 0.9, 2.8 < η < 5.1 and −3.7 < η < −1.7 by taking 
the ratio of the pseudorapidity distributions from events corresponding to different regions of asymmetry. 
The coefficients of a polynomial fit to the ratio characterise the effect of the asymmetry. A Monte Carlo 
simulation using a Glauber model for the colliding nuclei is tuned to reproduce the spectrum in the ZNs 
and provides a relation between the measurable longitudinal asymmetry and the shift in the rapidity (y0) 
of the participant zone formed by the unequal number of participating nucleons. The dependence of the 
coefficient of the linear term in the polynomial expansion, c1, on the mean value of y0 is investigated.

© 2018 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

In a heavy-ion collision, the number of nucleons participating 
from each of the two colliding nuclei is finite, and will fluctuate 
event-by-event. The kinematic centre of mass of the participant 
zone, defined as the overlap region of the colliding nuclei, in gen-
eral has a finite momentum in the nucleon–nucleon centre of mass 
frame because of the unequal number of nucleons participating 
from the two nuclei. This momentum causes a longitudinal asym-
metry in the collision and corresponds to a shift of rapidity of 
the participant zone with respect to the nucleon–nucleon centre 
of mass (CM) rapidity, termed the rapidity-shift y0. The value of 
y0 is indicative of the magnitude of the longitudinal asymmetry of 
the collision [1,2]. Assuming the number of nucleons participating 
from each of the two nuclei is A and B , the longitudinal asymme-
try in participants is defined as αpart = A−B

A+B and the rapidity-shift 
can be approximated as y0 ∼= 1

2 ln A
B at LHC energies [2].

The shift in the CM frame of the participant zone, which 
evolves into a state of dense nuclear matter, needs to be explored 
in heavy-ion collision models. Comparison of model predictions 
with the observed �-polarisation, possibly due to vorticity from 
the initial state angular momentum surviving the evolution, re-
quires a precise determination of initial conditions and hence the 

� E-mail address: alice -publications @cern .ch.

shift in the CM frame [3–5]. Such a shift may also affect observa-
tions on correlations amongst particles, which eventually provide 
information about the state of the matter through model compar-
isons. Further, the resultant decrease in the CM energy may affect 
various observables including the particle multiplicity. The trans-
verse spectra are known to be affected by the initial geometry of 
the events, as estimated through techniques of event shape en-
gineering, indicating an interplay between radial and transverse 
flow [6]. The measurement of longitudinal asymmetry will provide 
a new parameter towards event shape engineering, affecting many 
other observables.

The simplest of all possible investigations into the effect of 
longitudinal asymmetry is a search for modification of the kine-
matic distribution of the particles. The pseudorapidity distribution 
(dN/dη) of soft particles, averaged over a large number of events, 
is symmetric in collisions of identical nuclei. These distributions 
were observed to be asymmetric in collisions of unequal nuclei 
such as d–Au [7] and p–Pb [8–10] and have been explained in 
terms of the rapidity-shift of the participant zone [11]. In a heavy-
ion collision, the effect of the rapidity-shift of the participant zone 
should be discernible in the distribution of produced particles. This 
small effect can be estimated by taking the ratio of pseudorapid-
ity distributions in events corresponding to different longitudinal 
asymmetries [2].

It was suggested that the rapidity distribution of an event, 
scaled by the average rapidity distribution, can be expanded in 
terms of Chebyshev polynomials, where the coefficients of expan-
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sion are measures of the strength of longitudinal fluctuations and 
can be determined by measuring the two particle correlation func-
tion [12]. Using the same methodology, the event-by-event pseu-
dorapidity distributions are also expanded in terms of Legendre 
polynomials [13]. The ATLAS Collaboration expanded the pseudora-
pidity distributions in terms of Legendre polynomials and obtained 
the coefficients by studying pseudorapidity correlations [14].

In the present work, the events are classified according to the 
asymmetry determined from the measurement of energies of neu-
tron spectators on both sides of the collision [2]. The effect of 
asymmetry is investigated by taking the ratio of the measured raw 
dN/dη distributions for events from different regions of the distri-
bution of measured asymmetry. A major advantage of studying this 
ratio is the cancellation of (i) systematic uncertainties and (ii) the 
effects of short range correlations. The first measurements of the 
effect of asymmetry on the raw dN/dη distributions are reported 
here.

The paper is organised as follows: Sect. 2 provides an introduc-
tion to the experimental setup and the details of the data sam-
ple. Section 3 discusses the characterisation of the change in raw 
dN/dη distributions for events classified in different asymmetry 
regions. Section 4 describes the simulations employed to provide 
a relation between the measured asymmetry and the rapidity-shift 
y0 of the participant zone. The relation between the parameter 
characterising the change in raw dN/dη distributions is shown for 
different centralities in Sect. 5, along with its relation to the esti-
mated values of y0.

2. Experimental details and data sample

The analysis uses data from Pb–Pb collision events at 
√

sNN =
2.76 TeV, recorded in the ALICE experiment in 2010, with a min-
imum bias trigger [15,16]. The data used in the present analysis 
is recorded in the neutron Zero Degree Calorimeters (ZNs), the V0 
detectors, the Time Projection Chamber (TPC) and the Inner Track-
ing System (ITS). Both ZNs and V0 detectors are on either side of 
the interaction vertex, those in the direction of positive pseudora-
pidity axis are referred as V0A and ZNA and those in the opposite 
direction are referred as V0C and ZNC. A detailed description of the 
ALICE detectors and their performance can be found elsewhere [17,
18].

The event asymmetry is estimated using the energy measured 
in the two ZNs situated 114 metres away from the nominal inter-
action point (IP) on either side. The ZNs detect only spectator neu-
trons that are not bound in nuclear fragments, since the latter are 
bent away by the magnetic field of the LHC separation dipole. The 
ZN detection probability for neutrons is 97.0% ± 0.2% (stat) ±3% 
(syst) [19]. The relative energy resolution of the 1n peak at 1.38 
TeV is 21% for the ZNA and 20% for the ZNC [19]. The production 
of nuclear fragments increases with collision impact parameter de-
grading the resolution on the number of participating nucleons. 
The energy in the ZNs is a good measure of the number of specta-
tor neutrons only for the more central collisions [18]. The analysis 
is limited to the top 35% most central sample and employs data 
from ∼ 2.7 million events.

The raw dN/dη distributions in the region |η| < 0.9 are ob-
tained by reconstructing the charged particle tracks using the TPC 
and ITS. The requirements on the reconstructed tracks obtained 
using the measurements in these detectors are the same as in 
other earlier analyses [15]. The measured amplitudes in the V0A 
(+2.8 < η < +5.1) and V0C (−3.7 < η < −1.7) are used to es-
timate the raw dN/dη distributions of charged particles in the 
forward regions. Both V0A and V0C are scintillator counters, each 
with four segments in pseudorapidity and eight segments in az-
imuth. The raw distributions measured are termed as dN/dη dis-

tributions throughout the manuscript. In order to ensure a uniform 
detector performance, the present analysis uses events with z po-
sition (along the beam direction) of the interaction vertex, V z, 
within ± 5 cm of the IP in ALICE. The centrality of Pb–Pb col-
lisions was estimated by two independent methods. One estimate 
was based on the charged particle multiplicity reconstructed in the 
TPC and the other was based on the amplitudes in the V0 detec-
tors [20].

3. Analysis and systematic uncertainties

In the present analysis, changes in the raw pseudorapidity dis-
tribution of charged particles are investigated for different values 
of measured asymmetry of the event. The method of measurement 
of the asymmetry and the parameters characterising the change in 
dN/dη distributions are discussed in this section.

3.1. Analysis

Any event asymmetry due to unequal number of nucleons from 
the two participating nuclei may manifest itself in the longitudi-
nal distributions, i.e. dN/dy (or dN/dη) of the produced particles 
because of a shift in the effective CM. Assuming that the rapid-
ity distributions can be described by a symmetric function about 
a mean y0 (y0 = 0.0 for symmetric events), the ratio of the dis-
tributions for asymmetric and symmetric events may be written 
as

(dN/dy)asym

(dN/dy)sym
= f (y − y0)

f (y)
∝

∞∑

n=0

cn(y0)yn (1)

For any functional form of the rapidity distribution, this ratio may 
be expanded in a Taylor series. The coefficients cn of the different 
terms in the expansion depend on the shape and the parameters 
of the rapidity distribution [2]. In the ALICE experiment, the pseu-
dorapidities of the emitted particles were measured. The effect of 
a rapidity-shift y0 on the pseudorapidity distribution is discussed 
in Sect. 4.2.

The unequal number of participating nucleons will yield a non-
zero y0 of the participant zone and will cause an asymmetry in 
the number of spectators. This asymmetry can provide information 
about the mean values of y0 using the response matrix discussed 
in Sect. 4. The asymmetry of each event is estimated by measuring 
the energy in the ZNs on both sides of the interaction vertex: EZNA

on the side referred to as the A-side (η > 0) and EZNC on the side 
referred to as the C-side (η < 0). A small difference in the mean 
and the relative energy resolution of the 1n peak at 1.38 TeV was 
observed in the performance of the two ZNs [19]. For each cen-
trality interval, the energy distribution in each ZN is divided by its 
mean, and the width of the EZNC/〈EZNC〉 distribution is scaled to 
the width of the corresponding distribution using EZNA. The asym-
metry in ZN is defined as

αZN = εZNA − εZNC

εZNA + εZNC
(2)

where εZNC(A) is a dimensionless quantity for each event, obtained 
after scaling the distributions of EZNC(A) as described above.

For the 15–20% centrality interval, Fig. 1 shows the distribu-
tion of the asymmetry αZN. To investigate the significance of this 
distribution, the contribution of the resolution of ZNs to the res-
olution of the asymmetry parameter αZN is evaluated. For each 
centrality interval, values of EZNC and EZNA are simulated for each 
event by assuming a normal distribution peaked at the mean value 



22 ALICE Collaboration / Physics Letters B 781 (2018) 20–32

Fig. 1. The distribution of the asymmetry parameter αZN for the 15–20% centrality 
interval. The distribution is demarcated into three regions using |αcut

ZN |. A Gaussian 
fit to the distribution yields a width of 0.13.

corresponding to the average number of neutrons and the corre-
sponding energy resolution. The average number of neutrons is 
estimated by dividing the experimental distribution of energy in 
ZN by 1.38 TeV. These values are used to obtain αZN for each event 
and its distribution. The width of the distribution corresponds to 
the intrinsic resolution of the measured parameter αZN and varies 
from 0.023 to 0.050 from the most peripheral (30–35%) selection 
to the most central (0–5%) selection. The observed width of 0.13 
of the distribution of αZN reported in Fig. 1 is considerably larger 
than the resolution of αZN (0.027 for the centrality interval cor-
responding to the data in the figure) and the increase in width 
may be attributed to the event-by-event fluctuations in the num-
ber of neutrons detected in each ZN. To investigate the effect of 
αZN on the dN/dη distributions, the events are demarcated into 
three regions of asymmetry by choosing a cut value αcut

ZN . These 
regions correspond to (i) αZN < −αcut

ZN (Region 1), (ii) αZN ≥ αcut
ZN

(Region 2) and (iii) −αcut
ZN ≤ αZN < αcut

ZN (Region 3). Regions 1 and 
2 are referred to as the asymmetric regions and Region 3 is re-
ferred to as the symmetric region.

The effect of the measured asymmetry αZN on the pseudorapid-
ity distributions is investigated by studying the ratio of dN/dη dis-
tribution in events from the asymmetric region to those from the 
symmetric region. There are small differences in the distributions 
of centrality and vertex position in events of different regions of 
asymmetry. It is necessary to ensure that any correlation between 
the ratio of dN/dη and the asymmetry is not due to a systematic 
effect of a shift in the interaction vertex. To eliminate any possible 
systematic bias on the measured distributions, the dN/dη distribu-
tions are corrected by weight factors obtained by normalising the 
number of events in asymmetric and symmetric regions in each 1% 
centrality interval and each 1 cm range of vertex positions.

For the 15–20% centrality interval, the distributions of these 
factors in the two cases corresponding to the asymmetry regions 1 
and 2 have a mean of 1.0 and an rms of 0.05 and 0.06 respec-
tively. The weight factors do not show any systematic dependence 
on the position of the vertex. This is expected considering the large 
distance between the ZNs as compared to variations in the vertex 
position. The factors show a systematic dependence on 1% central-
ity bins within each centrality interval. The 1% centrality bin with 
the greater number of participants tends to have more asymmetric 
events, presumably to compensate for the decrease in the effective 
CM energy due to the motion of the participant zone; the weight 

factor is 1.08 for the most central 15–16% centrality bin and is 0.94 
for the 19–20% centrality bin.

The ratio of dN/dη for events corresponding to different re-
gions of asymmetry, as shown in Fig. 1, is determined. For |η| <
1.0, the ratio is obtained using dN/dη for tracks. For |η| > 1.0, 
the ratio shown in Fig. 2 (a) and (b) is obtained from amplitudes 
measured in V0A and the one shown in Fig. 2(c) and (d) is from 
amplitudes measured in V0C. The squares in Fig. 2 (a) and (c) rep-
resent the ratio of dN/dη in the asymmetry Region 1 to that in 
Region 3 (R13), and the stars represent the corresponding ratio in 
Region 2 to Region 3 (R23). The filled circles in Fig. 2 (b) and (d) 
are obtained by (i) reflecting the data points labelled R23 across 
η = 0 and (ii) taking the averages of R13 and reflected-R23 for 
|η| < 1.0. A third order polynomial is fitted to the points and the 
values of the coefficients cn along with the χ2 are shown. The 
polynomial fit to the ratio of dN/dη distribution has a dominantly 
linear term. A small residual detector effect is observed when de-
termining c1 using data measured in V0A and when using data 
measured in V0C. In all subsequent discussion, the values of c1
quoted are the mean of values obtained from the measurements 
in V0A and V0C.

Considering that the event samples corresponding to different 
regions of asymmetry are identical in all aspects other than their 
values of measured αZN, the observation of non-zero values of c1
can be attributed to the asymmetry. For a fixed centrality inter-
val, c1 depends on the choice of αcut

ZN . The analysis is repeated 
for different values of αcut

ZN and the dependence of c1 on αcut
ZN is 

shown in Fig. 3, for different centralities. For each centrality in-
terval the coefficient c1 has a linear dependence on αcut

ZN and the 
slope increases with decreasing centrality; c1 increases for events 
corresponding to larger values of average event asymmetry. The 
range of values of αcut

ZN was guided by the resolution and the width 
of the distribution of αZN, as mentioned in reference to Fig. 1. 
Increasing the value of αcut

ZN increases the mean 〈αZN〉 for events 
from the asymmetric class (Region 1 or Region 2), and increases 
the RMS of αZN for events from the symmetric class (Region 3).

3.2. Systematic uncertainties

The current method of analysis uses the ratio of two dN/dη
distributions from events divided on the basis of measurements 
in ZNs, within a centrality interval. All effects due to limited effi-
ciency, acceptance or contamination would cancel while obtaining 
the value of the ratio. The contributions to the systematic uncer-
tainties on c1 are estimated due to the following sources:

1. Centrality selection: the ratio of dN/dη is obtained from the 
measurements of tracks in the ITS+TPC at midrapidity and 
charge particle signal amplitudes in the V0 at forward rapidi-
ties. For the former, the event centrality is determined using 
the measurements in the V0 and for the latter using the track 
multiplicity in the TPC. The analysis is repeated by interchang-
ing the centrality criteria and the resultant change in the val-
ues of c1 for different centrality intervals is in the range 0.1% 
to 3.6%.

2. V0A and V0C: the systematic uncertainty on the mean value of 
c1 is estimated by assuming a uniform probability distribution 
for the correct value of c1 to lie between the two values ob-
tained using the charged-particle signal amplitudes measured 
in the V0A and the V0C. The uncertainty is in the range 2.1% 
to 4.6% and does not depend on the centrality value.

3. Vertex position: the analysis is repeated for the z position of 
the interaction vertex |V z| ≤ 3.0 cm. For the most central in-
terval, the results change by less than 0.1%. For the 15–20% 
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Fig. 2. The ratio of dN/dη distribution for events from the different regions of αZN distribution of Fig. 1. The dN/dη distributions are obtained as described in Sect. 2. 
(a) The square (star) symbols corresponding to R13 (R23) are obtained by taking the ratio of dN/dη of events from Region 1 (Region 2) to Region 3. (b) The data points are 
obtained after reflection across η = 0 as described in the text. The data for |η| > 1.0 in panels (a) and (b) are from measurements in V0A and in panels (c) and (d) are from 
measurements in V0C.
Fig. 3. The coefficient c1 characterising the change in dN/dη distribution for asym-
metric regions is shown for different values of αcut

ZN (αcut
ZN demarcates the asymmet-

ric and symmetric events) for each centrality interval.

centrality interval, the results change by 3.3% and for all other 
centrality intervals, the changes are less than 1.3%.

4. Weight factors for normalisation: the analysis is also repeated 
without the weight factors mentioned in Sect. 3.1 for the cen-
trality and the vertex normalisation in the number of events. 
The change in the results is 4.9% in the most central class and 
less than 1% for all other centrality intervals.

The total systematic uncertainty is obtained by adding the four 
uncertainties in quadrature. The resultant uncertainty is in the 
range 2.3% to 5.8% and is shown by the band in Fig. 8.

4. Simulations

The simulation used for obtaining a relation between rapidity-
shift y0 and the measurable asymmetry αZN is described in this 
section. This simulation has three components: (i) a Glauber Monte 
Carlo to generate number of participants and spectator protons 
and neutrons, (ii) a function parametrised to fit the average loss 
of spectator neutrons due to spectator fragmentation (the loss of 
spectator neutrons in each event is smeared around this average) 
and (iii) the response of the ZN to single neutrons. The simula-
tion encompassing the above is referred to in the present work 
as Tuned Glauber Monte Carlo (TGMC), and reproduces the energy 
distributions in the ZNs. The effect of y0 on the pseudorapidity 
distributions has been estimated using additional simulations for a 
Gaussian dN/dy and are also described in this section.

4.1. Asymmetry and rapidity-shift

The Glauber Monte Carlo model [21] used in the present work 
assumes a nucleon–nucleon interaction cross section of 64 mb at √

sNN = 2.76 TeV. The model yields the number of participating 
nucleons in the overlap zone from each of the colliding nuclei. The 
range of impact parameters for each 5% centrality interval is taken 
from our Pb–Pb centrality paper [20]. For each centrality interval, 
0.4 million events are generated.

For each generated event, the number of participating protons 
and neutrons is obtained, enabling a determination of the rapidity-
shift y0 and the various longitudinal asymmetries. If A and B are 
the number of spectators (spectator neutrons) in the two colliding 
nuclei, the asymmetry is referred to as αspec (αspec−neut). Fig. 4 (a) 
shows the correspondence between y0 and αpart. Figs. 4 (b) and 
(c) show the relation between y0 and αspec and αspec−neut re-
spectively [2]. These figures show that the rapidity-shift y0 can be 
estimated by measuring αspec or αspec−neut in any experiment that 
uses Zero Degree Calorimeters. However, the lack of information 
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Fig. 4. Rapidity-shift y0 as a function of asymmetry in (a) number of participants, (b) number of spectators, (c) number of spectator neutrons and (d) energy in ZN obtained 
using TGMC as described in the text. The results in all four panels are shown for the 15–20% centrality interval.

Fig. 5. (a) Distribution of energy in ZNC in each 5% centrality interval for events simulated using TGMC and for the experimental data. The peak of the distribution shifts to 
smaller values of EZNC with increasing centrality. (b) Distribution of the asymmetry parameter αZN in the simulated events and in experimental data for different centralities. 
The width of the distribution increases with increasing centrality. For clarity, only 5 distributions are shown. The distributions corresponding to 20–25% and 25–30% lie 
between those of 15–20% and 30–35%.
on the number of participants worsens the precision in determin-
ing y0. Fig. 4 (d) shows the relation between y0 and αZN obtained 
in TGMC, as described in the next paragraph.

The Glauber Monte Carlo is tuned to describe the experimen-
tal distributions of ZN energy. For each 1% centrality interval, 
the mean number of spectator neutrons (Ns) is obtained in the 
Glauber Monte Carlo. Folding the ZN response yields the simulated 
values of mean energy as a function of centrality. The experimen-
tally measured mean energy in the ZN is also determined for each 
1% centrality interval. The ratio of the measured value of mean en-
ergy to the simulated value of mean energy gives the fractional 
loss (f ) of neutrons due to spectator fragments that veer away due 
to the magnetic field. The value of f for the 0–5% centrality inter-
val is 0.19. For all other centralities it varies from 0.40 for 5–10% 
to 0.55 for 30–35% centrality interval. A fluctuation proportional to 
the number of remaining neutrons (Ns × (1 − f )) is incorporated 
to reproduce the experimental distribution of the energy deposited 
in the ZN shown in Fig. 5 (a). The peak and the RMS of the energy 
distributions match well. The fractional difference in the position 
of the peak varies between 3.7% for the 0–5% centrality interval 
and 0.1% for the 30–35% centrality interval. The fractional differ-
ence in RMS for the most central class is 8.6% and is in the range 
1.0–2.0% for all other centrality intervals. The distributions of the 
asymmetry parameter for the TGMC events and the measured data 
for each centrality interval are shown in Fig. 5 (b). The TGMC con-

tains information of y0 and αZN for each event. A scatter plot 
between y0 and αZN is shown in Fig. 4 (d) for the 15–20% central-
ity interval. This constitutes the response matrix. For any measured 
value of αZN, the distribution of y0 can be obtained. Any differ-
ence in the experimental and TGMC distributions of αZN can be 
accounted for by scaling the y0 distribution by the ratio of num-
ber of events in data to the number in TGMC as

f (y0,α
Data
ZN ) = f (y0,α

TGMC
ZN )

NData
events

NTGMC
events

, (3)

with Data (TGMC) in the superscript of number of events, Nevents, 
denoting the experimental data (TGMC events). For each of the 
three regions of asymmetry shown in Fig. 1, corresponding to a 
chosen value of αcut

ZN = 0.1, the distribution of rapidity-shift y0 ob-
tained using the response matrix is shown in Fig. 6. It is worth 
mentioning that the width of the distribution of y0 for events from 
Region 3, corresponding to −αcut

ZN ≤ αZN < αcut
ZN , is comparable to 

the widths of the corresponding distributions from Regions 1 and 
2. The effect of difference in the value of the means of the y0 dis-
tributions is investigated in the present work.

4.2. Effect of rapidity-shift on pseudorapidity distributions

The effect of a shift in the rapidity distribution by y0 on the 
measurable pseudorapidity distribution (dN/dη) is investigated us-
ing simulations. For each event, the rapidity of charged particles is 
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Fig. 6. The distribution of rapidity-shifts for the events from the three different 
regions of measured asymmetry shown in Fig. 1. Determination of y0 uses the dif-
ference in number of nucleons. For small values of this difference, the changes in 
values near y0 = 0 are discrete, and are smeared into a continuous distribution as 
y0 increases.

generated from a Gaussian distribution of a chosen width σy [22]. 
The pseudorapidity is obtained by using the Blast-Wave model fit 
to the data for the transverse momentum distributions and the 
experimentally measured relative yields of pions, kaons and pro-
tons [23]. To simulate the effect of different widths of the parent 
rapidity distribution for different centralities, different σy widths 
are chosen to reproduce the measured FWHM (Full Width at Half 
Maximum) of the pseudorapidity distribution [24]. For the most 
central (0–5%) class, a value 3.86 is used for the width of the ra-
pidity distribution, and a value 4.00 is used for the width of the 
least central class employed in this analysis (30–35%).

The distribution of rapidity-shift y0, similar to the one shown 
in Fig. 6, is obtained for each centrality interval and each αcut

ZN
using TGMC. Fig. 7 (a) shows the 〈y0〉 as a function of αcut

ZN for dif-
ferent centralities. One observes a linear relation between the two 
quantities, showing that an asymmetry in the ZN measurement, 
arising from the unequal number of participating nucleons, is re-
lated to the mean rapidity-shift 〈y0〉. The rapidity distribution of 
the particles produced in each event is generated assuming a Gaus-
sian form centred about a y0, which is generated randomly from 
the y0 distribution. Events with a rapidity distribution shifted by 

y0 
= 0 yield an asymmetric pseudorapidity distribution. A third or-
der polynomial function in η is fitted to the ratio of the simulated 
dN/dη for the asymmetric region to the simulated dN/dη for the 
symmetric region. The values of the coefficients in the expansion 
depend upon the rapidity-shift y0 and the parameters characteris-
ing the distribution [2].

The simulations described above were repeated for different 
values of αcut

ZN to obtain the pseudorapidity distributions for sym-
metric and asymmetric regions. Fitting third order polynomial 
functions to the ratios of the simulated pseudorapidity distribu-
tions determines the dependence of c1 on αcut

ZN . Fig. 7 (b) shows 
that c1 has a linear dependence on αcut

ZN for each centrality inter-
val. The difference in the slopes for different centralities is due 
to differences in the distributions of y0 and to differences in the 
widths of the rapidity distributions.

It is important to note that the parameter c1, characterising the 
asymmetry in the pseudorapidity distribution, shows a linear de-
pendence on the parameter αcut

ZN in the event sample generated 
using TGMC and simulations for a Gaussian dN/dy, akin to the de-
pendence of the estimated value of rapidity-shift y0 for the same 
sample of events.

5. Results

The longitudinal asymmetry in a heavy-ion collision has been 
estimated from the difference in the energy of the spectator neu-
trons on both sides of the collision vertex. The effect of the lon-
gitudinal asymmetry is observed in the ratio of dN/dη distribu-
tions corresponding to different asymmetries. The linear term in 
a polynomial fit to the distribution of the ratio is dominant, and 
is characterised by its coefficient c1. The centrality dependence of 
the coefficient c1 for αcut

ZN = 0.1 is shown in Fig. 8. It is worth 
emphasising that the values of c1 and hence its centrality depen-
dence are affected by (i) the distribution of rapidity-shift y0 for 
each centrality interval, (ii) the chosen value of αcut

ZN , as seen in 
Fig. 7 and (iii) the shape or the width of the parent rapidity dis-
tribution for each centrality. Fig. 8 also shows the results obtained 
using simulations as described in Sec. 4.2 for αcut

ZN = 0.1. The sys-
tematic uncertainty on the simulated event sample is estimated by 
(i) varying the resolution of ZNs from 20% to 30%, (ii) assuming 
all charged particles are pions and (iii) varying the width of the 
parent rapidity distribution within the range corresponding to the 
uncertainties on FWHM quoted in Ref. [24]. The simulated events 
show a good agreement with the experimental data providing cre-
Fig. 7. (a) The estimated mean value of rapidity-shift 〈y0〉 for the asymmetric region characterised by different values of αcut
ZN for each centrality interval. (b) The coefficient 

c1 characterising the change in the pseudorapidity distributions for different values of αcut
ZN , for each centrality interval. These results are obtained using TGMC and simulated 

pseudorapidity distributions, as described in the text.
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Fig. 8. The mean values of the coefficient c1 are shown as filled circles for different centralities. These correspond to the ratio of dN/dη distributions of populations of events 
demarcated by αcut

ZN = 0.1. The squares show the corresponding values from simulations, and correspond to αcut
ZN = 0.1 in Fig. 7, for different centralities. The systematic 

uncertainties are shown as bands.
Fig. 9. For each set of events characterised by αcut
ZN , the measured values of coef-

ficient c1 as a function of estimated values of mean rapidity-shift obtained using 
TGMC as described in the text. The results are shown for different centralities. The 
uncertainties for 〈y0〉 shown are statistical and within its symbol size. The lines are 
linear fits passing through the origin.

dence to the assumptions of the simulation, in particular that the 
asymmetry in the distributions arises from the shift of rapidity of 
the participant zone.

There are two quantities from independent measurements for 
each selection of asymmetric events. These are (i) c1, the param-
eter characterising the effect of asymmetry in the dN/dη distri-
butions and shown in Fig. 3 and (ii) the mean rapidity-shift 〈y0〉
obtained from the measured asymmetry, filtered through the cor-
responding response matrix (Fig. 4 (d)), and shown in Fig. 7 (a). 
The relation between c1 and 〈y0〉 is shown in Fig. 9. The parame-
ter c1 shows a linear dependence on 〈y0〉 for each centrality. The 
difference in the slopes indicates the sensitivity of the longitudinal 
asymmetry to the details of the rapidity distribution. For a Gaus-
sian rapidity distribution the corresponding parameter c1 would be 
related to the rapidity-shift as c1 = y0

σy2
[2], implying that the slope 

is inversely proportional to the square of the width of the distribu-
tion. The observation of an increase in the slope with an increase 
in the centrality in the present data indicates a decrease in the 
width of the pseudorapidity distribution with increasing centrality. 
Such a decrease in the width of the pseudorapidity distribution 
with increasing centrality has been observed independently by fit-

ting the pseudorapidity distributions in a broad range of pseudo-
rapidity [24].

6. Conclusions

The present analysis demonstrates the existence of a longitu-
dinal asymmetry in the collision of identical nuclei due to fluctu-
ations in the number of participants from each colliding nucleus. 
This asymmetry has been measured in the ZNs in the ALICE ex-
periment (Fig. 1), and affects the pseudorapidity distributions, as 
demonstrated by taking the ratio of distribution of events from the 
asymmetric region to the corresponding one from the symmetric 
region (Fig. 2). The effect can be characterised by the coefficient of 
the linear term in the polynomial expansion of the ratio. The coef-
ficients show a linear dependence on αcut

ZN , a parameter to classify 
the events into symmetric and asymmetric regions (Fig. 3). Dif-
ferent values of αcut

ZN correspond to different values of the mean 
rapidity shift 〈y0〉 (Fig. 7 (a)). The parameter describing the change 
in the pseudorapidity distributions (c1) has a simple explanation in 
the rapidity-shift 〈y0〉 of the participant zone (Fig. 9). The analy-
sis confirms that the longitudinal distributions are affected by the 
rapidity-shift of the participant zone with respect to the nucleon–
nucleon CM frame. The results provide support to the relevance of 
number of nucleons affecting the production of charged particles, 
even at such high energies.

The longitudinal asymmetry is a good variable to classify the 
events and provides information on the initial state of each event. 
A systematic study of the effects of longitudinal asymmetry on dif-
ferent observables, e.g. the odd harmonics of anisotropic flow, the 
forward-backward correlations, the source sizes, in heavy-ion col-
lisions may reveal other characteristics of the initial state and of 
particle production phenomena.
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