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The ALICE Collaboration reports the measurement of semi-inclusive distributions of charged-particle jets 
recoiling from a high-transverse momentum trigger hadron in p–Pb collisions at √sNN = 5.02 TeV. Jets are 
reconstructed from charged-particle tracks using the anti-kT algorithm with resolution parameter R = 0.2
and 0.4. A data-driven statistical approach is used to correct the uncorrelated background jet yield. Recoil 
jet distributions are reported for jet transverse momentum 15 < pch

T,jet < 50 GeV/c and are compared in 
various intervals of p–Pb event activity, based on charged-particle multiplicity and zero-degree neutral 
energy in the forward (Pb-going) direction. The semi-inclusive observable is self-normalized and such 
comparisons do not require the interpretation of p–Pb event activity in terms of collision geometry, in 
contrast to inclusive jet observables. These measurements provide new constraints on the magnitude 
of jet quenching in small systems at the LHC. In p–Pb collisions with high event activity, the average 
medium-induced out-of-cone energy transport for jets with R = 0.4 and 15 < pch

T,jet < 50 GeV/c is 
measured to be less than 0.4 GeV/c at 90% confidence, which is over an order of magnitude smaller 
than a similar measurement for central Pb–Pb collisions at √sNN = 2.76 TeV. Comparison is made to 
theoretical calculations of jet quenching in small systems, and to inclusive jet measurements in p–Pb 
collisions selected by event activity at the LHC and in d–Au collisions at RHIC.

© 2018 European Organization for Nuclear Research. Published by Elsevier B.V. This is an open access 
article under the CC BY license (http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

The collision of heavy nuclei at high energies generates a 
Quark–Gluon Plasma (QGP), a dense, highly inviscid, strongly-
coupled fluid governed by sub-nucleonic degrees of freedom [1]. 
While the structure and dynamical behavior of the QGP arise at 
the microscopic level from the interactions between quarks and 
gluons that are described by Quantum Chromodynamics (QCD), 
the QGP also exhibits emergent collective behavior. Current under-
standing of the properties of the QGP is based primarily on two 
phenomena observed in high energy nuclear collisions and their 
comparison to theoretical calculations: strong collective flow [2], 
and jet quenching, which arises from interaction of energetic jets 
with the medium [3].

Jets in hadronic collisions are generated by hard (high momen-
tum transfer Q 2) interactions between quarks and gluons from 
the projectiles, with outgoing quarks and gluons from the in-
teraction observed in detectors as correlated sprays of hadrons 
(“jets”). Theoretical calculations of jet production based on per-

� E-mail address: alice -publications @cern .ch.

turbative QCD (pQCD) are in excellent agreement over a broad 
kinematic range with jet measurements in pp collisions at the 
Large Hadron Collider (LHC) [4–7]. Measurements in pp collisions 
of charged-particle jets, which consist of the charged component 
of the hadronic jet shower, are also well-described by QCD-based 
Monte Carlo calculations [8,9].

In nuclear collisions, the interaction of jets with the QGP is ex-
pected to modify the observed rate of jet production and internal 
jet structure. Indeed, marked effects due to jet quenching have 
been observed for high transverse momentum (high-pT) hadrons 
and jets in central Au–Au collisions at the Relativistic Heavy Ion 
Collider (RHIC) [10–20] and in central Pb–Pb collisions at the 
LHC [9,21–32]. Jets therefore provide well-calibrated probes of the 
QGP.

Measurements of asymmetric p–Pb collisions at the LHC and of 
light nucleus–Au collisions at RHIC reveal evidence of collective ef-
fects that are similar in magnitude to those observed in symmetric 
collisions of heavy nuclei [33–50]. These measurements in asym-
metric systems are reproduced both by model calculations that 
incorporate a locally thermalized hydrodynamic medium in the 
final state, and by calculations without QGP but with large fluc-
tuations in the initial-state wavefunctions of the projectiles (see 
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(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

https://doi.org/10.1016/j.physletb.2018.05.059
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/physletb
http://creativecommons.org/licenses/by/4.0/
mailto:alice-publications@cern.ch
https://doi.org/10.1016/j.physletb.2018.05.059
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physletb.2018.05.059&domain=pdf


96 ALICE Collaboration / Physics Letters B 783 (2018) 95–113

[51] and references therein). This raises the question whether a 
QGP is in fact generated in such light asymmetric systems, which 
were initially thought to be too small for the formation of a quasi-
equilibrated fireball of matter in the final state [51]. Additional 
measurements, in particular to explore jet quenching in p–A colli-
sions, will help to resolve this picture and to clarify the nature of 
equilibration in strongly-interacting matter.

There are several theoretical calculations currently available of 
jet quenching effects in p–Pb collisions at the LHC, which dif-
fer in their predictions. The calculation in [52] estimates the size 
of the region of high energy density to have a radius that is a 
factor 2 smaller in p–Pb than in central Pb–Pb collisions, with 
jet transport parameter q̂, assumed to be proportional to charged 
multiplicity, to be a factor 7 smaller. Jet energy loss, which is 
proportional to q̂ and depends on path length of the jet in the 
medium, is consequently expected in this calculation to be much 
smaller in p–Pb than in central Pb–Pb collisions. In contrast, a 
model calculation based on one-dimensional Bjorken hydrodynam-
ics predicts large initial energy density in high multiplicity pp 
and p–Pb collisions [53]; this energy density corresponds to jet 
energy loss of several GeV, which is similar in magnitude to jet 
energy loss measured in central Pb–Pb collisions [9]. A calculation 
based on pQCD at next-to-leading order (NLO) finds negligible jet 
quenching effects for inclusive jet production in p–Pb collisions at √

sNN = 5 TeV [54]. Finally, a QCD calculation of initial-state energy 
loss in cold nuclear matter (CNM) finds significant suppression of 
inclusive jet production for small-impact parameter p–Pb collisions 
at 

√
sNN = 5 TeV [55].

Experimental searches for jet quenching effects in d–Au colli-
sions at RHIC and in p–Pb collisions at the LHC have been carried 
out with high-pT hadrons and reconstructed jets. These stud-
ies utilize both Minimum Bias (MB) events and more-differential 
event selection, in which events are characterized in terms of 
“event activity” (EA) based on central charged-particle multiplic-
ity (ALICE [56]); forward charged-particle multiplicity (STAR [57], 
PHENIX [58,59], ALICE [56]); forward transverse energy (AT-
LAS [60], CMS [61]); or zero-degree neutral energy (STAR [57], 
ALICE [56]); where “forward” and “zero-degree” refer to the direc-
tion of the heavy nuclear projectile.

Inclusive hadron measurements in d–Au collisions at RHIC [57,
58] exhibit yield enhancement in the region 2 < pT < 5 GeV/c, 
which is commonly attributed to multiple scattering in the ini-
tial state, with no significant yield modification at higher pT and 
with no significant difference observed between the MB and EA-
selected distributions. For inclusive hadron measurements in p–Pb 
collisions at the LHC, ALICE does not observe significant yield mod-
ification for pT > 8 GeV/c in both MB and EA-selected events 
[56,62] while ATLAS and CMS observe yield enhancement for pT
greater than ∼ 30 GeV/c in MB events [60,63,64], and ATLAS ob-
serves additional dependence on EA [60].

For inclusive jet production, no significant yield modification 
has been observed in MB p–Pb collisions at the LHC and MB d–
Au collisions at RHIC [59,65–67]. However, measurements by the 
PHENIX collaboration at RHIC [59] and the ATLAS collaboration at 
the LHC [66] find apparent enhancement of the inclusive jet yield 
in EA-selected event populations thought to be biased towards 
large impact parameter in such asymmetric systems (“peripheral 
collisions”), with compensating suppression for event populations 
assigned small impact parameter (“central collisions”), while the 
ALICE collaboration finds no such yield modification as a function 
of event “centrality” [68].

Measurement of jet quenching effects with inclusive processes 
requires scaling of the inclusive yield from a reference collision 
system (usually pp) by the nuclear overlap function 〈TaA〉, with 
the angle brackets 〈. . .〉 indicating an average over the event pop-

ulation; for current measurements, “aA” denotes d–Au at RHIC 
and p–Pb at the LHC. For an EA-selected population, 〈TaA〉 is cal-
culated by correlating EA with collision geometry and applying 
Glauber modeling [69]. However, the correlation of EA with col-
lision geometry in p–Pb collisions is obscured by large fluctuations 
in the EA observables [56], and can be biased by conservation laws 
and by dynamical correlations when measuring high Q 2 processes 
[70–75]. Color fluctuations in the proton wavefunction may induce 
a bias in soft particle production for p–Pb events tagged by a hard 
process, thereby biasing the correlation between EA and collision 
geometry [76–79]. A model calculation shows that selection bias 
can modify the scaling factor for jet production in peripheral A + A
relative to pp collisions, generating an apparent suppression of jet 
production in peripheral A + A collisions if the Glauber calculation 
does not take this effect into account [80]; similar considerations 
apply to asymmetric collision systems.

While Glauber modeling for peripheral d–Au collisions at RHIC 
has been validated experimentally for moderate Q 2 processes us-
ing a proton-stripping process and knowledge of the deuteron 
wavefunction [57], no such check is possible with the proton beam 
at the LHC. It is therefore crucial to measure the EA-dependence of 
jet quenching effects in p–Pb collisions at the LHC with correlation 
observables that do not require the interpretation of EA in terms 
of collision geometry.

A correlation measurement of dijet transverse-momentum bal-
ance in p–Pb collisions at 

√
sNN = 5.02 TeV finds no significant 

difference from a simulated pp reference distribution, indepen-
dent of EA [61]. Measurements of dijet acoplanarity, which can 
be generated by both initial-state and final-state effects, likewise 
find no significant modification due to nuclear matter effects in 
EA-selected p–Pb collisions at 

√
sNN = 5.02 TeV, relative to sim-

ulated distributions for pp collisions [61,81]. While these mea-
surements provide qualitative indications, based on comparison to 
simulations, that final-state jet quenching effects in high-EA p–
Pb collisions are small, quantitative measurements or limits on jet 
quenching effects in such collisions are still lacking.

In this paper we present measurements sensitive to jet quench-
ing in p–Pb collisions at 

√
sNN = 5.02 TeV, based on the semi-

inclusive distribution of charged jets recoiling from a high-pT trig-
ger hadron [82]. The observable used in this analysis has been 
measured in pp collisions at 

√
s = 7 TeV and compared to cal-

culations based on PYTHIA and on pQCD at NLO, with PYTHIA 
providing a better description [9]. It has also been used to mea-
sure jet quenching effects in Pb–Pb collisions at 

√
sNN = 2.76 TeV 

[9] and in Au–Au collisions at 
√

sNN = 200 GeV [20].
The semi-inclusive recoil jet distribution is equivalent to the 

ratio of inclusive cross sections [9]; comparison of such self-
normalized coincidence distributions for p–Pb event populations 
with different EA therefore does not require scaling by the nuclear 
overlap function 

〈
TpPb

〉
. Measurement of this observable in p–Pb 

collisions is sensitive to jet quenching effects, and indeed does not 
require interpretation of the EA in terms of p–Pb collision geom-
etry. This approach thereby avoids potential bias due to Glauber 
modeling when interpreting the measurement.

We report charged recoil jet distributions reconstructed with 
the anti-kT algorithm [83] in the range 15 < pch

T,jet < 50 GeV/c, for 
jet resolution parameters R = 0.2 and 0.4. Correction of the jet 
yield for background uncorrelated with the triggered hard pro-
cess, including multi-partonic interactions (MPI), is carried out 
statistically at the level of ensemble-averaged distributions, using 
the data-driven method first applied in [9]. EA in p–Pb collisions 
is characterized by two different observables, forward charged-
particle multiplicity and neutral energy along the beam axis, both 
measured in the direction of the Pb-beam [56]. Jet quenching ef-
fects are quantified by comparing the measured distributions in 
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different EA classes of the p–Pb dataset. The results are compared 
to other jet quenching measurements and to theoretical calcula-
tions of jet quenching in asymmetric collision systems.

The paper is organized as follows: Sect. 2 describes the data 
set and analysis; Sect. 3 describes event selection based on trig-
ger hadrons and event activity; Sect. 4 describes jet reconstruction; 
Sect. 5 discusses the semi-inclusive observable and presents the 
raw data; Sect. 6 discusses corrections; Sect. 7 discusses system-
atic uncertainties; Sect. 8 presents results and discussion; Sect. 9
compares the results to other measurements; and Sect. 10 is the 
summary.

2. Data set and analysis

The ALICE detector and performance are described in [84,85]. 
The data used in this analysis were recorded during the 2013 LHC 
run with p–Pb collisions at 

√
sNN = 5.02 TeV. The Pb-going direc-

tion has rapidity y > 0 and pseudorapidity η > 0 in the laboratory 
frame. The per-nucleon momenta of the beams in this run were 
imbalanced in the laboratory frame, with the nucleon–nucleon 
center-of-mass at rapidity yNN = −0.465. The acceptance of tracks 
and jets in this analysis are specified in terms of y∗ = yLAB − yNN, 
where yLAB denotes the rapidity measured in the laboratory frame.

Events were selected online by an MB trigger, which requires 
the coincidence of signals in the V0A and V0C forward scintilla-
tor arrays. The V0A array has acceptance 2.8 < η < 5.1 and the 
V0C array has acceptance −3.7 < η < −1.7, both covering the 
full azimuth. Offline event selection also utilizes the Zero-Degree 
Calorimeters (ZDC), which are neutron calorimeters at zero degrees 
relative to the beam direction, located at a distance 112.5 m from 
the nominal interaction point. The ZDC in the Pb-going direction is 
labeled ZNA.

Jet reconstruction in this analysis uses charged-particle tracks. 
Tracks are measured by the Inner Tracking System (ITS), a six-layer 
silicon vertex tracker, and the Time Projection Chamber (TPC). The 
tracking system acceptance covers |η| < 0.9 over the full azimuth, 
with tracks reconstructed in the range 0.15 < pT < 100 GeV/c. Pri-
mary vertices are reconstructed offline by extrapolation of these 
tracks to the beam axis. Primary tracks are defined as recon-
structed tracks with Distance of Closest Approach to the primary 
vertex in the transverse plane DCAxy < 2.4 cm.

The analysis uses high-quality primary tracks that include at 
least one track point in the Silicon Pixel Detector (SPD), which 
comprises the two innermost layers of ITS. The azimuthal distri-
bution of such high-quality tracks is non-uniform, however, due 
to the non-uniform acceptance of the SPD in this run. Azimuthal 
uniformity in the tracking acceptance is achieved by supplement-
ing the high-quality tracks with complementary tracks that do 
not have a hit in the SPD, which constitute 4.3% of all primary 
tracks. The momentum resolution of complementary tracks, with-
out an additional constraint, is lower than that of high-quality 
tracks. Complementary tracks are therefore refit, including the re-
constructed primary vertex as a track point. Tracking efficiency for 
primary tracks is about 81% for pT > 3 GeV/c. Primary-track mo-
mentum resolution is 0.7% at pT = 1 GeV/c, 1.6% at pT = 10 GeV/c, 
and 4% at pT = 50 GeV/c. Further details on the track selection and 
tracking performance in this analysis are given in [23,68].

The MB trigger efficiency for non-single diffractive (NSD) colli-
sions is 97.8 ± 3.1% [68,86]. Since this is a correlation analysis, no 
correction is applied for the trigger inefficiency. Timing cuts on the 
V0 and ZDC signals, which are applied offline, remove background 
events with vertices outside of the nominal p–Pb interaction re-
gion that arise from beam-gas interactions and interactions with 
satellite beam bunches [85].

Event pileup, due to multiple interactions in the triggered 
bunch crossing, is suppressed by rejecting events with multiple 
primary vertex candidates. For this procedure, a new set of pri-
mary vertex candidates is constructed from tracklets constructed 
solely from SPD hits (“SPD vertices”). SPD vertices have at least 
five SPD tracklets within DCA < 1 mm and lie within the expected 
envelope of p–Pb interaction points, with a distance not more than 
3σ in z or 2σ in the xy plane from the centroid of the distribu-
tion. The minimum distance in z between SPD vertices is 8 mm. 
Events with multiple SPD vertices are rejected from further anal-
ysis. The EA-bias of the pileup rejection procedure is negligible, 
due to the large separation of pileup vertices in z and the re-
quirement that each SPD vertex have at least five contributors. In 
this dataset, the average number of interactions per bunch cross-
ing was μ ≈ 0.3–0.5%, and this pileup rejection procedure removes 
less than 0.15% of all events.

In addition, accepted events must have the primary vertex (de-
fined above) with |zvtx| < 10 cm relative to the nominal center of 
the ITS along the beam axis. After all event selection cuts, the 
number of events in the analysis is 96 × 106, corresponding to an 
integrated luminosity of 46 μb−1.

Simulations are used to correct the raw data for instrumental 
effects, and to compare the corrected measurements to expecta-
tions from an event generator. Simulated events were generated for 
pp collisions at 

√
s = 5.02 TeV using PYTHIA 6.425 with the Perugia 

11 tune [87]. These events, labeled “particle-level,” include all pri-
mary charged particles as defined in [88]. Following the procedure 
in [65], instrumental effects are calculated by passing particle-level 
events through a detailed model of the ALICE detector based on 
GEANT3 [89]. These events are reconstructed with the same pro-
cedures that are used for real data; the output of this process is 
labeled “detector-level.” Comparison to data also uses a particle-
level simulation of pp collisions at 

√
s = 5.02 TeV generated with 

PYTHIA 8.215 Tune 4C [90]. All simulations take account of the 
nucleon–nucleon center-of-mass rapidity shift of the p–Pb data.

3. Event selection

This analysis is based on the semi-inclusive distribution of jets 
recoiling from a high-pT trigger hadron. Event selection requires 
the presence of a high-pT charged track, called the Trigger Track 
(TT), in a specified pT,trig interval. Two exclusive event sets are 
defined, based on different TT intervals: 12 < pT,trig < 50 GeV/c, 
denoted TT{12,50}, and 6 < pT,trig < 7 GeV/c, denoted TT{6,7}.

The choice of the upper TT interval limits is driven by two com-
peting factors: the hardening of the recoil jet pT-spectrum with 
increasing pT,trig, and the decrease of the inclusive hadron pro-
duction cross section for increasing pT,trig. The choice of TT{12,50} 
provides the optimum kinematic reach and statistical precision of 
the normalized recoil jet spectrum for this dataset. The criteria for 
the lower TT interval, TT{6,7}, are that it be significantly lower 
in pT,trig, with correspondingly softer recoil jet spectrum, while 
still in the region in which inclusive hadron production can be 
well-described perturbatively using collinear fragmentation func-
tions [91,92].

The fraction of such events in the MB population is 6.9 × 10−4

for TT{12,50} and 6.4 × 10−3 for TT{6,7}. However, an event may 
satisfy both the TT{6,7} and TT{12,50} selection criteria, since frag-
mentation of an energetic jet can generate hadrons in both TT 
selection intervals. A procedure is required to ensure exclusive, sta-
tistically independent datasets for the two TT-selected populations. 
In addition, optimization of the statistical precision of the analy-
sis requires similar number of events in the two TT classes. The 
MB population was therefore divided randomly into two subsets, 
whose sizes are inversely proportional to the relative rate of the 
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Fig. 1. Distribution of event activity EA in decile bins measured in ZNA (left) and V0A (right), for the MB event population and for event populations selected with the 
requirement of a high-pT trigger hadron in the intervals 6 < pT,trig < 7 GeV/c (TT{6,7}) and 12 < pT,trig < 50 GeV/c (TT{12,50}). Large EA is to the left, with the 0–10% bin 
representing the largest EA, or highest amplitude signal in ZNA or V0A.
two TT selections: 90% of MB events are assigned to the TT{12,50} 
analysis, with the remaining 10% assigned to the TT{6,7} analysis.

An event can also contain multiple hadrons within a single TT 
interval, likewise arising from jet fragmentation. For events with at 
least one hadron satisfying TT{6,7}, the relative rate of two or more 
hadrons in an event satisfying TT{6,7} is 2.3%; the corresponding 
relative rate of multiple hadrons satisfying TT{12,50} is 5.3%. If an 
event contains more than one track in the assigned TT interval, 
the trigger hadron is chosen as the candidate with the highest pT. 
The resulting pT-distribution of trigger tracks is consistent with 
the shape of the inclusive hadron distribution within 2%. After the 
TT event selection procedure there are 63k events accepted that 
satisfy TT{6,7} and 60k events accepted that satisfy TT{12,50}.

A different procedure was employed in [9] for the case of mul-
tiple trigger candidates in a TT interval, where the trigger track 
was chosen randomly amongst the candidates. However, the anal-
ysis reported here has a wider range in pT for the upper TT class, 
and random selection results in reduced level of agreement (∼10%) 
of the trigger track pT-distribution with the inclusive hadron spec-
trum shape. The full analysis was also carried out for this choice 
of procedure for trigger selection, and all resulting physics distri-
butions agree with those of the primary analysis within the uncer-
tainties.

Measurement of EA uses signals from V0A and ZNA. Classifica-
tion of events in percentile intervals of the V0A and ZNA signal 
distributions is discussed in [56].

The ZNA threshold is set so that the detector is fully efficient 
for single neutrons. About 5% of accepted events do not have a 
ZNA signal above the detector threshold. These events correspond 
to p–Pb collisions in which the Pb-nucleus remnant is not accom-
panied by any beam-rapidity single neutrons. The distribution of 
mid-rapidity track multiplicity for these events resembles closely 
that for events with low but observable ZNA signal, and these 
events are therefore assigned to the bin with lowest ZNA sig-
nal.

Fig. 1 shows the distribution of EA measured by ZNA and V0A, 
in decile bins of signal amplitude. The decile bin limits are de-
termined from their distributions in the MB population, with MB 
events therefore distributed uniformly in this projection by con-
struction. The figure also shows V0A and ZNA distributions for 
event populations selected by the TT{6,7} and the TT{12,50} crite-
ria. Requiring the presence of a high-pT hadron trigger in an event 
is seen to induce a bias towards larger EA, corresponding to larger 
amplitude in both ZNA and V0A. A small dependence on the TT 
class (i.e. on pT,trig) is also observed, with magnitude less than 

10% of the overall bias, and with the TT-dependence slightly larger 
for V0A than for ZNA. Fig. 1 shows significant correlation between 
EA and the presence of a hard process in the central region.

For further analysis, events were assigned to wider percentile 
bins in ZNA or V0A, based on their MB distributions: 20% 
of the MB population with largest signal (“0–20%”), the next 
30% (“20–50%”), and the remaining 50% with the lowest signal 
(“50–100%”). The bias imposed by TT selection, shown in Fig. 1, 
corresponds to different fractions of the TT-biased population: 
the nominal 0–20% ZNA interval corresponds to 0–35% of the TT-
biased population; the nominal 20–50% ZNA interval corresponds 
to 35–74% of TT-biased; and the nominal 50–100% ZNA interval 
corresponds to 74–100% of TT-biased. Similar modification of per-
centile fractions due to TT bias is observed for the V0A signal.

The same events are used for the ZNA and V0A selections, so 
that the analyses using the two different EA metrics are not statis-
tically independent.

4. Jet reconstruction

Several types of jet are used in the analysis, which we distin-
guish by the notation for jet pT: praw,ch

T,jet refers to the output of the 
jet reconstruction algorithm; preco,ch

T,jet is praw,ch
T,jet after subtraction of 

an estimated contribution to jet pT of uncorrelated background; 
and pch

T,jet refers to the fully corrected jet spectrum. For simu-

lations, ppart
T,jet refers to reconstructed charged-particle jets at the 

particle-level, and pdet
T,jet refers to reconstructed charged-particle 

jets at the detector-level.
Jet reconstruction is carried out using the kT and anti-kT al-

gorithms [83] with the boost-invariant pT recombination scheme 
[93], using all accepted charged tracks with pT > 0.15 GeV/c. Jet 
area Ajet is calculated using the Fastjet algorithm [94] with ghost 
area 0.005.

Two jet reconstruction passes are carried out for each event. 
The first pass estimates the level of uncorrelated background en-
ergy in the event, while the second pass generates the set of jet 
candidates used in the physics analysis, with adjustment of their 
pT using the estimated background level from the first pass.

In the first pass, the praw,ch
T,jet distribution reconstructed by the 

kT algorithm with R = 0.4 is used to estimate ρ , the magnitude of 
background energy per unit area [95],



ALICE Collaboration / Physics Letters B 783 (2018) 95–113 99
Table 1
Contributions to the relative systematic uncertainty of the �recoil distribution for R = 0.2 and 0.4 in EA-
biased events based on ZNA.

�recoil syst. uncert. (%) 
ZNA 0–20%

�recoil syst. uncert. (%) 
ZNA 50–100%

pch
T,jet 15–20 GeV/c 40–50 GeV/c 15–20 GeV/c 40–50 GeV/c

R 0.2 0.4 0.2 0.4 0.2 0.4 0.2 0.4

Unfolding algorithm < 1 1.7 1.8 4.8 1.4 1.4 1.1 < 1
Unfolding prior 0.5 0.2 1.7 0.5 0.2 1.2 1.5 1.2
Binning of raw spectrum 1.1 2.4 0.5 1.2 1.0 1.2 2.1 2.2
ρ estimator 0.2 2.7 0.9 0.2 0.8 2.8 2.0 4.4
cRef 2.3 3.6 1.7 0.5 1.4 0.9 1.7 1.3
Track reconstruction efficiency 4.7 3.3 9.0 11 4.8 4.2 10 11
Track pT resolution 0.6 0.6 1.0 1.7 0.6 0.6 1.0 1.7
Weak decays < 1 < 1 < 1 < 1 < 1 < 1 < 1 < 1

Cumulative 5.4 6.3 9.6 12 5.4 5.6 11 12
ρ = mediankT jets

⎧⎨
⎩

praw,ch
T,jet

Ajet

⎫⎬
⎭ , (1)

where the median is calculated by excluding the jet which has 
the trigger hadron as a constituent. A different ρ estimator [96] is 
utilized to assess the systematic uncertainties of this procedure.

The second jet reconstruction pass is carried out using the 
anti-kT algorithm with R = 0.2 and 0.4. The value of praw,ch

T,jet for 
each jet candidate from this step is then adjusted for the estimated 
background energy density [95],

preco,ch
T,jet = praw,ch

T,jet − Ajet · ρ. (2)

A jet candidate from the second pass is accepted for further anal-
ysis if its area satisfies Ajet > 0.6π R2 [9,23], and its jet axis lies 
within |ηjet| < 0.9 − R and an azimuthal interval situated back-to-
back with respect to the TT, �ϕ > π − 0.6, where �ϕ = ϕTT − ϕjet
and 0 < �ϕ < π . An event may have multiple accepted jet candi-
dates.

For further analysis we follow the procedure used in [9], in 
which no rejection of individual jet candidates is carried out. Recoil 
jet distributions are accumulated for the selected event popula-
tions, and corrections for uncorrelated jet yield and for smearing 
and residual shift of pch

T,jet due to uncorrelated background are car-
ried out at the level of the ensemble-averaged distributions, as 
discussed below.

Jet energy resolution due to instrumental effects (JER) and jet 
energy scale (JES) uncertainty are similar to those in [9]. The JER is 
determined by comparing simulated jets at the particle and detec-
tor levels. The distribution of (pdet

T,jet − ppart
T,jet)/ppart

T,jet is asymmetric, 
with a sharp peak centered at zero and a tail to negative val-
ues [20]. Fit of a Gaussian function to the sharp peak gives σ �
2–3%, while the full distribution has RMS � 25%, with both quan-
tities having no significant dependence on ppart

T,jet and R . The JES 
uncertainty, which is due predominantly to uncertainty in tracking 
efficiency, is 4%, likewise with no significant dependence on pch

T,jet
and R . However, these values of JER and JES uncertainty, while 
helpful to characterize the jet measurement, are not used in the 
analysis. Corrections are carried out utilizing the full response ma-
trix, which incorporates detailed distributions of all contributions 
to JER and JES uncertainty. The systematic uncertainties (Table 1) 
likewise take such factors fully into account.

5. Observable and raw data

The semi-inclusive h+jet distribution corresponds to the pT-dif-
ferential distribution of recoil jets normalized by the number of 
trigger hadrons, Ntrig,

1

Ntrig

d2Njets

dpch
T,jet dηjet

∣∣∣∣ pT,trig ∈TT
�ϕ∈recoil

= 1

σ pPb→h+X

d2σ pPb→h+jet+X

dpch
T,jet dηjet

∣∣∣∣ h∈TT
�ϕ∈recoil

(3)

All accepted jets contribute to the distribution on the LHS. This 
distribution is equivalent to measurement of the ratio of two cross 
sections, as shown on the RHS: the coincidence cross section for 
both trigger hadron and recoil jet to be in the acceptance, divided 
by the inclusive production cross section for trigger hadrons. This 
expression applies to both the MB event population, and to event 
subsets selected by EA. The features of this observable and its the-
oretical calculations are discussed in detail in Refs. [9,20]. Here we 
consider two specific aspects of this distribution.

The first aspect is the bias imposed by the high-pT hadron trig-
ger. For collision systems in which jet quenching occurs, selection 
of high-pT hadrons is thought to bias towards the fragments of 
jet that have experienced little quenching, due to the combined 
effect of jet energy loss and the shapes of the inclusive jet pro-
duction and the jet fragmentation distributions [97–104]. If that is 
the case, then the hadron trigger bias in this measurement would 
be independent of EA. This conjecture is supported by ALICE mea-
surements of inclusive hadron production in p–Pb collisions that 
find no significant yield modification in the trigger pT-range of 
this measurement, for both the MB and EA-selected event popu-
lations [56,62]. The picture provided by current ATLAS and CMS 
hadron production measurements [60,63] is more complex, how-
ever. Further study of this conjecture requires additional measure-
ments of inclusive hadron production in pp and p–Pb collisions, 
together with theoretical calculations incorporating jet quenching 
that accurately reproduce these measurements.

The second aspect is the effect of trigger hadron efficiency on 
the equality in Eq. (3). As noted in Sect. 3, the analysis requires 
selection of a single trigger hadron in each event. However, in a 
few percent of events there are multiple hadrons satisfying the TT 
selection criteria, of which only one is chosen as trigger. Conse-
quently, not all hadrons that would contribute to measurement of 
the inclusive hadron cross section (first term on the RHS of Eq. (3)) 
also contribute to Ntrig (first term on the LHS of Eq. (3)). However, 
as noted above, the shape of the trigger hadron pT-distribution is 
consistent with that of the inclusive hadron spectrum within 2%. In 
other words, the trigger distribution used in practice samples the 
inclusive hadron distribution with efficiency less than unity but 
without pT-dependent bias, within a precision of 2%. This same 
inefficiency also applies to the h+jet coincidence process in the 
second term on the LHS of Eq. (3), and it therefore cancels iden-
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tically in the ratio. Equation (3) therefore remains valid for trigger 
selection efficiency less than unity.

The study of jet quenching using inclusive yields requires com-
parison of the inclusive distribution measured in heavy ion colli-
sions to a reference distribution measured in a system in which 
quenching effects are not expected, usually pp collisions at the 
same 

√
sNN. Such comparisons must account for the effect of mul-

tiple nucleon–nucleon collisions in each collision of heavy nuclei, 
which arises due to nuclear geometry. For inclusive distributions in 
p–Pb collisions this is accomplished by scaling inclusive cross sec-
tions for pp collisions by 

〈
TpPb

〉
, which is calculated by modeling 

based on Glauber theory under the assumption that EA is corre-
lated with the collision geometry [56–60,62,63,65,66,68,69].

For the semi-inclusive distribution in Eq. (3), the reference dis-
tribution without nuclear effects is

1

σ
pPb→h+X
ref

d2σ
pPb→h+jet+X
ref

dpch
T,jet dηjet

∣∣∣∣ h∈TT
�ϕ∈recoil

= 1〈
TpPb

〉 · σ pp→h+X

〈
TpPb

〉 · d2σ pp→h+jet+X

dpch
T,jet dηjet

∣∣∣∣ h∈TT
�ϕ∈recoil

= 1

σ pp→h+X

d2σ pp→h+jet+X

dpch
T,jet dηjet

∣∣∣∣ h∈TT
�ϕ∈recoil

. (4)

Since the scaling factors 
〈
TpPb

〉
in the numerator and denomina-

tor cancel identically, the reference distribution for this observable 
has no dependence on 

〈
TpPb

〉
. In other words, this distribution is 

self-normalized, and measurement of jet quenching using this ob-
servable does not require Glauber modeling for the reference spec-
trum. In particular, the assumption that event activity is correlated 
with the collision geometry is not required.

A similar approach, utilizing a coincidence observable to mea-
sure jet quenching in high-multiplicity pp collisions, was recently 
proposed in [105].

Fig. 2, left panels, show recoil-jet distributions for R = 0.4 in 
p–Pb collisions with the 50–100% ZNA selection, and for R = 0.2
and 0.4 with the 0–20% ZNA selection. Distributions in EA inter-
vals selected with V0A and with 20–50% ZNA are similar [106]. 
The distributions have non-zero yield for preco,ch

T,jet < 0, because re-
gions of an event can have energy density less than ρ [9]. These 
distributions are significantly narrower in the region preco,ch

T,jet < 0
than those observed in central Pb–Pb collisions, where the uncor-
related component of the event is significantly larger [9].

Fig. 2, right panels, show ratios of the distributions for the 
two TT classes. The right panels also show the corresponding ratio 
for pp collisions at 

√
s = 5.02 TeV, using simulated detector-level 

events generated with PYTHIA Perugia 11. For preco,ch
T,jet ∼ 0 the two 

distributions agree within ∼ 10% for both values of R , consistent 
with the expectation that yield in this region arises predominantly 
from processes that are uncorrelated with the trigger hadron [9]. 
At larger preco,ch

T,jet , the distribution for TT{12,50} exceeds that for 
TT{6,7}. This dependence of the recoil distribution on pT,trig is ex-
pected from QCD-based considerations, since higher pT,trig biases 
towards hard processes with higher Q 2 on average. Indeed, hard-
ening of the semi-inclusive recoil jet distribution with increasing 
pT,trig is also seen in the PYTHIA-generated ratios for pp collisions 
at 

√
s = 5.02 TeV shown in the figure, and has been measured in 

pp collisions at 
√

s = 7 TeV and observed in theoretical calculations 
based on NLO pQCD and on PYTHIA [9].

The PYTHIA-generated ratio for pp collisions reproduces well 
the ratio measured for low-EA p–Pb collisions (ZNA 50–100%, Fig. 2
upper right panel), while the level of agreement between the sim-

ulation and measurements is not as good for high-EA p–Pb col-
lisions (ZNA 0–20%, Fig. 2, middle and bottom right panels). This 
occurs because there is larger uncorrelated background in high-EA 
than in low-EA p–Pb collisions.

The distribution of jet candidates that are uncorrelated with the 
trigger is independent of pT,trig, by definition. The distribution of 
correlated recoil jets can therefore be measured using the �recoil

observable, which is the difference of the two normalized recoil 
distributions [9],

�recoil

(
pch

T,jet

)
= 1

Ntrig

d2Njets

dpch
T,jet

∣∣∣∣
pT,trig ∈TTSig

− cRef · 1

Ntrig

d2Njets

dpch
T,jet

∣∣∣∣
pT,trig ∈TTRef

, (5)

where TTSig and TTRef refer to Signal and Reference TT intervals, in 
this analysis corresponding to TT{12,50} and TT{6,7} respectively. 
�recoil is normalized per unit ηjet , notation not shown.

The Reference spectrum in �recoil is scaled by the factor cRef
to account for the invariance of the jet density with TT-class, as 
indicated by comparison of the spectrum integrals in Fig. 2 and 
the larger yield of Signal spectrum at high preco,ch

T,jet [9]. The value of 
cRef in this analysis is taken as the ratio of the Signal and Reference 
spectra in the bin 0 < preco,ch

T,jet < 1 GeV/c, as shown by the arrow in 
Fig. 2, right panels. The value of cRef lies between 0.92 and 0.99 
for the various spectra. Additional variation in the value of cRef
was used to assess systematic uncertainties.

We note that the TTRef distribution includes correlated recoil jet 
yield, so that the subtraction in Eq. (5) removes both the trigger-
uncorrelated yield and the TTRef-correlated yield. The �recoil ob-
servable is therefore a differential, not absolute, measurement of 
the recoil spectrum [9], though the TTRef component is signifi-
cantly smaller than that in the TTSig component over most of the 
preco,ch

T,jet range. The �recoil distributions in Fig. 2 lie significantly be-

low the TT-specific distributions for preco,ch
T,jet < 5 GeV/c but agree 

with the TT{12,50} distribution within 15% for preco,ch
T,jet > 15 GeV/c. 

These features indicate that the region of negative and small pos-
itive preco,ch

T,jet is dominated by uncorrelated jet yield, while the re-

gion for large positive preco,ch
T,jet is dominated by recoil jet yield that 

is correlated with TTSig.
One contribution to uncorrelated background is jet yield due to 

Multiple Partonic Interactions (MPI), which can occur when two 
independent high-Q 2 interactions in the same p–Pb collision gen-
erate the trigger hadron and a jet in the recoil acceptance. Since 
the two interactions are independent, the recoil jet distribution 
generated by MPI will be independent of pT,trig, by definition, and 
will be removed from �recoil by the subtraction. No correction of 
�recoil for the contribution of MPI is therefore needed in the anal-
ysis.

The raw �recoil distributions, such as those in Fig. 2, must still 
be corrected for jet momentum smearing due to instrumental ef-
fects and local background fluctuations, and for jet reconstruction 
efficiency. Jet quenching effects are measured by comparing the 
corrected �recoil distributions for different EA classes, and at dif-
ferent R .

6. Corrections

Corrections for instrumental effects and local background fluc-
tuations are carried out using unfolding methods [107–109]. The 
measured distribution �M

recoil is related to the true distribution 
�T

recoil by a linear transformation,
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Fig. 2. Uncorrected semi-inclusive distributions of charged jets recoiling from a high-pT hadron trigger in p–Pb collisions at √sNN = 5.02 TeV with the EA selection of 50–100% 
in ZNA for R = 0.4 (top panels), and with the EA selection of 0–20% in ZNA for R = 0.2 (middle panels) and R = 0.4 (bottom panels). The acceptance for TT and recoil jets 
in the CM frame are denoted y∗

TT and y∗
jet , respectively. Left panels: raw distributions for TT{12,50} (red circles) and TT{6,7} (blue boxes), and the corresponding �recoil

distribution (Eq. (5), black circles). Right panels: ratio of yields for TT{12,50}/TT{6,7} measured by ALICE in p–Pb collisions and calculated using detector level PYTHIA Perugia 
11 simulation of pp collisions at √s = 5.02 TeV. The PYTHIA-generated ratios in the top right and bottom right panels are the same. The arrow indicates the 0–1 GeV/c bin 
which is used to calculate cRef . The uncertainties are statistical only. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
�M
recoil(preco,ch

T,jet )

= Rfull(preco,ch
T,jet , ppart

T,jet) ⊗
[

eff(ppart
T,jet) · �T

recoil(ppart
T,jet)

]
, (6)

where eff(ppart
T,jet) is the jet reconstruction efficiency and Rfull is the 

cumulative response matrix excluding jet reconstruction efficiency. 
The explicit specification of jet reconstruction efficiency in this ex-
pression, distinct from the unfolding step, makes interpretation of 
the unfolding procedure more transparent. Rfull(preco,ch

T,jet ,ppart
T,jet) is 

further assumed to factorize as the product of separate response 
matrices for background fluctuations and instrumental response,

Rfull(preco,ch
T,jet , ppart

T,jet) = Rbkgd(preco,ch
T,jet , pdet

T,jet)⊗ R instr(pdet
T,jet, ppart

T,jet).

(7)

The matrix Rfull can be close to singular, in which case the solution 
of Eq. (6) via direct inversion of Rfull generates large fluctuations in 
central values and large variance due to the statistical variation in 
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�M
recoil(preco,ch

T,jet ) and Rfull [107]. An approximate solution of Eq. (6)
that is physically more meaningful is obtained by regularized un-
folding, which imposes a smoothness constraint on the solution. 
Unfolding in this analysis is carried out using approaches based on 
Singular Value Decomposition (SVD) [108] and on Bayes’ Theorem 
[109], as implemented in the RooUnfold package [110].

The instrumental response matrix, R instr, is calculated from 
the simulated detector response applied to events generated by 
PYTHIA for pp collisions at 

√
s = 5.02 TeV. Jets at the particle-level 

and detector-level are matched in (η, φ) space by selecting the 
detector-level jet that is closest to the particle-level jet, and vice 
versa. An entry in R instr is made for every matched pair. The R instr
matrix is normalized such that, for each bin in ppart

T,jet, the sum over 
all bins in pdet

T,jet is unity. In practice, however, the matching prob-
ability is less than unity, which is accounted for in Eq. (6) by the 
efficiency factor eff(ppart

T,jet). No dependence of R instr on EA of the 
p–Pb event population was observed.

The background response matrix, Rbkgd, is calculated by em-
bedding single tracks with transverse momentum pembed

T into real 
p–Pb events that contain a TT [9]. The relative azimuthal angle be-
tween the embedded track and the TT is in the range [π/4, 3π/4], 
to minimize overlap of the embedded track with the jet contain-
ing TT and with true recoil jets. These hybrid events are analyzed 
with the same procedures used for real data, and the jet contain-
ing the embedded track is identified. Smearing of jet candidate pT

due to background fluctuations is quantified by the distribution of

δpT = preco,ch
T,jet − pembed

T , (8)

where preco,ch
T,jet refers to the jet containing the embedded track. 

Rbkgd, the probability distribution of δpT, is calculated separately 
for the MB population and for the various event populations se-
lected by EA. Embedding of PYTHIA-generated jets rather than 
single tracks yields very similar δpT distributions.

Unfolding follows the procedure described in [23]. The input to 
unfolding is the measured distribution �M

recoil(preco,ch
T,jet ) in the range 

1 < preco,ch
T,jet < 90 GeV/c. The unfolding procedure requires specifi-

cation of a prior distribution. For the primary analysis, the prior 
is the �recoil distribution calculated with PYTHIA8 tune 4C [90] for 
pp collisions at 

√
s = 5.02 TeV. Regularization of SVD unfolding uti-

lizes a statistical test to determine the transition between random 
fluctuations and statistically significant components of the d-vector 
[108], which is achieved typically with regularization parameter 
k = 4. For regularization of Bayesian unfolding, convergence is de-
termined by the stability of the unfolded solution for successive 
iterations, which is achieved typically by the second iteration.

For both unfolding approaches, consistency of the solution is 
checked by backfolding, i.e. smearing the unfolded distribution 
with Rfull and comparing the result with the �M

recoil distribution. 
Since regularization suppresses oscillating components of the solu-
tion, the backfolded and �M

recoil distributions will in general not be 
identical. Consistency of unfolding is imposed by requiring that the 
difference between the backfolded and �M

recoil distributions in each 
bin be less than 3σ , based on �M

recoil statistical errors; otherwise, 
the solution is rejected.

Closure of the unfolding procedure was verified by a test 
in which the response matrix, the �recoil distribution, and the 
prior were generated by statistically independent sets of PYTHIA-
generated events for pp collisions at 

√
s = 5.02 TeV. The response 

matrix and the spectrum were generated using PYTHIA6 Perugia-
11, while the prior was generated using PYTHIA8 tune 4C. The 
�recoil distribution from this test agrees with the input particle-
level distribution to better than 5%.

Correction for jet reconstruction efficiency is applied after the 
unfolding step by scaling the unfolded �recoil distribution by 
1/eff(pch

T,jet). The value of eff(pch
T,jet) is 0.96 at pch

T,jet = 15 GeV/c and 
0.98 at pch

T,jet = 60 GeV/c.

7. Systematic uncertainties

The systematic uncertainties of the �recoil distribution are as-
sessed by varying the components of the correction procedure. The 
most significant systematic uncertainties are due to the following:

– Regularization of unfolding: for SVD, vary k by ±2 relative to 
its value in the primary analysis; for Bayesian unfolding, use 
the first three iterations;

– Unfolding prior: generate prior distributions with PYTHIA6 and 
PYTHIA8; for additional variation take the difference between 
the priors from the two PYTHIA versions and vary them by 
its magnitude but with opposite sign; use the unfolded so-
lution based on the iterative Bayesian approach as prior for 
SVD-based unfolding;

– Binning of distributions: use three different choices of binning, 
with corresponding variation in spectrum limits;

– Calculation of ρ: utilize a modified procedure [65,81,96] that 
accounts for sparse regions of the event, instead of the area-
based approach (Eq. (1));

– cRef variation: use as upper limit cRef = 1, in which the ref-
erence recoil jet spectrum is not scaled. For the lower limit, 
double the value of (1 − cRef) from the primary analysis, giv-
ing cRef = 0.95 for R = 0.2 and cRef = 0.90 for R = 0.4. The 
systematic uncertainty band corresponds to the largest devia-
tion from all such variations of the unfolded spectrum, relative 
to the spectrum resulting from the cRef choice of the primary 
analysis;

– Tracking efficiency: vary ±4% relative to nominal value [65];
– Track momentum resolution: extract systematic uncertainty of 

momentum resolution from azimuthal variation of the inclu-
sive charged-track distribution; vary R instr accordingly.

The correction for secondary vertex tracks due to weak decays 
makes a smaller contribution to the systematic uncertainty than 
the above sources.

There is a difference in the response matrix for different se-
lections of EA, due to the different magnitude of uncorrelated 
background induced by such a selection. The correction procedure 
accounts for this difference. However, there may be a residual cor-
relation between the EA-bias and TT-bias in the calculation of the 
response. This correlation was explored by calculating the response 
matrix with the appropriate EA-selected data, both with and with-
out TT-bias. The corrected spectra resulting from the two response 
matrices differ by less than 2% for all pch

T,jet , R , and EA-selection. 
This is however a check, not a systematic uncertainty, since the 
response matrix for the analysis is properly calculated using the 
TT-bias, and it does not contribute to the systematic uncertainty of 
the measurement.

The EA-bias induced by the TT{6,7} and TT{12,50} requirements 
are similar, and the δpT distributions generated for events with 
the two TT requirements are likewise similar. This variation in the 
δpT distribution generates variation of less that 1% in the corrected 
spectrum, after unfolding.

Statistical fluctuations of the raw data influence the quantita-
tive assessment of the systematic uncertainties arising from these 
sources. We utilize the following procedure to minimize such ef-
fects. For each source of uncertainty, several randomized instances 
of the raw �recoil spectrum are generated by variation about the 
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Fig. 3. Corrected �recoil distributions measured for p–Pb collisions at √sNN = 5.02 TeV, for the MB and EA-selected populations. The acceptance for TT and recoil jets in the 
CM frame are denoted y∗

TT and y∗
jet , respectively. Left panels: R = 0.2; right panels: R = 0.4. Also shown are �recoil distributions for pp collisions at √s = 5.02 TeV simulated 

by PYTHIA 6 Tune Perugia 11 and PYTHIA 8 Tune 4C. The solid line in the upper panels is the fit of an exponential function to the p–Pb distribution, with fit parameters as 
specified. Lower panels: ratio of p–Pb MB and pp distributions to the fit function.
measured central value in each bin using a Gaussian distribution, 
with σ equal to the uncorrelated statistical error in the bin. Each 
randomized instance is analyzed using (i) corrections for the pri-
mary analysis (see Sect. 6), and (ii) corrections that include a 
systematic variation. For each randomized instance, the ratio of 
corrected �recoil spectra resulting from (ii) and (i) is formed. The 
systematic uncertainty in each pch

T,jet-bin is defined as the me-
dian of the distribution of ratios obtained from all randomized 
instances.

Table 1 gives representative systematic uncertainties for R = 0.2
and R = 0.4 in EA-biased events based on ZNA. The cumulative 
systematic uncertainty is calculated by adding contributions from 
all systematic sources in quadrature. For pch

T,jet = 15–20 GeV/c, sev-

eral components contribute with similar magnitude. For pch
T,jet =

40–50 GeV/c, the cumulative uncertainty is due predominantly to 
the uncertainty in tracking efficiency. Similar uncertainties are ob-
tained for event selection using the EA bias based on V0A.

The systematic uncertainty of the ratio of �recoil distributions 
was obtained similarly, taking into account the correlated uncer-
tainties of numerator and denominator.

8. Results

Fig. 3, upper panels, show the corrected �recoil distributions for 
p–Pb collisions at 

√
sNN = 5.02 TeV for the MB event population 

and for populations selected by EA using ZNA and V0A, and for pp 
collisions at 

√
s = 5.02 TeV simulated by PYTHIA. The upper panels 

also show the result of a fit to the p–Pb MB distributions by an 
exponential function, a · exp

(
−pch

T,jet/b
)

.

The PYTHIA-generated distributions for pp collisions are pre-
sented only for comparison and are not utilized in the jet quench-
ing analysis. Fig. 3, lower panels, show the ratio of the measured 
p–Pb MB and PYTHIA-generated pp distributions to the fit distri-
bution. The central values of the PYTHIA-generated distributions 

for pp collisions lie below those of the p–Pb data, with a differ-
ence of 25% for pch

T,jet < 20 GeV/c. PYTHIA 8 tune 4C agrees better 
with the p–Pb data, notably at the highest pch

T,jet and for R = 0.4. 
For pp collisions at 

√
s = 7 TeV, PYTHIA-generated �recoil distribu-

tions have central values that are in good agreement with data [9]. 
We note, however, that the pT,trig intervals in the two analyses are 
different: this analysis uses TT{12,50}, whereas that in ref. [9] used 
TT{20,50}. Reanalysis of the pp 7 TeV data with the trigger selec-
tion TT{12,50} shows a similar level of agreement with PYTHIA as 
that seen in Fig. 3 [106]. We also note that at present there are sig-
nificant uncertainties in the light hadron fragmentation functions 
at LHC energies [91,92], which may affect hadron trigger selection 
in the PYTHIA calculation and thereby contribute to the differences 
between PYTHIA and data seen in the figure.

The �recoil distributions for EA-selected event populations and 
for the MB population shown in Fig. 3 are all qualitatively simi-
lar. Measurement of the dependence of the �recoil distribution on 
EA selection is therefore carried out using the ratios of such dis-
tributions, denoted REA, to maximize the sensitivity to variations 
with EA.

Fig. 4 shows ratios of the �recoil distributions for EA-selected 
event populations, with R = 0.2 and 0.4. Since the numerator and 
denominator come from different, exclusive intervals in EA, they 
are statistically independent in each panel. However, some sys-
tematic uncertainties are correlated between numerator and de-
nominator, which has been taken into account in the systematic 
uncertainty of the ratio. Note that the same dataset is used for 
R = 0.2 and R = 0.4, and for the ZNA and V0A selections, so that 
the results shown in the different panels are correlated.

Jet quenching may result in transport of jet energy out of the 
jet cone, resulting in suppression of the �recoil distribution at fixed 
pch

T,jet. Under the assumptions (i) that jet quenching is more likely 
to occur in events with larger EA, and (ii) that the hadron trigger 
bias is independent of EA (Sect. 5), this effect corresponds to sup-
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Fig. 4. Ratio of �recoil distributions for events with high and low EA measured in p–Pb collisions at √sNN = 5.02 TeV. Left panels: V0A 0–20% / 50–100%; right panels: 
ZNA 0–20% / 50–100%. Upper panels: R = 0.2; lower panels: R = 0.4. The grey boxes show the systematic uncertainty of the ratio, which takes into account the correlated 
uncertainty of numerator and denominator. The red line indicates the ratio for a pT-shift of the high-EA distribution of −0.4 GeV/c.
pression below unity of the ratios in Fig. 4. However, in all panels 
the ratio is consistent with unity within the statistical error and 
the systematic uncertainty at all pch

T,jet , indicating that jet quench-
ing effects are negligible relative to the uncertainties.

These data can nevertheless provide a limit on the magni-
tude of medium-induced energy transport to large angles. In order 
to extract a limit, we parameterize the 0–20% and 50–100% EA-
selected �recoil distributions with the exponential function used in 
Fig. 3, and assume that the slope parameter b is the same for the 
two distributions. We also assume that the average magnitude of 
energy transported out-of-cone is independent of pch

T,jet, which is 
consistent with the observation that the ratios REA in Fig. 4 are in-
dependent of pch

T,jet within uncertainties. The assumption that the 
average magnitude of out-of-cone radiation is independent of pch

T,jet
is likewise consistent with �recoil measurements in Pb–Pb colli-
sions at 2.76 TeV [9]. Consideration of a more complex dependence 
on pch

T,jet is beyond the scope of this phenomenological study.
The ratios REA are then expressed in terms of an average shift s̄

in pch
T,jet between low and high EA events, where s̄ = −b · ln (REA). 

Fits to �recoil for R = 0.4 over the range 15 < pch
T,jet < 50 GeV/c

give b = 9.26 ± 0.33 GeV/c for 50–100% ZNA and b = 9.05 ±
0.30 GeV/c for 50–100% V0A. Fits to the ratios in Fig. 4 then 
give s̄ = (−0.12 ± 0.35stat ± 0.03syst) GeV/c for 0–20% ZNA, and 
s̄ = (−0.06 ± 0.34stat ± 0.02syst) GeV/c for 0–20% V0A, both of 
which are consistent with zero within uncertainties. Fits to nar-
rower ranges in pch

T,jet give similar results.

These values are to be compared with the shift s̄ = (8 ±
2stat) GeV/c measured in central Pb–Pb collisions at 

√
sNN =

2.76 TeV for R = 0.5 [9], indicating significant medium-induced 
energy transport to large angles in that collision system. This com-
parison of out-of-cone energy transport in p–Pb and Pb–Pb colli-
sions supports theoretical calculations which predict much smaller 
jet quenching effects in p–Pb relative to Pb–Pb collisions [52,54], 
and disfavors the calculation which predicts strong jet quenching 
in small systems [53].

The measured value of s̄ provides a constraint on the magni-
tude of out-of-cone energy transport due to jet quenching in p–Pb 
collisions. We calculate this constraint as the linear sum of the 
central value of s̄, the one-sided 90% confidence upper limit of 
its statistical error, and the absolute value of its systematic uncer-
tainty. For jets with R = 0.4 in the range 15 < pch

T,jet < 50 GeV/c, 
the medium-induced charged energy transport out of the jet cone 
for events with high V0A or high ZNA is less than 0.4 GeV/c, at 
90% confidence. The red line in each panel of Fig. 4 shows the ra-
tio for a pT-shift of −0.4 GeV/c of the high-EA distribution relative 
to the low-EA distribution.

9. Comparison to other measurements

The EA-selected �recoil distribution ratios in Fig. 4 are consis-
tent with unity in the range 15 < pch

T,jet < 50 GeV/c. These dis-
tributions therefore have no significant dependence on EA, in 
agreement with inclusive jet measurements for p–Pb collisions at √

sNN = 5.02 TeV by ALICE [68], but in contrast to such measure-
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Table 2
Comparison of RCP and R∗

CP for inclusive jet production in asymmetric collisions at RHIC and the LHC. See text 
for details.

Collision system Comparison of spectra pT,jet (GeV/c) RCP or R∗
CP

d–Au, pp√
sNN = 0.2 TeV [59]

d–Au 0–20%/60–88% 16 RCP = 0.71 ± 0.01stat ± 0.03sys

32 RCP = 0.54 ± 0.04stat ± 0.06sys

pp w/wo −0.6 GeV/c shift 15 R∗
CP = 0.79

30 R∗
CP = 0.85

p–Pb√
sNN = 5.02 TeV

y∗ = 0.3 [66]

p–Pb 0–10%/60–90% 57 RCP = 1.09 ± 0.02stat ± 0.03sys

113 RCP = 0.93 ± 0.01stat ± 0.02sys

p–Pb MB w/wo −0.6 GeV/c shift 50 R∗
CP = 0.95

110 R∗
CP = 0.97
ments in d–Au collisions at 
√

sNN = 200 GeV by PHENIX [59] and 
in p–Pb collisions at 

√
sNN = 5.02 TeV by ATLAS [66], which exhibit 

strong dependence on EA. In this section we explore whether these 
inclusive and coincidence measurements can provide a consistent 
picture of jet quenching in asymmetric systems.

We first note that these measurements differ in several as-
pects, and that their detailed comparison requires calculations 
based on theoretical models of jet quenching that are beyond the 
scope of this paper. Here we explore a more limited question, 
whether the inclusive jet measurements are also consistent with 
a pT-independent limit of out-of-cone charged-energy transport of 
0.4 GeV/c. Since the ALICE inclusive jet measurement does not 
find an EA-dependence, it is consistent with such a limit by con-
struction, without the need for additional calculation. We therefore 
focus in the rest of this section on comparison to the PHENIX and 
ATLAS inclusive jet measurements.

To do so, we compare the effect of a pT-independent shift 
of the inclusive spectra to the measured EA-dependence of RCP, 
which is the ratio of inclusive jet spectra for event populations 
identified as “central” and “peripheral”, with the spectra scaled 
by 

〈
TpPb

〉
or 〈TdAu〉. Since the inclusive spectra are measured with 

fully-reconstructed jets, including neutral energy, we increase the 
90% confidence limit for out-of-cone energy transport to the value 
0.6 GeV/c. Note in addition that the choice of percentile binning 
differs in the various measurements, which cannot be accounted 
for directly in the comparison; this difference should also be borne 
in mind when comparing the measurements.

The effect of the pT-shift on jet yield depends upon the inclu-
sive spectrum shape. In order to assess this effect we select a rep-
resentative spectrum for each data set, impose a pT-independent 
shift of −0.6 GeV/c on this spectrum, and calculate R∗

CP, the ratio 
of distributions with and without the shift. Since R∗

CP represents a 
90% confidence limit, no uncertainty is assigned to it.

Table 2 compares R∗
CP to the values of EA-selected RCP mea-

sured in asymmetric collisions at RHIC and the LHC. While some 
values are in agreement, R∗

CP and RCP have opposite dependence 
on pT,jet for both datasets. Within the limits of this compari-
son, a pch

T,jet-independent out-of-cone charged-energy transport of 
0.4 GeV/c is not consistent with measurements of RCP for inclusive 
jet production in EA-selected d–Au collisions at RHIC and p–Pb col-
lisions at the LHC.

Effects other than jet quenching in the final state can modify jet 
yields in nuclear collisions, in particular the initial-state effects of 
shadowing and energy loss in cold matter [55,111]. In addition, 
calculation of the Glauber scaling factor for inclusive measure-
ments may be affected by fluctuations and dynamical correlations 
between a high Q 2 process and the soft observables used to tag 
EA [56,70–80]. Such non-quenching effects could be the origin of 
the inconsistency observed here in the EA-dependence of inclusive 
and coincidence jet measurements, since inclusive and coincidence 

observables have different sensitivity to initial-state effects, and 
Glauber scaling is required only for inclusive observables.

10. Summary

We have reported measurements of the semi-inclusive distri-
bution of charged jets recoiling from a high-pT hadron trigger 
in p–Pb collisions at 

√
sNN = 5.02 TeV, selected by event activity 

in forward (Pb-going) charged multiplicity and zero-degree neu-
tral energy. Interpretation of this coincidence observable does not 
require the assumption that event activity is correlated with col-
lision geometry, with the corresponding uncertainties of Glauber 
modeling. It provides a new probe of jet quenching in p–Pb col-
lisions that is systematically different from quenching measure-
ments based on inclusive jet production.

No significant difference is observed in recoil jet distributions 
for different event activity. This measurement provides a limit on 
out-of-cone energy transport due to jet quenching in p–Pb colli-
sions at the LHC of less that 0.4 GeV/c at 90% confidence for jet 
radius R = 0.4. Comparison of this measurement to theoretical cal-
culations favors models with little or no energy loss in small sys-
tems. Comparison to inclusive jet measurements in small systems 
at RHIC and LHC indicates that the inclusive jet yield modifica-
tion observed in EA-selected populations is not consistent with jet 
quenching. Future p–Pb measurements at the LHC, with higher sta-
tistical precision and greater kinematic reach, will provide more 
stringent limits on jet quenching in light systems.

Acknowledgements

The ALICE Collaboration would like to thank all its engineers 
and technicians for their invaluable contributions to the construc-
tion of the experiment and the CERN accelerator teams for the 
outstanding performance of the LHC complex. The ALICE Collab-
oration gratefully acknowledges the resources and support pro-
vided by all Grid centers and the Worldwide LHC Computing Grid 
(WLCG) collaboration. The ALICE Collaboration acknowledges the 
following funding agencies for their support in building and run-
ning the ALICE detector: A. I. Alikhanyan National Science Labora-
tory (Yerevan Physics Institute) Foundation (ANSL), State Commit-
tee of Science and World Federation of Scientists (WFS), Armenia; 
Austrian Academy of Sciences and Nationalstiftung für Forschung, 
Technologie und Entwicklung, Austria; Ministry of Communica-
tions and High Technologies, National Nuclear Research Center, 
Azerbaijan; Conselho Nacional de Desenvolvimento Científico e 
Tecnológico (CNPq), Universidade Federal do Rio Grande do Sul 
(UFRGS), Financiadora de Estudos e Projetos (Finep) and Fun-
dação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), 
Brazil; Ministry of Science & Technology of China (MSTC), Na-
tional Natural Science Foundation of China (NSFC) and Ministry 
of Education of China (MOEC), China; Ministry of Science, Edu-



106 ALICE Collaboration / Physics Letters B 783 (2018) 95–113

cation and Sports and Croatian Science Foundation, Croatia; Min-
istry of Education, Youth and Sports of the Czech Republic, Czech 
Republic; The Danish Council for Independent Research Natu-
ral Sciences, the Carlsberg Foundation and Danish National Re-
search Foundation (DNRF), Denmark; Helsinki Institute of Physics 
(HIP), Finland; Commissariat à l’Energie Atomique (CEA) and Insti-
tut National de Physique Nucléaire et de Physique des Particules 
(IN2P3) and Centre National de la Recherche Scientifique (CNRS), 
France; Bundesministerium für Bildung, Wissenschaft, Forschung 
und Technologie (BMBF) and GSI Helmholtzzentrum für Schw-
erionenforschung GmbH, Germany; General Secretariat for Re-
search and Technology, Ministry of Education, Research and Re-
ligions, Greece; National Research, Development and Innovation 
Office, Hungary; Department of Atomic Energy, Government of In-
dia (DAE), Department of Science and Technology, Government 
of India (DST), University Grants Commission, Government of In-
dia (UGC) and Council of Scientific and Industrial Research (CSIR), 
India; Indonesian Institute of Science, Indonesia; Centro Fermi – 
Museo Storico della Fisica e Centro Studi Ricerche Enrico Fermi 
and Instituto Nazionale di Fisica Nucleare (INFN), Italy; Institute for 
Innovative Science and Technology, Nagasaki Institute of Applied 
Science (IIST), Japan Society for the Promotion of Science (JSPS) 
KAKENHI and Japanese Ministry of Education, Culture, Sports, Sci-
ence and Technology (MEXT), Japan; Consejo Nacional de Ciencia 
y Tecnología (CONACYT), through Fondo de Cooperación Interna-
cional en Ciencia y Tecnología (FONCICYT) and Dirección General 
de Asuntos del Personal Academico (DGAPA), Mexico; Nederlandse 
Organisatie voor Wetenschappelijk Onderzoek (NWO), Netherlands; 
The Research Council of Norway, Norway; Commission on Science 
and Technology for Sustainable Development in the South (COM-
SATS), Pakistan; Pontificia Universidad Católica del Perú, Peru; Min-
istry of Science and Higher Education and National Science Cen-
tre, Poland; Korea Institute of Science and Technology Informa-
tion and National Research Foundation of Korea (NRF), Republic 
of Korea; Ministry of Education and Scientific Research, Institute of 
Atomic Physics and Romanian National Agency for Science, Tech-
nology and Innovation, Romania; Joint Institute for Nuclear Re-
search (JINR), Ministry of Education and Science of the Russian 
Federation and National Research Centre Kurchatov Institute, Rus-
sia; Ministry of Education, Science, Research and Sport of the 
Slovak Republic, Slovakia; National Research Foundation of South 
Africa, South Africa; Centro de Aplicaciones Tecnológicas y Desar-
rollo Nuclear (CEADEN), Cubaenergía, Cuba and Centro de Inves-
tigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), 
Spain; Swedish Research Council (VR) and Knut & Alice Wallenberg 
Foundation (KAW), Sweden; European Organization for Nuclear Re-
search, Switzerland; National Science and Technology Development 
Agency (NSDTA), Suranaree University of Technology (SUT) and Of-
fice of the Higher Education Commission under NRU project of 
Thailand, Thailand; Turkish Atomic Energy Agency (TAEK), Turkey; 
National Academy of Sciences of Ukraine, Ukraine; Science and 
Technology Facilities Council (STFC), United Kingdom; National Sci-
ence Foundation of the United States of America (NSF) and United 
States Department of Energy, Office of Nuclear Physics (DOE NP), 
United States of America.

References

[1] B. Muller, J. Schukraft, B. Wyslouch, First Results from Pb + Pb collisions at the 
LHC, Annu. Rev. Nucl. Part. Sci. 62 (2012) 361–386, arXiv:1202 .3233 [hep -ex].

[2] U. Heinz, R. Snellings, Collective flow and viscosity in relativistic heavy-ion 
collisions, Annu. Rev. Nucl. Part. Sci. 63 (2013) 123–151, arXiv:1301.2826
[nucl -th].

[3] K.M. Burke, A. Buzzatti, N. Chang, C. Gale, M. Gyulassy, et al., Extracting jet 
transport coefficient from jet quenching at RHIC and LHC, Phys. Rev. C 90 
(2014) 014909, arXiv:1312 .5003 [nucl -th].

[4] ALICE Collaboration, B. Abelev, et al., Measurement of the inclusive differential 
jet cross section in pp collisions at √s = 2.76 TeV, Phys. Lett. B 722 (2013) 
262–272, arXiv:1301.3475 [nucl -ex].

[5] ATLAS Collaboration, G. Aad, et al., Measurement of the inclusive jet cross-
section in proton–proton collisions at √

s = 7 TeV using 4.5 fb−1 of data 
with the ATLAS detector, J. High Energy Phys. 02 (2015) 153, arXiv:1410 .8857
[hep -ex], Erratum: J. High Energy Phys. 09 (2015) 141.

[6] CMS Collaboration, V. Khachatryan, et al., Measurement and QCD analysis of 
double-differential inclusive jet cross-sections in pp collisions at √s = 8 TeV 
and ratios to 2.76 and 7 TeV, J. High Energy Phys. (2016), submitted for pub-
lication, arXiv:1609 .05331 [hep -ex].

[7] M. Dasgupta, F. Dreyer, G.P. Salam, G. Soyez, Small-radius jets to all orders in 
QCD, J. High Energy Phys. 04 (2015) 039, arXiv:1411.5182 [hep -ph].

[8] ALICE Collaboration, B. Abelev, et al., Charged jet cross sections and proper-
ties in proton–proton collisions at √s = 7 TeV, Phys. Rev. D 91 (11) (2015) 
112012, arXiv:1411.4969 [nucl -ex].

[9] ALICE Collaboration, J. Adam, et al., Measurement of jet quenching with 
semi-inclusive hadron-jet distributions in central Pb–Pb collisions at √sNN =
2.76 TeV, J. High Energy Phys. 09 (2015) 170, arXiv:1506 .03984 [nucl -ex].

[10] PHENIX Collaboration, K. Adcox, et al., Suppression of hadrons with large 
transverse momentum in central Au + Au collisions at √sNN = 130-GeV, Phys. 
Rev. Lett. 88 (2002) 022301, arXiv:nucl -ex /0109003.

[11] PHENIX Collaboration, A. Adare, et al., Neutral pion production with respect to 
centrality and reaction plane in Au + Au collisions at √sNN = 200 GeV, Phys. 
Rev. C 87 (2013) 034911, arXiv:1208 .2254 [nucl -ex].

[12] PHENIX Collaboration, A. Adare, et al., Trends in yield and azimuthal shape 
modification in dihadron correlations in relativistic heavy ion collisions, Phys. 
Rev. Lett. 104 (2010) 252301, arXiv:1002 .1077 [nucl -ex].

[13] PHENIX Collaboration, A. Adare, et al., Medium modification of jet fragmenta-
tion in Au + Au collisions at √sNN = 200 GeV measured in direct photon–
hadron correlations, Phys. Rev. Lett. 111 (2013) 032301, arXiv:1212 .3323
[nucl -ex].

[14] STAR Collaboration, C. Adler, et al., Centrality dependence of high pT hadron 
suppression in Au + Au collisions at √

sNN = 130-GeV, Phys. Rev. Lett. 89 
(2002) 202301, arXiv:nucl -ex /0206011.

[15] STAR Collaboration, C. Adler, et al., Disappearance of back-to-back high pT

hadron correlations in central Au + Au collisions at √sNN = 200 GeV, Phys. 
Rev. Lett. 90 (2003) 082302, arXiv:nucl -ex /0210033.

[16] STAR Collaboration, J. Adams, et al., Transverse-momentum and collision-
energy dependence of high-pT hadron suppression in Au + Au collisions at 
ultrarelativistic energies, Phys. Rev. Lett. 91 (2003) 172302, arXiv:nucl -ex /
0305015.

[17] STAR Collaboration, J. Adams, et al., Direct observation of dijets in central 
Au + Au collisions at √

sNN = 200 GeV, Phys. Rev. Lett. 97 (2006) 162301, 
arXiv:nucl -ex /0604018.

[18] STAR Collaboration, L. Adamczyk, et al., Jet-hadron correlations in √sNN =
200 GeV p + p and central Au + Au collisions, Phys. Rev. Lett. 112 (2014) 
122301, arXiv:1302 .6184 [nucl -ex].

[19] STAR Collaboration, L. Adamczyk, et al., Di-jet imbalance measurements at √
sNN = 200 GeV at STAR, Phys. Rev. Lett. 119 (6) (2017) 062301, arXiv:1609 .

03878 [nucl -ex].
[20] STAR Collaboration, L. Adamczyk, et al., Measurements of jet quenching 

with semi-inclusive hadron+jet distributions in Au + Au collisions at √sNN =
200 GeV, Phys. Rev. C 96 (2) (2017) 024905, arXiv:1702 .01108 [nucl -ex].

[21] ALICE Collaboration, K. Aamodt, et al., Particle-yield modification in jet-like 
azimuthal di-hadron correlations in Pb–Pb collisions at √

sNN = 2.76 TeV, 
Phys. Rev. Lett. 108 (2012) 092301, arXiv:1110 .0121 [nucl -ex].

[22] ALICE Collaboration, B. Abelev, et al., Centrality dependence of charged parti-
cle production at large transverse momentum in Pb–Pb collisions at √sNN =
2.76 TeV, Phys. Lett. B 720 (2013) 52–62, arXiv:1208 .2711 [hep -ex].

[23] ALICE Collaboration, B. Abelev, et al., Measurement of charged jet suppression 
in Pb–Pb collisions at √sNN = 2.76 TeV, J. High Energy Phys. 03 (2014) 013, 
arXiv:1311.0633 [nucl -ex].

[24] ALICE Collaboration, J. Adam, et al., Measurement of jet suppression in central 
Pb–Pb collisions at √sNN = 2.76 TeV, Phys. Lett. B 746 (2015) 1–14, arXiv:
1502 .01689 [nucl -ex].

[25] ALICE Collaboration, J. Adam, et al., Jet-like correlations with neutral pion trig-
gers in pp and central Pb–Pb collisions at 2.76 TeV, Phys. Lett. B 763 (2016) 
238–250, arXiv:1608 .07201 [nucl -ex].

[26] ATLAS Collaboration, G. Aad, et al., Observation of a centrality-dependent dijet 
asymmetry in lead–lead collisions at √sNN = 2.76 TeV with the ATLAS detec-
tor at the LHC, Phys. Rev. Lett. 105 (2010) 252303, arXiv:1011.6182 [hep -ex].

[27] ATLAS Collaboration, G. Aad, et al., Measurements of the nuclear modifica-
tion factor for jets in Pb + Pb collisions at √sNN = 2.76 TeV with the ATLAS 
detector, Phys. Rev. Lett. 114 (7) (2015) 072302, arXiv:1411.2357 [hep -ex].

[28] CMS Collaboration, S. Chatrchyan, et al., Study of high-pT charged particle 
suppression in PbPb compared to pp collisions at √sNN = 2.76 TeV, Eur. Phys. 
J. C 72 (2012) 1945, arXiv:1202 .2554 [nucl -ex].

http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4D756C6C65723A323031327A71s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4D756C6C65723A323031327A71s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4865696E7A3A323031337468s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4865696E7A3A323031337468s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4865696E7A3A323031337468s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4275726B653A32303133797261s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4275726B653A32303133797261s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4275726B653A32303133797261s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4162656C65763A32303133666Es1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4162656C65763A32303133666Es1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4162656C65763A32303133666Es1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4161643A32303134767761s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4161643A32303134767761s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4161643A32303134767761s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4161643A32303134767761s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4B6861636861747279616E3A323031366D6C63s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4B6861636861747279616E3A323031366D6C63s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4B6861636861747279616E3A323031366D6C63s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4B6861636861747279616E3A323031366D6C63s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib44617367757074613A32303134797261s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib44617367757074613A32303134797261s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib414C4943453A32303134646C61s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib414C4943453A32303134646C61s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib414C4943453A32303134646C61s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4164616D3A3230313570627062s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4164616D3A3230313570627062s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4164616D3A3230313570627062s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4164636F783A323030316A70s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4164636F783A323030316A70s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4164636F783A323030316A70s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib41646172653A323031327767s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib41646172653A323031327767s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib41646172653A323031327767s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib41646172653A323031307279s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib41646172653A323031307279s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib41646172653A323031307279s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib41646172653A323031327169s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib41646172653A323031327169s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib41646172653A323031327169s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib41646172653A323031327169s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib41646C65723A323030327877s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib41646C65723A323030327877s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib41646C65723A323030327877s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib41646C65723A323030327471s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib41646C65723A323030327471s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib41646C65723A323030327471s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4164616D733A323030336B76s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4164616D733A323030336B76s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4164616D733A323030336B76s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4164616D733A323030336B76s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4164616D733A323030367974s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4164616D733A323030367974s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4164616D733A323030367974s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4164616D637A796B3A323031336A6569s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4164616D637A796B3A323031336A6569s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4164616D637A796B3A323031336A6569s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4164616D637A796B3A3230313666716Ds1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4164616D637A796B3A3230313666716Ds1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4164616D637A796B3A32303137796865s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4164616D637A796B3A32303137796865s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4164616D637A796B3A32303137796865s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib41616D6F64743A323031317667s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib41616D6F64743A323031317667s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib41616D6F64743A323031317667s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4162656C65763A32303132687861s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4162656C65763A32303132687861s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4162656C65763A32303132687861s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4162656C65763A323031336B7161s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4162656C65763A323031336B7161s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4162656C65763A323031336B7161s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4164616D3A32303135657761s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4164616D3A32303135657761s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4164616D3A32303135657761s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4164616D3A323031366A70s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4164616D3A323031366A70s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4164616D3A323031366A70s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4161643A323031306275s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4161643A323031306275s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4161643A323031306275s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4161643A32303134627861s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4161643A32303134627861s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4161643A32303134627861s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib434D533A323031326161s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib434D533A323031326161s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib434D533A323031326161s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4164616D637A796B3A3230313666716Ds1


ALICE Collaboration / Physics Letters B 783 (2018) 95–113 107

[29] CMS Collaboration, S. Chatrchyan, et al., Centrality dependence of dihadron 
correlations and azimuthal anisotropy harmonics in PbPb collisions at √sNN =
2.76 TeV, Eur. Phys. J. C 72 (2012) 10052, arXiv:1201.3158 [nucl -ex].

[30] CMS Collaboration, S. Chatrchyan, et al., Jet momentum dependence of jet 
quenching in PbPb collisions at √sNN = 2.76 TeV, Phys. Lett. B 712 (2012) 
176–197, arXiv:1202 .5022 [nucl -ex].

[31] CMS Collaboration, S. Chatrchyan, et al., Studies of jet quenching us-
ing isolated-photon+jet correlations in PbPb and pp collisions at √

sNN =
2.76 TeV, Phys. Lett. B 718 (2013) 773–794, arXiv:1205 .0206 [nucl -ex].

[32] CMS Collaboration, V. Khachatryan, et al., Measurement of inclusive jet cross-
sections in pp and PbPb collisions at √sNN = 2.76 TeV, Phys. Rev. C (2016), 
submitted for publication, arXiv:1609 .05383 [nucl -ex].

[33] ALICE Collaboration, B. Abelev, et al., Long-range angular correlations on the 
near and away side in p–Pb collisions at √sNN = 5.02 TeV, Phys. Lett. B 719 
(2013) 29–41, arXiv:1212 .2001 [nucl -ex].

[34] ALICE Collaboration, B. Abelev, et al., Long-range angular correlations of π , 
K and p in p–Pb collisions at √

sNN = 5.02 TeV, Phys. Lett. B 726 (2013) 
164–177, arXiv:1307.3237 [nucl -ex].

[35] ALICE Collaboration, B. Abelev, et al., Multiparticle azimuthal correlations in 
p–Pb and Pb–Pb collisions at the CERN Large Hadron Collider, Phys. Rev. C 
90 (5) (2014) 054901, arXiv:1406 .2474 [nucl -ex].

[36] ALICE Collaboration, J. Adam, et al., Forward-central two-particle correlations 
in p–Pb collisions at √sNN = 5.02 TeV, Phys. Lett. B 753 (2016) 126–139, 
arXiv:1506 .08032 [nucl -ex].

[37] ATLAS Collaboration, G. Aad, et al., Observation of associated near-side and 
away-side long-range correlations in √sNN = 5.02 TeV proton–lead collisions 
with the ATLAS detector, Phys. Rev. Lett. 110 (18) (2013) 182302, arXiv:1212 .
5198 [hep -ex].

[38] ATLAS Collaboration, G. Aad, et al., Measurement with the ATLAS detector of 
multi-particle azimuthal correlations in p + Pb collisions at √sNN = 5.02 TeV, 
Phys. Lett. B 725 (2013) 60–78, arXiv:1303 .2084 [hep -ex].

[39] ATLAS Collaboration, G. Aad, et al., Measurement of long-range pseudora-
pidity correlations and azimuthal harmonics in √

sNN = 5.02 TeV proton–
lead collisions with the ATLAS detector, Phys. Rev. C 90 (4) (2014) 044906, 
arXiv:1409 .1792 [hep -ex].

[40] CMS Collaboration, V. Khachatryan, et al., Observation of long-range near-side 
angular correlations in proton–proton collisions at the LHC, J. High Energy 
Phys. 09 (2010) 091, arXiv:1009 .4122 [hep -ex].

[41] CMS Collaboration, S. Chatrchyan, et al., Multiplicity and transverse momen-
tum dependence of two- and four-particle correlations in pPb and PbPb colli-
sions, Phys. Lett. B 724 (2013) 213–240, arXiv:1305 .0609 [nucl -ex].

[42] CMS Collaboration, S. Chatrchyan, et al., Long-range angular correlations on 
the near and away side in p–Pb collisions at √sNN = 5.02 TeV, Phys. Lett. B 
718 (2013) 795, arXiv:1210 .5482 [nucl -ex].

[43] CMS Collaboration, V. Khachatryan, et al., Long-range two-particle correlations 
of strange hadrons with charged particles in pPb and PbPb collisions at LHC 
energies, Phys. Lett. B 742 (2015) 200–224, arXiv:1409 .3392 [nucl -ex].

[44] CMS Collaboration, S. Khachatryan, et al., Evidence for collective multiparticle 
correlations in p–Pb collisions, Phys. Rev. Lett. 115 (2015) 012301, arXiv:1502 .
05382 [nucl -ex].

[45] PHENIX Collaboration, A. Adare, et al., Quadrupole anisotropy in dihadron az-
imuthal correlations in central d + Au collisions at √sNN = 200 GeV, Phys. 
Rev. Lett. 111 (21) (2013) 212301, arXiv:1303 .1794 [nucl -ex].

[46] PHENIX Collaboration, A. Adare, et al., Measurement of long-range angular 
correlation and quadrupole anisotropy of pions and (anti)protons in central 
d + Au collisions at √sNN = 200 GeV, Phys. Rev. Lett. 114 (19) (2015) 192301, 
arXiv:1404 .7461 [nucl -ex].

[47] PHENIX Collaboration, A. Adare, et al., Measurements of elliptic and triangular 
flow in high-multiplicity 3He + Au collisions at √sNN = 200 GeV, Phys. Rev. 
Lett. 115 (14) (2015) 142301, arXiv:1507.06273 [nucl -ex].

[48] PHENIX Collaboration, C. Aidala, et al., Measurement of long-range angular 
correlations and azimuthal anisotropies in high-multiplicity p + Au collisions 
at √sNN = 200 GeV, Phys. Rev. C 95 (3) (2017) 034910, arXiv:1609 .02894
[nucl -ex].

[49] STAR Collaboration, L. Adamczyk, et al., Effect of event selection on jetlike 
correlation measurement in d + Au collisions at √sNN = 200 GeV, Phys. Lett. 
B 743 (2015) 333–339, arXiv:1412 .8437 [nucl -ex].

[50] STAR Collaboration, L. Adamczyk, et al., Long-range pseudorapidity dihadron 
correlations in d + Au collisions at √sNN = 200 GeV, Phys. Lett. B 747 (2015) 
265–271, arXiv:1502 .07652 [nucl -ex].

[51] C.A. Salgado, J.P. Wessels, Proton–lead collisions at the CERN LHC, Annu. Rev. 
Nucl. Part. Sci. 66 (2016) 449–473.

[52] K. Tywoniuk, Is there jet quenching in pPb? Nucl. Phys. A 926 (2014) 85–91.
[53] B.G. Zakharov, Parton energy loss in the mini quark–gluon plasma and jet 

quenching in proton–proton collisions, J. Phys. G 41 (2014) 075008, arXiv:
1311.1159 [hep -ph].

[54] S.-Y. Chen, K.-M. Shen, W. Dai, B.-W. Zhang, H.-Z. Zhang, E.-K. Wang, Cen-
trality dependence of productions for single hadrons and inclusive jets in 
high-energy p + A collisions with NLO QCD, Commun. Theor. Phys. 64 (1) 
(2015) 95–102.

[55] Z.-B. Kang, I. Vitev, H. Xing, Effects of cold nuclear matter energy loss on 
inclusive jet production in p + A collisions at energies available at the BNL 
Relativistic Heavy Ion Collider and the CERN Large Hadron Collider, Phys. Rev. 
C 92 (5) (2015) 054911, arXiv:1507.05987 [hep -ph].

[56] ALICE Collaboration, J. Adam, et al., Centrality dependence of particle produc-
tion in p–Pb collisions at √sNN = 5.02 TeV, Phys. Rev. C 91 (2015) 064905, 
arXiv:1412 .6828 [nucl -ex].

[57] STAR Collaboration, J. Adams, et al., Evidence from d + Au measurements for 
final state suppression of high-pT hadrons in Au + Au collisions at RHIC, Phys. 
Rev. Lett. 91 (2003) 072304, arXiv:nucl -ex /0306024.

[58] PHENIX Collaboration, S.S. Adler, et al., Centrality dependence of π0 and η
production at large transverse momentum in √sNN = 200 GeV d + Au colli-
sions, Phys. Rev. Lett. 98 (2007) 172302, arXiv:nucl -ex /0610036.

[59] PHENIX Collaboration, A. Adare, et al., Centrality-dependent modification of 
jet-production rates in deuteron-gold collisions at √sNN = 200 GeV, Phys. Rev. 
Lett. 116 (2016) 122301, arXiv:1509 .04657 [nucl -ex].

[60] ATLAS Collaboration, G. Aad, et al., Transverse momentum, rapidity, and 
centrality dependence of inclusive charged-particle production in √

sNN =
5.02 TeV p + Pb collisions measured by the ATLAS experiment, Phys. Lett. B 
763 (2016) 313–336, arXiv:1605 .06436 [hep -ex].

[61] CMS Collaboration, S. Chatrchyan, et al., Studies of dijet transverse momen-
tum balance and pseudorapidity distributions in pPb collisions at √sNN =
5.02 TeV, Eur. Phys. J. C 74 (7) (2014) 2951, arXiv:1401.4433 [nucl -ex].

[62] ALICE Collaboration, B. Abelev, et al., Transverse momentum distribution and 
nuclear modification factor of charged particles in p–Pb collisions at √sNN =
5.02 TeV, Phys. Rev. Lett. 110 (2013) 082302, arXiv:1210 .4520 [nucl -ex].

[63] CMS Collaboration, V. Khachatryan, et al., Nuclear effects on the transverse 
momentum spectra of charged particles in pPb collisions at √sNN = 5.02 TeV, 
Eur. Phys. J. C 75 (5) (2015) 237, arXiv:1502 .05387 [nucl -ex].

[64] CMS Collaboration, V. Khachatryan, et al., Charged-particle nuclear modifica-
tion factors in PbPb and pPb collisions at √sNN = 5.02 TeV, J. High Energy 
Phys. 04 (2017) 039, arXiv:1611.01664 [nucl -ex].

[65] ALICE Collaboration, J. Adam, et al., Measurement of charged jet production 
cross sections and nuclear modification in p–Pb collisions at √sNN = 5.02 TeV, 
Phys. Lett. B 749 (2015) 68–81, arXiv:1503 .00681 [nucl -ex].

[66] ATLAS Collaboration, G. Aad, et al., Centrality and rapidity dependence of in-
clusive jet production in √sNN = 5.02 TeV proton–lead collisions with the 
ATLAS detector, Phys. Lett. B 748 (2015) 392–413, arXiv:1412 .4092 [nucl -ex].

[67] CMS Collaboration, V. Khachatryan, et al., Measurement of inclusive jet pro-
duction and nuclear modifications in pPb collisions at √sNN = 5.02 TeV, Eur. 
Phys. J. C 76 (7) (2016) 372, arXiv:1601.02001 [nucl -ex].

[68] ALICE Collaboration, J. Adam, et al., Centrality dependence of charged jet pro-
duction in p–Pb collisions at √sNN = 5.02 TeV, Eur. Phys. J. C 76 (2016) 271, 
arXiv:1603 .03402 [nucl -ex].

[69] M.L. Miller, K. Reygers, S.J. Sanders, P. Steinberg, Glauber modeling in high 
energy nuclear collisions, Annu. Rev. Nucl. Part. Sci. 57 (2007) 205–243, arXiv:
nucl -ex /0701025.

[70] PHENIX Collaboration, A. Adare, et al., Centrality categorization for R p(d)+A

in high-energy collisions, Phys. Rev. C 90 (3) (2014) 034902, arXiv:1310 .4793
[nucl -ex].

[71] M. Kordell, A. Majumder, Jets in d(p)–A collisions: color transparency or 
energy conservation, Phys. Rev. C 97 (5) (2018) 054904, arXiv:1601.02595
[nucl -th], 2016.

[72] D.V. Perepelitsa, P.A. Steinberg, Calculation of centrality bias factors in p + A 
collisions based on a positive correlation of hard process yields with underly-
ing event activity, arXiv:1412 .0976 [nucl -ex].

[73] A. Bzdak, V. Skokov, S. Bathe, Centrality dependence of high energy jets in 
p + Pb collisions at energies available at the CERN Large Hadron Collider, Phys. 
Rev. C 93 (4) (2016) 044901, arXiv:1408 .3156 [hep -ph].

[74] N. Armesto, D.C. Gülhan, J.G. Milhano, Kinematic bias on centrality selection 
of jet events in pPb collisions at the LHC, Phys. Lett. B 747 (2015) 441–445, 
arXiv:1502 .02986 [hep -ph].

[75] B.G. Zakharov, Effect of meson cloud on the jet nuclear modification factor in 
pA collisions, JETP Lett. 105 (2017) 219–222, arXiv:1612 .03337 [nucl -th].

[76] M. Alvioli, M. Strikman, Color fluctuation effects in proton–nucleus collisions, 
Phys. Lett. B 722 (2013) 347–354, arXiv:1301.0728 [hep -ph].

[77] M. Alvioli, L. Frankfurt, V. Guzey, M. Strikman, Revealing “flickering” of the 
interaction strength in pA collisions at the CERN LHC, Phys. Rev. C 90 (2014) 
034914, arXiv:1402 .2868 [hep -ph].

[78] M. Alvioli, B.A. Cole, L. Frankfurt, D.V. Perepelitsa, M. Strikman, Evidence for 
x-dependent proton color fluctuations in pA collisions at the CERN Large 
Hadron Collider, Phys. Rev. C 93 (1) (2016) 011902, arXiv:1409 .7381 [hep -ph].

[79] D. McGlinchey, J.L. Nagle, D.V. Perepelitsa, Consequences of high-x proton size 
fluctuations in small collision systems at √sNN = 200 GeV, Phys. Rev. C 94 (2) 
(2016) 024915, arXiv:1603 .06607 [nucl -th].

[80] C. Loizides, A. Morsch, Absence of jet quenching in peripheral nucleus–
nucleus collisions, Phys. Lett. B 773 (2017) 408–411, arXiv:1705 .08856 [nucl -
ex].

http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4368617472636879616E3A323031327767s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4368617472636879616E3A323031327767s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4368617472636879616E3A323031327767s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4368617472636879616E3A323031326E6961s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4368617472636879616E3A323031326E6961s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4368617472636879616E3A323031326E6961s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4368617472636879616E3A323031326774s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4368617472636879616E3A323031326774s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4368617472636879616E3A323031326774s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4B6861636861747279616E3A323031366A666Cs1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4B6861636861747279616E3A323031366A666Cs1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4B6861636861747279616E3A323031366A666Cs1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4162656C65763A32303133707062s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4162656C65763A32303133707062s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4162656C65763A32303133707062s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4162656C65763A323031337070624964s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4162656C65763A323031337070624964s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4162656C65763A323031337070624964s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4162656C65763A323031346D6461s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4162656C65763A323031346D6461s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4162656C65763A323031346D6461s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4164616D3A32303135626B61s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4164616D3A32303135626B61s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4164616D3A32303135626B61s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4161643A32303132676C61s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4161643A32303132676C61s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4161643A32303132676C61s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4161643A32303132676C61s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4161643A32303133666A61s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4161643A32303133666A61s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4161643A32303133666A61s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4161643A323031346C7461s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4161643A323031346C7461s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4161643A323031346C7461s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4161643A323031346C7461s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4B6861636861747279616E3A323031306776s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4B6861636861747279616E3A323031306776s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4B6861636861747279616E3A323031306776s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4368617472636879616E3A323031336E6B61s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4368617472636879616E3A323031336E6B61s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4368617472636879616E3A323031336E6B61s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4368617472636879616E3A32303133707062s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4368617472636879616E3A32303133707062s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4368617472636879616E3A32303133707062s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4B6861636861747279616E3A323031346A7261s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4B6861636861747279616E3A323031346A7261s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4B6861636861747279616E3A323031346A7261s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4B6861636861747279616E3A32303135707062s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4B6861636861747279616E3A32303135707062s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4B6861636861747279616E3A32303135707062s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib41646172653A3230313370697As1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib41646172653A3230313370697As1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib41646172653A3230313370697As1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib41646172653A323031346B6567s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib41646172653A323031346B6567s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib41646172653A323031346B6567s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib41646172653A323031346B6567s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib41646172653A3230313563746Es1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib41646172653A3230313563746Es1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib41646172653A3230313563746Es1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib416964616C613A3230313676676Cs1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib416964616C613A3230313676676Cs1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib416964616C613A3230313676676Cs1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib416964616C613A3230313676676Cs1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4164616D637A796B3A32303134666378s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4164616D637A796B3A32303134666378s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4164616D637A796B3A32303134666378s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4164616D637A796B3A32303135786A63s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4164616D637A796B3A32303135786A63s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4164616D637A796B3A32303135786A63s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib53616C6761646F3A323031366A7773s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib53616C6761646F3A323031366A7773s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib5479773A32303134707062s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib5A616B6861726F763A32303133677961s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib5A616B6861726F763A32303133677961s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib5A616B6861726F763A32303133677961s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4368656E3A32303135716D64s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4368656E3A32303135716D64s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4368656E3A32303135716D64s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4368656E3A32303135716D64s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4B616E673A323031356D7461s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4B616E673A323031356D7461s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4B616E673A323031356D7461s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4B616E673A323031356D7461s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4162656C65763A32303135636E74s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4162656C65763A32303135636E74s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4162656C65763A32303135636E74s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4164616D733A32303033696Ds1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4164616D733A32303033696Ds1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4164616D733A32303033696Ds1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib41646C65723A323030367767s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib41646C65723A323030367767s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib41646C65723A323030367767s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib41646172653A32303136646175s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib41646172653A32303136646175s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib41646172653A32303136646175s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4161643A323031367A6966s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4161643A323031367A6966s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4161643A323031367A6966s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4161643A323031367A6966s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4368617472636879616E3A32303134687161s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4368617472636879616E3A32303134687161s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4368617472636879616E3A32303134687161s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4162656C3A32303135707062s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4162656C3A32303135707062s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4162656C3A32303135707062s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4B6861636861747279616E3A32303135786161s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4B6861636861747279616E3A32303135786161s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4B6861636861747279616E3A32303135786161s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4B6861636861747279616E3A323031366F646Es1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4B6861636861747279616E3A323031366F646Es1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4B6861636861747279616E3A323031366F646Es1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4164616D3A32303135686F61s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4164616D3A32303135686F61s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4164616D3A32303135686F61s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4161643A32303135707062s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4161643A32303135707062s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4161643A32303135707062s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4B6861636861747279616E3A32303136786467s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4B6861636861747279616E3A32303136786467s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4B6861636861747279616E3A32303136786467s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4164616D3A32303136707062s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4164616D3A32303136707062s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4164616D3A32303136707062s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4D696C6C65723A323030377269s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4D696C6C65723A323030377269s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4D696C6C65723A323030377269s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib41646172653A323031336E6666s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib41646172653A323031336E6666s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib41646172653A323031336E6666s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4D616A3A32303134707062s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4D616A3A32303134707062s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4D616A3A32303134707062s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib5065726570656C697473613A32303134797461s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib5065726570656C697473613A32303134797461s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib5065726570656C697473613A32303134797461s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib427A64616B3A32303134726361s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib427A64616B3A32303134726361s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib427A64616B3A32303134726361s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib41726D6573746F3A323031356B7761s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib41726D6573746F3A323031356B7761s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib41726D6573746F3A323031356B7761s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib5A616B6861726F763A323031367A7163s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib5A616B6861726F763A323031367A7163s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib416C76696F6C693A32303133766Bs1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib416C76696F6C693A32303133766Bs1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib416C76696F6C693A32303134736261s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib416C76696F6C693A32303134736261s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib416C76696F6C693A32303134736261s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib416C76696F6C693A32303134656461s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib416C76696F6C693A32303134656461s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib416C76696F6C693A32303134656461s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4D63476C696E636865793A3230313673736As1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4D63476C696E636865793A3230313673736As1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4D63476C696E636865793A3230313673736As1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4D6F727363683A323031376272s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4D6F727363683A323031376272s1
http://refhub.elsevier.com/S0370-2693(18)30423-4/bib4D6F727363683A323031376272s1


108 ALICE Collaboration / Physics Letters B 783 (2018) 95–113

[81] ALICE Collaboration, J. Adam, et al., Measurement of dijet kT in p–Pb colli-
sions at √sNN = 5.02 TeV, Phys. Lett. B 746 (2015) 385–395, arXiv:1503 .03050
[nucl -ex].

[82] D. de Florian, Next-to-leading order QCD corrections to hadron+jet produc-
tion in pp collisions at RHIC, Phys. Rev. D 79 (2009) 114014, arXiv:0904 .4402
[hep -ph].

[83] M. Cacciari, G.P. Salam, G. Soyez, The anti-kt jet clustering algorithm, J. High 
Energy Phys. 04 (2008) 063, arXiv:0802 .1189 [hep -ph].

[84] ALICE Collaboration, K. Aamodt, et al., The ALICE experiment at the CERN LHC, 
J. Instrum. 3 (2008) S08002.

[85] ALICE Collaboration, B. Abelev, et al., Performance of the ALICE experiment 
at the CERN LHC, Int. J. Mod. Phys. A 29 (2014) 1430044, arXiv:1402 .4476
[nucl -ex].

[86] ALICE Collaboration, B. Abelev, et al., Pseudorapidity density of charged parti-
cles in p–Pb collisions at √sNN = 5.02 TeV, Phys. Rev. Lett. 110 (2013) 032301.

[87] P.Z. Skands, Tuning Monte Carlo generators: the Perugia tunes, Phys. Rev. D 
82 (2010) 074018, arXiv:1005 .3457 [hep -ph].

[88] The ALICE definition of primary particles, https://cds .cern .ch /record /2270008 ?
ln =en.

[89] R. Brun, F. Bruyant, M. Maire, A.C. McPherson, P. Zanarini, GEANT3 User’s 
Guide, 1985, CERN Data Handling Division DD/EE/84-1.

[90] T. Sjöstrand, S. Mrenna, P.Z. Skands, A brief introduction to PYTHIA 8.1, Com-
put. Phys. Commun. 178 (2008) 852–867, arXiv:0710 .3820 [hep -ph].

[91] D. d’Enterria, K.J. Eskola, I. Helenius, H. Paukkunen, Confronting current NLO 
parton fragmentation functions with inclusive charged-particle spectra at 
hadron colliders, Nucl. Phys. B 883 (2014) 615–628, arXiv:1311.1415 [hep -ph].

[92] D. de Florian, R. Sassot, M. Epele, R.J. Hernández-Pinto, M. Stratmann, Parton-
to-pion fragmentation reloaded, Phys. Rev. D 91 (1) (2015) 014035, arXiv:
1410 .6027 [hep -ph].

[93] M. Cacciari, G.P. Salam, G. Soyez, FastJet user manual, Eur. Phys. J. C 72 (2012) 
1896, arXiv:1111.6097 [hep -ph].

[94] M. Cacciari, G.P. Salam, G. Soyez, The catchment area of jets, J. High Energy 
Phys. 04 (2008) 005, arXiv:0802 .1188 [hep -ph].

[95] M. Cacciari, G.P. Salam, Pileup subtraction using jet areas, Phys. Lett. B 659 
(2008) 119–126, arXiv:0707.1378 [hep -ph].

[96] CMS Collaboration, S. Chatrchyan, et al., Measurement of the underlying event 
activity in pp collisions at √s = 0.9 and 7 TeV with the novel jet-area/median 
approach, J. High Energy Phys. 08 (2012) 130, arXiv:1207.2392 [nucl -ex].

[97] R. Baier, Jet quenching, Nucl. Phys. A 715 (2003) 209–218, arXiv:hep -ph /
0209038.

[98] A. Drees, H. Feng, J. Jia, Medium induced jet absorption at RHIC, Phys. Rev. C 
71 (2005) 034909, arXiv:nucl -th /0310044.

[99] A. Dainese, C. Loizides, G. Paic, Leading-particle suppression in high energy 
nucleus–nucleus collisions, Eur. Phys. J. C 38 (2005) 461–474, arXiv:hep -ph /
0406201.

[100] K. Eskola, H. Honkanen, C. Salgado, U. Wiedemann, The fragility of high-pT

hadron spectra as a hard probe, Nucl. Phys. A 747 (2005) 511–529, arXiv:
hep -ph /0406319.

[101] T. Renk, Through the blackness — high-pT hadrons probing the central region 
of 200 AGeV Au–Au collisions, Phys. Rev. C 74 (2006) 024903, arXiv:hep -ph /
0602045.

[102] C. Loizides, High transverse momentum suppression and surface effects in 
Cu + Cu and Au + Au collisions within the PQM model, Eur. Phys. J. C 49 
(2007) 339–345, arXiv:hep -ph /0608133.

[103] H. Zhang, J. Owens, E. Wang, X.-N. Wang, Dihadron tomography of high-
energy nuclear collisions in NLO pQCD, Phys. Rev. Lett. 98 (2007) 212301, 
arXiv:nucl -th /0701045.

[104] T. Renk, Energy dependence of the dijet imbalance in Pb–Pb collisions at 
2.76 ATeV, Phys. Rev. C 86 (2012) 061901, arXiv:1204 .5572 [hep -ph].

[105] B. Nachman, M.L. Mangano, Observables for possible QGP signatures in central 
pp collisions, Eur. Phys. J. C 78 (4) (2018) 343, arXiv:1708 .08369 [hep -ph].

[106] ALICE Collaboration, Supplemental material: constraints on jet quenching 
in p–Pb collisions at √sNN = 5.02 TeV measured by the event-activity de-
pendence of semi-inclusive hadron-jet distributions, CERN-PH-EP-2017-012, 
https://cds .cern .ch /record /2297486.

[107] G. Cowan, A survey of unfolding methods for particle physics, Conf. Proc. 
C0203181 (2002) 248–257.

[108] A. Höcker, V. Kartvelishvili, SVD approach to data unfolding, Nucl. Instrum. 
Methods A372 (1996) 469–481, arXiv:hep -ph /9509307.

[109] G. D’Agostini, A multidimensional unfolding method based on Bayes’ theorem, 
Nucl. Instrum. Methods A362 (1995) 487–498.

[110] T. Adye, Unfolding algorithms and tests using RooUnfold, in: CERN-2011-006, 
2011, pp. 313–318.

[111] Z.-B. Kang, I. Vitev, H. Xing, Nuclear modification of high transverse momen-
tum particle production in p + A collisions at RHIC and LHC, Phys. Lett. B 718 
(2012) 482–487, arXiv:1209 .6030 [hep -ph].

ALICE Collaboration

S. Acharya 136, D. Adamová 92, J. Adolfsson 33, M.M. Aggarwal 97, G. Aglieri Rinella 34, M. Agnello 30, 
N. Agrawal 46, Z. Ahammed 136, S.U. Ahn 76, S. Aiola 141, A. Akindinov 62, M. Al-Turany 104, S.N. Alam 136, 
D.S.D. Albuquerque 121, D. Aleksandrov 87, B. Alessandro 56, R. Alfaro Molina 71, Y. Ali 15, A. Alici 11,26,51, 
A. Alkin 3, J. Alme 21, T. Alt 68, L. Altenkamper 21, I. Altsybeev 135, C. Andrei 84, D. Andreou 34, 
H.A. Andrews 108, A. Andronic 104, M. Angeletti 34, V. Anguelov 102, C. Anson 95, T. Antičić 105, 
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