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Composites formed from charged particles and magnetic flux tubes, proposed byWilczek, are one model
for anyons—particles obeying fractional statistics. Here we propose a scheme for realizing charged flux
tubes, in which a charged object with an intrinsic magnetic dipole moment is placed between two semi-
infinite blocks of a high-permeability (μr) material, and the images of the magnetic moment create an
effective flux tube. We show that the scheme can lead to a realization of Wilczek’s anyons, when a two-
dimensional electron system, which exhibits the integer quantum Hall effect, is sandwiched between two
blocks of the high-μr material with a temporally fast response (in the cyclotron and Larmor frequency
range). The signature of Wilczek’s anyons is a slight shift of the resistivity at the plateau of the IQHE. Thus,
the quest for high-μr materials at high frequencies, which is underway in the field of metamaterials, and the
quest for anyons, are here found to be on the same avenue.

DOI: 10.1103/PhysRevLett.120.267201

In 1982 Wilczek pointed out that a composite object
consisting of a charged particle and a flux tube, referred to
as an anyon, would obey fractional statistics [1]. Anyons
exist in a two-dimensional ð2þ 1ÞD space [1,2]. They are
Abelian or non-Abelian, depending on how their wave
function evolves under particle exchange [3]. When two
Abelian anyons are exchanged, the wave function acquires
a phase factor. Non-Abelian anyons can exist when the
system has some degeneracy, such that the exchange of two
anyons corresponds to a unitary transformation of the wave
function in the space of degenerate states [3]. Apart from
the fundamental interest in anyons, non-Abelian anyonic
quasiparticles, if experimentally realized, could become the
building blocks of fault-tolerant topological quantum com-
puters [3,4]. In this Letter, we propose an experimental
realization of the original Wilczek model for (Abelian)
anyons [1].
Our scheme for creating charged flux tubes involves two

semi-infinite blocks of a high permeability (high-μr)
material (μr ≫ 1), which are separated by some distance
d, and a charged object with an intrinsic magnetic dipole
moment. The object is located in the center of the slab
between the high-μr materials, and its magnetic dipole
moment is perpendicular to the surface of the blocks. The
image potential of one such magnetic moment, arising from
the high-μr material, creates an effective flux tube, thereby
realizing a flux-tube-charge composite, as illustrated in
Fig. 1(a). The object could, for example, relate to an
electron or a trapped ion, which have intrinsic magnetic
moments.
We use this scheme in a particular system to develop a

proposal for a realization of Wilczek’s anyons. Consider a

two-dimensional electron gas (2DEG) placed in a
perpendicular uniform magnetic field, which gives rise
to the integer quantum Hall effect (IQHE) [5,6]. Suppose
that we sandwich the 2DEG between two semi-infinite
blocks of high-μr material, assumed to have a fast temporal
response, see Fig. 1(b). The electron spins (i.e., magnetic
dipole moments) will be aligned due to the Zeeman effect,
while the high-μr material will induce a flux tube attached
to each electron. For this system, we exploit the exact

FIG. 1. The scheme which gives rise to Wilczek’s flux-tube-
charge composites. (a) A charged object with an intrinsic
magnetic dipole (blue circle with a red arrow) induces an array
of image magnetic dipole moments within high-μr blocks (shaded
gray), which can be interpreted as a flux-tube-charge composite
(central illustration). (b) A 2DEG in a uniform magnetic field B0

(in the IQHE state) is sandwiched between two blocks of high-μr
material. Dipole magnetic moments of the electrons are aligned
withB0 and behave as Wilczek’s flux-tube-charge composites via
the mechanism depicted in (a).
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many-body wave function and calculate the Hall conduct-
ance. A signature of the presence of anyons in this system is
striking: the Hall resistance at the plateau of the IQHE,
which serves as a standard of electrical resistance [5,7,8],
would be slightly shifted. We discuss possible implemen-
tations of the proposed system, the obstacles, and possible
ways to overcome them.
In the search for the physical realization of anyons,

quasiparticle excitations in two-dimensional interacting
many-body systems play a major role [3]. A paradigm
of quasiparticles with fractional statistics are excitations in
the fractional quantum Hall effect (FQHE) [9–14]. The
manifestation of both the IQHE and FQHE is a plateau in
the Hall conductivity at νe2=h, where the filling factor ν is
an integer for the IQHE, and a fractional value for the
FQHE. The key ingredients in the FQHE, described by the
famous Laughlin state [10,11], are 2D electrons in a strong
uniform magnetic field [9] and Coulomb interactions
[10,11]. In contrast, Coulomb interactions are not needed
to explain the IQHE [5,6]; hence, we neglect them in our
system. One way to explain the FQHE is via composite
fermions [15–18], where an electron is bound to an even
number of the flux quanta, and the fractional Hall con-
ductivity is interpreted as a manifestation of the IQHE of
such composite fermions. In the context of the QHE,
anyons in a uniform magnetic field and corresponding
wave functions have been studied [19–23]. A slight shift of
the Hall resistance at the IQHE plateau discussed here,
which occurs from the conversion of electrons into
Wilczek’s flux-tube-charge composites—anyons—can be
thought of as a variant of the composite fermions, however,
with a completely different physical background.
Here we propose to convert electrons into anyons by

introducing an electron-electron (e-e) vector potential
mediated by the high-μr material. Our starting point is a
2DEG (in the z ¼ 0 plane) in a magnetic field B0 ¼ B0ẑ
exhibiting IQHE. We assume that the electrons populate
only the lowest Landau level; i.e., the filling factor is ν ¼ 1.
The two semi-infinite blocks of high-μr material with
μr ≫ 1 are then introduced in the region jzj > d=2, see
Fig. 1(b). The method of current images from classical
electrodynamics models the influence of high-μr blocks on
electrons and allows one to calculate the magnetic vector
potential AðrÞ in the jzj < d=2 slab due to the magnetic
dipole moment of a single electron [24]. For a stationary
magnetic dipole m ¼ mẑ located at the origin, in the limit
μr → ∞, AðrÞ is identical to that of an infinite array of
magnetic moments deep within semi-infinite blocks. These
virtual images are equal in magnitude and direction to the
original magnetic moment, and equally spaced by d, as
illustrated in Fig. 1(a). Thus, for r ¼ jrj sufficiently larger
than d, an array of magnetic moments can be viewed as
a flux tube with AðrÞ ≈Φ=2πrϕ̂, where the flux is
Φ ¼ μ0m=d. For a finite value of μr, the vector potential
in the z ¼ 0 plane is given by

AðrÞ ¼ Φrd
4π

X

n∈Z

�
μr − 1

μr þ 1

�jnj 1

ðr2 þ n2d2Þ32 ϕ̂: ð1Þ

In order to estimate the validity of the approximation
AðrÞ ≈Φ=2πrϕ̂, in Fig. 2 we plot Δ ¼ ðe=πℏÞ H A · dl
as a function of r and μr (e < 0); the integral is taken
around the circle of radius r centered at the origin.
Evidently, for μr ¼ ∞, Δ is essentially a constant inde-
pendent of r (except for r < d), verifying that the flux
Φ ¼ H

A · dl is concentrated close to the origin, and
the approximation is excellent. For finite values of
μr ¼ 104–105, Δ changes very slowly over a large span
of values of r from d up to the mean free path lm:f:p: in
standard QHE samples [25], which underpins the approxi-
mation in realistic circumstances. For concreteness, we plot
Fig. 2 for d ¼ 10 nm, and −Δ is plotted up to 10 000 nm,
but similar results are obtained for a span of values
d ¼ 10–100 nm. We assume that the medium has suffi-
ciently fast response, so that this picture is valid for a
moving electron as well. This gives rise to the vector
potential interactions between the electrons. The viability
of the proposal and approximations are discussed below.
If an electron encircles a fixed solenoid of flux Φ, its

wave function accumulates the Aharonov-Bohm phase
expðieΦ=ℏÞ, but the same phase arises also from a
quantum-mechanical solenoid orbiting around a fixed
charge. Thus, the e-e vector potential mediated by the
high-μr material is equivalent to that of a charge interacting
with twice the flux in one flux tube [26,27]; that is, the
interaction is 2eAðri − rjÞ, where

Aðri − rjÞ ¼
Φ
2π

ẑ × ðri − rjÞ
jri − rjj2

: ð2Þ

In the presence of a magnetic field, the electron energies of
the up and down spins split due to the Zeeman effect.
In large magnetic fields, large energies are needed to flip
the spin; by restricting to low energies, we can neglect

FIG. 2. Parameter −Δ ¼ −eπ−1ℏ−1
H
A · dl as a function r=d,

for three values of μr; d ¼ 10 nm (see text for details).
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electrons with magnetic moments opposite to that of the
magnetic field. Under the assumptions and approximations
stated above, the system is described by the Hamiltonian

H ¼
Xn

i¼1

1

2m
½p − eA0ðriÞ − 2e

X

j≠i
Aðri − rjÞ�2; ð3Þ

with the symmetric gauge vector potential A0 ¼ 1
2
B0 × r

for the constant magnetic field.
Electron-electron vector potential in (3) is eliminated by

a singular gauge transformation,

ψ 0ðr1;…; rnÞ ¼
Y

i<j

e−iϕijΔψðr1;…; rnÞ; ð4Þ

where ϕij is the azimuthal angle of the relative vector
ri − rj and ψðfrigÞ is the fermionic wave function in the
regular gauge. Note that the wave function ψ 0 is multi-
valued. The wave function describing the electrons in the
lowest Landau level, with the e-e vector potential, in the
singular gauge is [19,21–23]

ψ 0ðfzigfz�i gÞ ¼
Y

i<j

ðzi − zjÞα exp
�
−

1

4l2B

X

l

jzlj2
�
; ð5Þ

where we have introduced complex coordinates zi¼xiþiyi,
the magnetic length lB ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=eB0

p
, and the statistical

parameter α ¼ 1 − Δ. The energy of this state is indepen-
dent of α, E ¼ nℏωc=2, where ωc ¼ eB=m is the cyclotron
frequency.
To calculate the Hall conductance in this system, we use

the Laughlin pumping argument in the Corbino ring
geometry [6,28]. Suppose that we introduce an infinitely
thin solenoid at z ¼ 0, and adiabatically increase the flux
from 0 up toΦ0 ¼ 2πℏ=e (one flux quantum). The state (5)
adiabatically evolves into

ψ 0
0ðfzigfz�i gÞ ¼

Y

i

ziψ 0ðfzigfz�i gÞ; ð6Þ

which is an eigenstate of the system with the same energy.
In this process, charge q� is pumped from the solenoid (at
z ¼ 0) to the edge of the ring. It can be calculated from the
single particle densities, ρα for the state in Eq. (5), and ρα;0
for the state in Eq. (6). The calculation is performed
analytically in the thermodynamic limit N → ∞ by using
the plasma analogy, first introduced by Laughlin [11] (see
Refs. [29,30] for details),

ραðx; yÞ ¼
1

2παl2B
ð7Þ

and

ρα;0ðx; yÞ ¼
1

α

�
1

2πl2B
− δðxÞδðyÞ

�
: ð8Þ

Evidently, the missing charge at z ¼ 0 is q� ¼ e=α, which
yields

σH ¼ q�
e
h
¼ 1

α

e2

h
ð9Þ

for the Hall conductivity. One can say that by attaching a
flux Φ to every electron, one slightly reduces the Pauli
repulsion between the electrons, which depletes the charge
pumped to the edges by a factor α−1.
Thus, before we place the two high-μr blocks in the

system, the initial value of the Hall conductivity is νe2=h
with ν ¼ 1 by assumption. After placing the blocks, which
induce the e-e vector potential, the Hall conductivity at the
plateau shifts from ν ¼ 1 to 1=α ¼ 1=ð1 − ΔÞ ≈ 1þ Δ.
The shift −Δ is plotted in Fig. 2, and it has the value
∼10−7 − 10−6 (see Fig. 2). Despite the fact that the shift is
small, ΔσH ∼ 10−7 × e2=h, measurements indicate that the
value of the quantized Hall resistance can be reproduced
within a relative uncertainty of one part in 1010 [8],
meaning that the shift in the Hall conductance could be
detectable as the signature of Wilczek’s anyons. In addi-
tion, we note that as the e-e vector potential is introduced
(a flux tube with flux Φ is adiabatically attached to every
electron), according to the adiabatic principle developed by
Greiter and Wilczek [20], the system remains gapped; i.e.,
incompressible quantum Hall states remain incompressible.
Now we discuss possible implementations of this sys-

tem, the obstacles, and possible routes to overcome them.
We have assumed that the e-e vector potential picture is
valid also for electrons moving in the 2DEG, even though it
was derived for static electrons. In the classical picture,
electrons exhibiting the Hall effect move in circular orbits
with the cyclotron frequency, giving rise to oscillating
fields that material should respond to. In the quantum
picture, electrons are in the Landau level states. Recent
experiments [31] have demonstrated that the currents
corresponding to electrons promoted in Landau level states
oscillate at cyclotron (ωc ¼ eB=m�) and Larmor frequen-
cies (Ω ¼ eB=2m�), depending on the particular state; here
m� is the effective mass of electrons. Therefore, we
conclude that the demanded high-μr material should have
a strong magnetic response in the frequency range corre-
sponding to cyclotron motion. A typical system for the
QHE is the interface of a GaAs/AlGaAs heterojunction
where m� ¼ 0.067me [32], and the frequencies are in the
terahertz range. Unfortunately, the magnetic response of
most conventional materials is beginning to tail off in the
gigahertz region [33]. A few natural magnetic materials that
respond above microwave frequencies have been reported,
but the magnetic effects in these materials are typically
weak (see Ref. [34] and references therein). These
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restrictions can in principle be overcome by using meta-
materials, artificial structures which can be constructed to
have a strong effective magnetic response μeffðωÞ at high
frequencies (ranging from gigahertz to terahertz) [33–35].
Another advantage of using metamaterials in this context is
that their response is usually not broadband. Therefore,
a high-μr metamaterial at terahertz frequencies is likely to
have low response (or none) at zero frequency (for
example, see Ref. [36]) and would not be affected by
the constant magnetic field used to create the IQHE state.
One possible route for constructing a desirable metamate-
rial could be photonic doping, recently used to construct a
material with effective μeff → ∞ [36] for polarization
where the magnetic field is parallel to the surface (here
we demand that the magnetic field be perpendicular to the
surface). The characteristic scale of the building constitu-
ents of the metamaterial should be smaller than the
magnetic length lB, so that the concept of the effective
macroscopic permeability remains valid. Another possibil-
ity to overcome the obstacle of fast material response is to
reduce the Fermi velocity and thereby the cyclotron
frequency by involving heavy fermion materials, in which
electrons have a large enough effective mass. The cyclotron
frequency scales as 1=m�; thus, to bring the cyclotron
frequency down to the gigahertz range, by using typical
numbers from above, the effective mass of the electrons
should be m� ∼ 102me.
An important parameter, which should be tuned to get

the desired effect, is the distance between the high-μr
materials d. The flux tube approximation AðrÞ ≈Φ=2πrϕ̂
for the vector potential of an electron, which is illustrated in
Fig. 2, is excellent already for r > d. We find that for values
of μr ∼ 104 and larger, it is excellent up to r ∼ lm:f:p: and
more (this depends on μr). It gives rise to the e-e
interactions in Eq. (2). Hence, the average separation
between electrons should be greater than d for Eq. (2) to
apply. In standard IQHE experiments, the electron density
is 1011–1012 cm−2, so that the average separation is of the
order of 20 nm, but in principle it could be larger. For larger
values of d (say d ∼ 30–60 nm), the flux tube approxima-
tion is even better at scales from d to lm:f:p:. However, the
shift in the Hall conductivity ΔσH, which is the signature of
the effect, scales as 1=d. Thus, we must find an appropriate
value for d smaller than the average separation between
electrons, and small enough for the effect to be measurable,
but large enough to be possible to sandwich a thin material
with IQHE between two blocks of high-μr material. This is
a viable task according to the parameters used in Fig. 2.
Moreover, assuming one could tune d in an experiment, a
measurement yielding ΔσH ∼ 1=d would be a clear evi-
dence of Wilczek’s anyons in this system. Since the area of
the IQHE sample is finite and ∇ ·B ¼ 0, when r → ∞,
−Δ → 0. Thus, the high-μr materials should have a large
aspect ratio (height much larger than the square root of the
area) to properly steer the magnetic streamlines.

Before closing, we note that a promising possibility to
observe Wilczek’s flux tubes is to engineer 2D materials
[37]. To this end, we propose to intercalate a metallic
monolayer between two layers of hexagonal boron nitride
(h-BN); this could be Li, K, Na or some other metallic
monolayer [38,39]. The density-functional theory calcu-
lations for an h-BN–Li–h-BN monolayer show structural
stability and a parabolic band dispersion [40]. The principle
of intercalation is here very similar to such intercalation in
graphite, which has been extensively studied [41]. The
h-BN–metallic monolayer–h-BN structure can in principle
be sandwiched between two blocks of the high-μr material,
thus constituting a candidate for observing anyons accord-
ing to our scheme. Another route could be to grow a
metallic monolayer on the film of a semiconductor as in
Ref. [42], and to place it between the high-μr blocks (the
semiconductor should be sufficiently pure not to conduct).
Viable paths could also be conceived with layered dichal-
cogenides [37].
For concreteness, our theoretical analysis above is

based on the QHE with electrons in a 2D parabolic
band. The most famous 2D material—graphene—has a
conical band structure [43–45]. However, graphene sand-
wiched between two blocks of high-μr material could also
be a candidate for exploring (Wilczek-Dirac type) anyons
according to the present proposal. Although the quantum
Hall effect in graphene is distinctive, as it occurs at half-
integer filling factors [43,44], the Landau-level wave
functions for low-energy electrons in graphene have the
same mathematical structure as in the 2DEG (up to the
coefficients that enter these wave functions [45]). Thus,
we conjecture that the signature of Wilczek’s flux tubes in
this system would also be a small shift of the resistance at
the plateau. Graphene also has the possibility to be
strained [46] and induce effective gauge fields, which
is an additional useful degree of freedom when tinkering
with this system.
In conclusion, we have proposed a scheme for creating

flux-tube-charge composites, which employs a material
with high magnetic permeability μr. Thus, advances in
developing high-μr metamaterials could lead to novel ways
for creating anyons. We have calculated the Hall conduc-
tivity for a 2DEG in the IQHE regime, sandwiched between
two semi-infinite blocks of high-μr metamaterial with a fast
temporal response, and found that the Hall resistance at the
plateau would exhibit a small but detectable shift, which is
to some extent a striking consequence because it serves as a
standard of electrical resistance [5,7,8]. Finally, we would
like to note that the quest for anyons is of broad interest and
underway in many systems, including ultracold atomic
gases [47–49], photonic lattices [50], and quantum spin
liquids [51]. Our scheme for creating charged flux tubes has
potential to be used in other systems such as trapped
ions. Here we have addressed Abelian anyons. We believe
that further studies inspired by this proposal could yield
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schemes for realizing non-Abelian anyons for topological
quantum computing [3].
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