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Realization of strong synthetic magnetic fields in driven optical lattices has enabled implementation of
topological bands in cold-atom setups. A milestone has been reached by a recent measurement of a finite Chern
number based on the dynamics of incoherent bosonic atoms. The measurements of the quantum Hall effect in
semiconductors are related to the Chern-number measurement in a cold-atom setup; however, the design and
complexity of the two types of measurements are quite different. Motivated by these recent developments, we
investigate the dynamics of weakly interacting incoherent bosons in a two-dimensional driven optical lattice
exposed to an external force, which provides a direct probe of the Chern number. We consider a realistic driving
protocol in the regime of high driving frequency and focus on the role of weak repulsive interactions. We find that
interactions lead to the redistribution of atoms over topological bands both through the conversion of interaction
energy into kinetic energy during the expansion of the atomic cloud and due to an additional heating. Remarkably,
we observe that the moderate atomic repulsion facilitates the measurement by flattening the distribution of atoms
in the quasimomentum space. Our results also show that weak interactions can suppress the contribution of some
higher-order nontopological terms in favor of the topological part of the effective model.

DOI: 10.1103/PhysRevA.98.053625

I. INTRODUCTION

Ultracold atoms in optical lattices provide a perfect plat-
form for quantum simulations of various condensed-matter
phenomena [1]. Yet, since charge-neutral atoms do not feel the
Lorentz force, a big challenge in this field was realization of
synthetic magnetic fields. After years of effort, artificial gauge
potentials for neutral atoms were implemented by exploiting
atomic coupling to a suitable configuration of external lasers
[2,3]. These techniques were further extended to optical lat-
tices, leading to the realization of strong, synthetic, magnetic
fields. As a result, important condensed-matter models—the
Harper-Hofstadter [4] and the Haldane model [5]—are nowa-
days available in cold-atom setups [6–9]. The key property
of these models is their nontrivial topological content. In the
seminal TKNN paper [10] it was shown that the quantization
of the Hall conductivity observed in the integer Hall effect can
be directly related to the topological index of the microscopic
model—the Chern number.

Cold-atom realizations of topological models exploit peri-
odic driving, either through laser-assisted tunneling [6,7] or
by lattice shaking [8]. Using Floquet theory [11,12], a period-
ically driven system can be related to the time-independent ef-
fective Hamiltonian that corresponds to a relevant condensed-
matter system. The mapping is known as Floquet engineering
and its important features in the context of optical lattices are
discussed in Refs. [13–20]. Because of important differences
of cold-atom setups and their condensed-matter counterparts,
new quench protocols for probing topological features were
proposed [21–25]. Following up on these studies, the de-
flection of an atomic cloud as a response to external force
was used to experimentally measure the Chern number in a
nonelectronic system for the first time [26].

While Floquet engineering is a highly flexible and pow-
erful technique, it poses several concerns. One of the main
open questions is related to the interplay of driving and
interactions which can heat up the system to a featureless,
infinite-temperature regime according to general considera-
tions [27,28]. In particular, it is shown that an initial Bose-
Einstein condensate in a periodically driven optical lattice
may become unstable due to two-body collisions [29] or
through the mechanism of parametric resonance [28,30–36].
The preparation protocol, stability and a lifetime of strongly
correlated phases, expected in the regime of strong interac-
tions under driving is a highly debated topic at the moment
[28,37,38].

In order to further explore the role of weak atomic inter-
actions in probing topological features, here we consider the
dynamics of weakly interacting incoherent bosons in a driven
optical lattice exposed to an external force. The setup that we
consider includes all basic ingredients for the Chern-number
measurement [22,26]—the Chern number of the topological
band can be extracted from the center-of-mass motion of
atomic cloud in the direction transverse to the applied force.
We assume an ideal initial state where the lowest topological
band of the effective model is almost uniformly populated.
The optimal loading sequence necessary to reach this state is
considered in Refs. [39,40]. Following the recent experimen-
tal study [26], we assume that atoms are suddenly released
from the trap and exposed to a uniform force. We perform nu-
merical simulations for the full time-dependent Hamiltonian
and take into account the effects of weak repulsive interac-
tions between atoms within the mean-field approximation. We
make a comparison between the dynamics governed by the
effective and time-dependent Hamiltonian and delineate the

2469-9926/2018/98(5)/053625(16) 053625-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.98.053625&domain=pdf&date_stamp=2018-11-26
https://doi.org/10.1103/PhysRevA.98.053625


ANA HUDOMAL et al. PHYSICAL REVIEW A 98, 053625 (2018)

contribution of interactions to the center-of-mass response and
to the overall cloud expansion dynamics. Our results show that
interactions lead to the undesirable atomic transitions between
topological bands [41], but we also find that a weak atomic
repulsion can facilitate the Chern-number measurements in
several ways.

The paper is organized as follows. In Sec. II we describe
the model and introduce a method that we apply for the
description of incoherent bosons. In Sec. III we address the
dynamics of noninteracting incoherent bosons, and then in
Sec. IV we address the regime of weak repulsive interactions.
Finally, we summarize our results in Sec. V. Appendixes A
to F provide further details.

II. MODEL AND METHOD

In this section, we first present the driven model introduced
in Ref. [26], and then derive the corresponding effective model
and discuss its basic characteristics. At the end, we explain our
choice of the initial state and outline the method that we use
to treat the dynamics of weakly interacting incoherent bosons.

A. Effective Floquet Hamiltonian

Interacting bosons in a two-dimensional optical lattice can
be described by the Bose-Hubbard Hamiltonian

ĤBH = −Jx

∑
l,m

(â†
l+1,mâl,m + â

†
l−1,mâl,m)

− Jy

∑
l,m

(â†
l,m+1âl,m + â

†
l,m−1âl,m)

+ U

2

∑
l,m

n̂l,m(n̂l,m − 1), (1)

where â
†
l,m and âl,m are creation and annihilation operators

that create and annihilate a particle at the lattice site (l, m) =
laex + maey (a is the lattice constant), n̂l,m = â

†
l,mâl,m is the

number operator, Jx and Jy are the hopping amplitudes along
ex and ey , and U is the on-site interaction. In the derivation
of the model (1) we use the single-band tight-binding approx-
imation [1]. Although the experimental setup [26] is actually
three dimensional, with an additional confinement in the third
direction, our study is simplified to a two-dimensional lattice.

In order to engineer artificial gauge field in the experiment
[26], hopping along ex was at first inhibited by an additional
staggered potential

Ŵ = �

2

∑
l,m

(−1)l n̂l,m, (2)

and then restored using resonant laser light. The experimental
setup can be described by a time-dependent Hamiltonian

H̃ (t ) = ĤBH + V̂ (t ) + Ŵ , (3)

where V̂ (t ) is a time-dependent modulation

V̂ (t ) = κ
∑
l,m

n̂l,m

[
cos

(
lπ

2
− π

4

)
cos

(
ωt − mπ

2
+ φ0

)

+ cos

(
lπ

2
+ π

4

)
cos

(
−ωt − mπ

2
+ π

2
+ φ0

)]
,

(4)

κ is the driving amplitude, and ω = � is the resonant driving
frequency. We set the relative phase φ0 between the optical-
lattice potential and the running waves used for laser-assisted
tunneling to φ0 = π/4.

Using Floquet theory, the time-evolution operator corre-
sponding to the Hamiltonian (3) can be represented as

Û (t, t0) = e−iŴ t e−iK̂ (t )e−i(t−t0 )Ĥeff eiK̂ (t0 )eiŴ t0 , (5)

where Ĥeff is the full time-independent effective Hamiltonian
that describes slow motion and K̂ (t ) is the time-periodic kick
operator that describes micromotion [13,14].

For the moment, in this subsection we first consider the
noninteracting model U = 0. We also assume that the driving
frequency ω is the highest energy scale, but that it is still low
enough that the lowest-band approximation used in deriving
Eq. (1) is still valid. In the leading order of the high-frequency
expansion, the effective Hamiltonian Ĥeff is given by

Ĥeff,0 = J ′
x

∑
l,m

[ei((m−l−1)π/2−π/4)â
†
l+1,mâl,m + H.c.]

− J ′
y

∑
l,m

(â†
l,m+1âl,m + â

†
l,m−1âl,m), (6)

where the renormalized hopping amplitudes are J ′
x = Jxκ√

2ω
=

Jy and J ′
y = Jy (1 − 1

2
κ2

ω2 ). A schematic representation of this
model is presented in Fig. 1(a). The unit cell is shaded
and the full lattice is spanned by the vectors R1 = (4, 0)
and R2 = (1, 1). Particle hopping around a plaquette in the
counterclockwise direction acquires a complex phase −π

2 and
the model is equivalent to the Harper-Hofstadter Hamiltonian
[4] for the case α = 1/4 [4]. The explicit form of the kick
operator K̂ (t ) from Eq. (3) is given in Appendix A.

Following Refs. [13,14], we find that additional corrections
of the order J 2

x /ω contribute to the system’s dynamics and we
introduce another approximation for the effective Hamiltonian

Ĥeff,1 = Ĥeff,0 + J 2
x

ω

∑
l,m

(−1)l (2â
†
l,mâl,m

+ â
†
l+2,mâl,m + â

†
l−2,mâl,m). (7)

The derivation of Hamiltonian (7) is given in Appendix A and
its schematic representation is given in Fig. 1(b). The J 2

x /ω

correction introduces next-nearest-neighbor hopping along x

direction with opposite signs for lattice sites with either even
or odd x-coordinate l. This term does not change the total
complex phase per plaquette, but the unit cell is now doubled
and thus the first Brillouin zone is halved. A similar term
was engineered on purpose in order to implement the Haldane
model [8].

In the next subsection we investigate properties of energy
bands of both effective Hamiltonians, Ĥeff,0 and Ĥeff,1. We
use the units where h̄ = 1 and a = 1. Unless otherwise stated,
we set the parameters to the following values: lattice size
100 × 100 sites, hopping amplitudes J ′

x = Jy = 1 ≡ J , and
the driving amplitude κ = 0.58ω. This value of the driving
amplitude was chosen to be the same as in the experiment
[26]. In order to set the renormalized hopping amplitude
along ex to J ′

x = 1, the initial hopping amplitude has to be

053625-2
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FIG. 1. Schematic representation of the model. The unit cells
are shaded. (a) Effective Hamiltonian without correction, Ĥeff,0 (6).
Vertical links correspond to real hopping amplitudes (along ey direc-
tion), while the horizontal links to the right of lattice sites labeled
A, B, C, and D correspond to complex hopping amplitudes with
phases 3π

4 , π

4 , − π

4 , and − 3π

4 , respectively (when hopping from left
to right). (b) Effective Hamiltonian with correction, Ĥeff,1 (7). Red
lines represent positive next-nearest-neighbor hopping amplitudes
(connecting uppercase letters), while the blue lines represent negative
next-nearest-neighbor hopping amplitudes (connecting lowercase
letters). Nearest-neighbor hopping amplitudes are the same as in (a).

Jx = √
2ω/κ = 2.44, and the correction term is therefore pro-

portional to J 2
x /ω = 5.95/ω, so it cannot be safely neglected

unless the driving frequency is very high.

B. Band structure

Momentum-space representations of the effective Hamil-
tonians Ĥeff,0 and Ĥeff,1, denoted by Ĥeff,0(k) and Ĥeff,1(k),
respectively, are derived in Appendix B. Band structures for
the effective Hamiltonian Ĥeff,0 without the J 2

x /ω correction,
Eq. (B1), as well as for the effective Hamiltonian Ĥeff,1

including the correction term, Eq. (B2), are shown in Fig. 2
for the two values of driving frequencies ω = 20 and ω = 10.

The Hamiltonian Ĥeff,0 is the Harper-Hofstadter Hamilto-
nian for the flux α = 1/4. It has four energy bands, where
the middle two bands touch at E = 0 and can therefore be
regarded as a single band; see Fig. 2(a). The topological
content of these bands is characterized by the topological
index called the Chern number. The Chern number is the
integral of the Berry curvature [42] over the first Brillouin
zone divided by 2π ,

cn = 1

2π

∫
FBZ

�n(k) · dS, (8)

where n denotes the band number and the Berry curvature
is �n(k) = i∇k × 〈un(k)|∇k|un(k)〉, expressed in terms of
eigenstates of the effective Hamiltonian |un(k)〉. The Chern
numbers of the three well-separated bands are c1 = 1, c2 =
−2, and c3 = 1.

Because the correction from Eq. (7) includes next-nearest-
neighbor hopping terms, the elementary cell in real space
is doubled [see Fig. 1(b)] and, as a consequence, the first
Brillouin zone for the Hamiltonian Ĥeff,1 is reduced by a
factor of 2 compared to Ĥeff,0. There are now eight lattice
sites in the unit cell and eight energy bands, but the number
of gaps depends on the driving frequency. The new bands
touch in pairs, in such a way that there are always maximally
three well-separated bands. When the driving frequency is
high enough, the correction is small and the gaps between
the three bands remain open; see Fig. 2(b). The original band
structure of Ĥeff,0 is recovered in the limit ω → ∞. The
Berry curvature and the Chern number can be calculated using
the efficient method presented in Ref. [43]. Our calculations
confirm that the Chern numbers of Ĥeff,1 are equal to those
of Ĥeff,0 (c1 = 1, c2 = −2, and c3 = 1), as long as the gaps
between the energy bands are open. The gaps close when the
driving frequency is too low, see Fig. 2(c), and the Chern
numbers of the subbands can no longer be properly defined.

C. Dynamics of incoherent bosons

We need to take into account a contribution of weak, repul-
sive interactions. Full numerical simulations of an interacting
many-body problem are computationally demanding, so we
need a reasonable, numerically tractable approximation. To
this end we will use the classical field method [44], which

π/2 π 3π/2 2π

E
/
J

ky

c1 = 1

c2 = −2

c3 = 1

π/4 π/2 3π/4 π

E
/
J

kyω = 20
π/4 π/2 3π/4 π

E
/
J

kyω = 10

-1

-2

-3
0

(a)
0

(b)

0

1

2

3

-1
-2
-3
-4

0
1
2
3
4

0
(c)

-1
-2
-3
-4
-5

0
1
2
3
4
5

FIG. 2. Energy bands of the effective Hamiltonians. (a) Ĥeff,0(k) Eq. (B1), which is without the J 2
x /ω correction term. (b) Ĥeff,1(k)

Eq. (B2), which includes the correction term. Driving frequency ω = 20; gaps are open. (c) Same as (b), but with ω = 10. Gaps are closed.
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belongs to a broader class of truncated Wigner approaches
[45]. This method is similar to the approach used to treat
incoherent light in instantaneous media [46,47], known in
optics as the modal theory.

The underlying idea of the method is to represent the
initial state as an incoherent mixture of coherent states |ψ〉,
âl,m|ψ〉 = ψl,m|ψ〉 [44]. This is explained in more detail in
Appendix C. In our study, we sample initial configurations of
these coherent states with

|ψ (t = 0)〉 =
Nm∑
k=1

eiφk |k〉, (9)

where φk ∈ [0, 2π ) are random phases and the states |k〉
correspond closely to the lowest-band eigenstates of Ĥeff.
Each of Nsamples initial states is time evolved and physical
variables can be extracted by averaging over an ensemble of
different initial conditions.

The time evolution of each of these coherent states is
governed by

i
dψl,m(t )

dt
=

∑
ij

Hlm,ij (t )ψi,j (t ) − F m ψl,m(t )

+U |ψl,m(t )|2ψl,m(t ), (10)

where Hlm,ij (t ) = 〈l, m|Ĥ (t )|i, j 〉 are matrix elements of
Ĥ (t ) from Eq. (3), F is the external force, and interactions
U contribute with the last, nonlinear term. Formally, Eq. (10)
takes the form of the Gross-Pitaevskii equation [48–50]. The
performances and limitations of the method are discussed and
reviewed in Ref. [51].

For comparison, we also consider the related time evolu-
tion governed by the effective Hamiltonian

i
dψl,m(t )

dt
=

∑
ij

heff
lm,ijψi,j (t ) − F m ψl,m(t )

+U |ψl,m(t )|2ψl,m(t ), (11)

where heff
lm,ij = 〈l, m|ĥeff|i, j 〉, with ĥeff being either Ĥeff,0

from Eq. (6), or Ĥeff,1 from Eq. (7). Equation (11) should
be considered only as a tentative description of the sys-
tem: the mapping between Ĥ (t ) and Ĥeff is strictly valid only
in the noninteracting regime and the interaction term may
introduce complex, nonlocal, higher-order corrections [27].
However, we expect their contribution to be small in the limit
U → 0, and for time scales which are not too long [52–55].

In the following we use Nm = 300 modes and accom-
modate Np = 300 particles per mode, so in total in the
simulations we have N = NmNp = 90 000 bosons. Typical
densities in real space are up to 100 particles per site and
we choose the values of U in the range U ∈ [0, 0.05]. Other
parameters: J ′

x = Jy = 1, κ/ω = 0.58, ω = 10, 20, and F =
0.25J/a. The correction terms are non-negligible in this
frequency range. In practice, we first numerically diagonalize
the Hamiltonian (C2) from Appendix C and set our parameters
in such a way that the lowest Nm modes have high overlap
with the lowest band of the effective model. In the next step,
we sample initial configurations (9). For each of Nsamples =
1000 sets of initial conditions we then time evolve Eq. (10)
and extract quantities of interest by averaging over resulting

TABLE I. Four different cases: the same effective Hamiltonian
is always used for the initial state and band definitions, either with
or without the correction. The evolution is governed either by the
time-dependent Hamiltonian or by the same effective Hamiltonian
as the one that was used for the initial state and calculation of band
populations.

Case Initial state Band populations Evolution

1 Ĥeff,1 Ĥeff,1 Ĥeff,1

2 Ĥeff,1 Ĥeff,1 Ĥ (t )

3 Ĥeff,0 Ĥeff,0 Ĥeff,0

4 Ĥeff,0 Ĥeff,0 Ĥ (t )

trajectories. This value of Nsamples is chosen to be high enough,
so that the fluctuations are weak. We present and discuss
results of our numerical simulations in the following sections.

III. NONINTERACTING CASE

We start by addressing the dynamics of noninteracting
bosons. In this case we set U = 0 in Eq. (10) and numerically
solve the single-particle Schrödinger equation without further
approximations. Our aim is to numerically validate and com-
pare the two approximations, Eqs. (6) and (7), for the effective
Hamiltonian. To this purpose, we juxtapose results of the
two approximative schemes with the numerically exact results
obtained by considering the full time evolution governed
by Ĥ (t ). For clarity, the four different time evolutions that
we consider in this section are summarized in Table I. We
calculate the center-of-mass position x(t ) and plot the results
in Fig. 3. In this way we also find the regime of microscopic

49

50

51

52

53

54

55

0 10 20 30 40 50

ω = 20

(c)

49

50

51

52

53

54

55

ω = 20

(a)

0 10 20 30 40 50

ω = 10

(d)

ω = 10

(b)

x
/
a

t (ms)

Ĥ(t)
Ĥeff,1

γeff,1(t)

x
/
a

Ĥ(t)
Ĥeff,0

γeff,0(t)

t (ms)

Ĥ(t)
Ĥeff,1

γeff,1(t)

Ĥ(t)
Ĥeff,0

γeff,0(t)

FIG. 3. Anomalous drift x(t ). Dashed purple lines: numerical
simulations using the time-dependent Hamiltonian Ĥ (t ) (cases 2 and
4 from Table I). Solid green lines: effective Hamiltonians Ĥeff,1 (c)
and (d) and Ĥeff,0 (a) and (b) (cases 1 and 3). Dotted black lines:
theoretical prediction (14) from γeff,1(t ) or γeff,0(t ). (a) Initial states
and band populations obtained using the effective Hamiltonian Ĥeff,0

without the correction (cases 3 and 4). Driving frequency ω = 20.
(b) ω = 10. (c) Hamiltonian Ĥeff,1 with the J 2

x /ω correction (cases 1
and 2). Driving frequency ω = 20. (d) ω = 10.
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parameters where the Chern-number measurement can be
optimally performed.

First, we consider the basic Harper-Hofstadter Hamiltonian
(6) and select the occupied modes |k〉 of the initial state (C1)
as eigenstates of the model from Eq. (9) for ĥeff = Ĥeff,0. As
explained in the previous section, at the initial moment t0 =
0, the confinement is turned off and the force F = −F ey is
turned on. As a consequence of the applied external force and
the nonzero Chern number of the lowest band of the model
(6), the particles exhibit an anomalous velocity in the direction
perpendicular to the force [56]. In the ideal case, when the
lowest band is fully populated, the theoretical prediction for
the center-of-mass position in the ex direction is [26]

x(t ) = x(t0) + c1
2Fa2

πh̄
t, (12)

where c1 = 1 is the Chern number (8) of the lowest band.
However, even in the ideal case, due to the sudden quench
of the linear potential, a fraction of particles is transferred to
the higher bands. To take this effect into account, the authors
of Ref. [26] introduced a filling factor γ (t )

γ (t ) = η1(t ) − η2(t ) + η3(t ), (13)

where ηi (t ) are populations of different bands of Hamiltionian
(6) from Eq. (C4) in Appendix C and the plus and minus signs
in Eq. (13) are defined according to the Chern numbers c1 =
1, c2 = −2, and c3 = 1. The final theoretical prediction is
then [26]

x(t ) = x(t0) + c1
2Fa2

πh̄

∫ t

0
γ (t ′)dt ′. (14)

In Fig. 3(a) we consider the anomalous drift for a high
value of the driving frequency ω = 20, where we expect
the expansion in 1/ω to be reliable. We find an excellent
agreement between the prediction (14) (dotted black line)
and numerical calculation based on Ĥeff,0 (solid green line).
However, some deviations between the full numerical results
(dashed purple line) and the results of the approximation
scheme (solid green line) are clearly visible. These deviations
are even more pronounced for ω = 10, Fig. 3(b).

Now we turn to the effective model (7). In this case we
select the modes of the initial state as eigenstates of Eq. (9)
for ĥeff = Ĥeff,1. Moreover, we also consider band populations
(C4) of the same model. In the case when ω = 20, Fig. 3(c),
the anomalous drift obtained using the effective Hamiltonian
(7) (solid green line) closely follows the theoretical prediction
(14). Moreover, from the same figure we can see that the
effective Hamiltonian Ĥeff,1 reproduces the behavior of the
time-dependent Hamiltonian very well. All three curves al-
most overlap for intermediate times (5–40 ms); see Fig. 3(c).
We attribute the long-time (>45 ms) deviations to the finite-
size effects introduced by the next-nearest-neighbor hopping
terms, which cause the atomic cloud to reach the edge of
the lattice faster. This effect is explained in more detail in
Sec. IV B.

For a lower driving frequency ω = 10, the effective and the
time-dependent Hamiltonians do not agree so well anymore;
see Fig. 3(d). The finite-size effects can be observed even
earlier in this case (around 25 ms). This happens because the
next-nearest-hopping terms are inversely proportional to the

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

(a)

0 10 20 30 40 50

(b)

γ

t (ms)

γ(t)
γeff,0(t)

γeff,0(t) − const

t (ms)

γ(t)
γeff,1(t)

γeff,1(t) − const

FIG. 4. Time evolution of the filling factor γ (t ) for driving
frequency ω = 20. Solid purple lines: evolution governed by the
time-dependent Hamiltonian Ĥ (t ) (cases 2 and 4 from Table I).
Dashed green lines: evolution governed by the effective Hamiltonian
Ĥeff,1 or Ĥeff,0 (cases 1 and 3). Dotted black lines: green lines shifted
in order to compare them with purple lines. Shift is chosen so
that the two lines approximately overlap. (a) Initial states and band
populations obtained using the effective Hamiltonian Ĥeff,0, which is
without the J 2

x /ω correction term (cases 3 and 4). (b) Hamiltonian
Ĥeff,1 which is with the correction term (cases 1 and 2).

driving frequency. It is interesting to note that the prediction
(14) is close to numerical data for short times even in this case
when the gaps of the effective model are closed, see Fig. 2(c),
and the Chern number of the lowest band is not well defined.
In fact, it is surprising that the anomalous drift even exists in
this case, as all subbands are now merged into a single band.
We attribute this effect to our choice of the initial state. When
the gaps are closed, it is hard to set the parameters in such
a way that the lowest band is completely filled. The top of
this band usually remains empty and the particles thus do not
“see” that the gap is closed.

Time evolution of the filling factor γ (t ) is plotted in Fig. 4
for four different cases from Table I—evolution using the
effective Hamiltonian without correction Ĥeff,0 [γeff,0(t ), case
3, dashed green line in Fig. 4(a)], the effective Hamiltonian
with correction Ĥeff,1 [γeff,1(t ), case 1, dashed green line in
Fig. 4(b)], or the time-dependent Hamiltonian Ĥ (t ) [γ (t ),
cases 2 and 4, solid purple lines]. At the initial moment γ (t0 =
0) < 1, because the initial state was multiplied by the operator
e−iK̂ (0). This introduces a shift between γ (t ) and γeff,1(t ).
Apart from the shift, these two curves behave similarly, unlike
the γeff,0(t ) curve that exhibits completely different behavior.
Because of this, we use only γeff,1(t ) to estimate the value of
the prediction (14).

We find that the values of γeff,1(t ) for ω = 20 are high:
�0.95; see Fig. 4. For this reason, up to 50 ms the center-of-
mass position x(t ) exhibits roughly linear behavior with some
additional oscillations. Interestingly, the anomalous drift x(t )
exhibits quadratic behavior on short time scales in all cases
from Fig. 3. In Appendix D, we explain this feature using the
time-dependent perturbation theory and Fermi’s golden rule.

IV. INTERACTING CASE

We now investigate the effects of weak repulsive interac-
tions. We work in the high-frequency regime and set ω = 20.
As shown in Sec. II B, for U = 0 the effective Hamiltonian
with correction, Ĥeff,1, is in this case equivalent to the Harper-
Hofstadter Hamiltonian with flux α = 1/4. Moreover, the
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γeff,1(t ). (b) Corresponding γeff,1(t ) = η1(t ) − η2(t ) + η3(t ), obtained from simulations using the effective Hamiltonian Ĥeff,1.

same approximative form of the full effective model accu-
rately reproduces the behavior of the time-dependent Hamil-
tonian up to 50 ms and thus provides a good starting point for
the study of weakly interacting particles. We first consider the
anomalous drift of the center of mass of the atomic cloud and
then we inspect the expansion dynamics more closely in terms
of atomic density distributions in real and momentum space.

A. Anomalous drift and dynamics of band populations

To simulate the dynamics of many incoherent bosons, we
use the classical field method presented in Sec. II C and
propagate Eq. (10) in time. We assume that at t0 = 0 atoms are
uniformly distributed over the lowest band of Ĥeff,1. For this
reason, the initial state is the same as the one that we use in the
noninteracting regime. In this way, the dynamics is initiated
by an effective triple quench: at t0 = 0 the confining potential
is turned off, atoms are exposed to the force F = −F ey , and
also the interactions between particles are introduced. The
total number of particles is set to N = 90 000, which amounts
to approximately 100 particles per lattice site in the central
region of the atomic cloud. We consider only weak repulsion
U � 0.05.

The anomalous drift x(t ) obtained using the full time-
dependent Hamiltonian is shown in Fig. 5(a) for several
different values of the interaction strength U . In comparison
to the noninteracting regime, we find that the weak repulsive
interactions inhibit the response of the center of mass to the
external force. In particular, at t = 50 ms the drift is reduced
by about 15% for U = 0.005 and it is further lowered by an
increase in U . Finally, at U = 0.05, the anomalous drift is
barely discernible. Interestingly, for weak U ∈ (0.001, 0.01)
we find that the drift x(t ) in the range of t ∈ (10, 50) ms
looks “more linear” as a function of time in comparison to
the noninteracting result.

We now analyze the anomalous drift in terms of the filling
factor γ (t ) and compare the results of Eq. (10) with the
description based on Eq. (11). By solving Eq. (11) we obtain
the filling factor γeff,1(t ) following Eq. (C4) and present

our results in Fig. 5(b). Whenever the results of Eq. (10)
reasonably agree with the results obtained from Eq. (11), we
are close to a steady-state regime with only small fluctuations
in the total energy, as Eq. (11) preserves the total energy of
the system. In this regime, during the expansion dynamics
the interaction energy is converted into the kinetic energy and
atoms are transferred to higher bands of the effective model.
Consequently, the filling factor γeff,1(t ) is reduced. Typically,
we find three different stages in the decrease of γeff,1(t ).

In an early stage, t � t1 = 5 ms, a fast redistribution of
particles over the bands of the effective model sets in due to
the sudden quench of U . The factor γeff,1(t ) decays quadrat-
ically as a function of time down to γeff,1(t1) ≈ 0.75 for
U = 0.01, and γeff,1(t1) ≈ 0.25 for U = 0.05. In this process
the interaction energy of the system is quickly lowered as
described in Appendix E. At later times t > 5 ms, we observe
a linear decay of the filling factor γeff,1(t ) as a function of
time, that finally turns into an exponential decay at even later
times (t > 10 ms). Similar regimes are observed in other dy-
namical systems. For example, a decay rate of an initial state
suddenly coupled to a bath of additional degrees of freedom
exhibits these three stages [57]. The initial quadratic decay is
often denoted as “the Zeno regime.” For longer propagation
times, Fermi’s golden rule predicts the linear decay. At even
longer time scales, when the repopulation of the initial state
is taken into account, the time-dependent perturbation theory
yields the exponential regime, known under the name of the
Wigner-Weisskopf theory [57].

We now investigate this last regime in more detail. For
the population of the lowest band η1(t ), an exponential decay
function f (t ) = a + b e−ct provides high quality fits for t ∈
(10, 50) ms; see Fig. 6(a) for an example. Similarly, the pop-
ulations of two higher bands can also be fitted to exponential
functions. The obtained exponential decay coefficients c for
the lowest band population are plotted as a function of the
interaction strength U in Fig. 6(b). The resulting dependence
is approximately quadratic: c(U ) = α0 + α1U + α2U

2. For
small values of U , the exponents c(U ) obtained for the
dynamics governed by Ĥ (t ) and Ĥeff, 1 agree very well and

053625-6



DYNAMICS OF WEAKLY INTERACTING BOSONS IN … PHYSICAL REVIEW A 98, 053625 (2018)

0

0.2

0.4

0.6

0.8

1

0 10 20 30 40 50

(a)
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exhibit linear behavior. At stronger interaction strengths U �
0.03, the approximation of Eq. (11) becomes less accurate as
it omits the quadratic contribution in c(U ) found in the full
time evolution. In addition, the values of the exponents c are
affected by the force strength F and driving frequency ω.

As we now understand some basic features of γeff,1(t ), we
make an explicit comparison between the numerical results
for the anomalous drift and the expectation (14). The dashed
lines in Fig. 5(a) correspond to the theoretical prediction
(14) calculated from γeff,1(t ). For the intermediate interaction
strengths U � 0.01, we find a very good agreement between
the two. From this we conclude that the interaction-induced
transitions of atoms to higher bands are the main cause of the
reduced anomalous drift x(t ) as a function of U . When the
interactions become strong enough (U ∼ 0.02), the numerical
results start to deviate from the theoretical prediction (14) with
γeff,1(t ). In this regime, Eq. (11) does not provide a reliable
description of the dynamics, as higher-order corrections need
to be taken into account.

B. Real and momentum-space dynamics

So far we have considered the averaged response of the
whole atomic cloud. We now inspect the expansion dynamics
in a spatially resolved manner. The real-space probability
densities at the initial moment and after 50 ms (75 driving
periods) are shown in Figs. 7 and 8, and the corresponding
momentum-space probability densities in Appendix F.

At the initial moment, the atomic cloud is localized in
the center of the lattice. By setting r0 = 20 in the confining
potential of Eq. (C2) and populating the lowest-lying states,
we fix the cloud radius to r = 20, Fig. 7(a). The cloud density
is of the order of 100 atoms per lattice site and a weak density
modulation is visible along x direction. After the confining
potential is turned off, and the external force in the −ey

direction is turned on, the cloud starts to expand and move
in the +ex direction. As shown in the previous subsection,
the band populations and therefore the anomalous drift are
significantly altered by the interaction strength, and this is also
the case with the expansion dynamics; see Figs. 7 and 8.

In the noninteracting case, Fig. 7(b), the atomic cloud
nearly separates into two parts moving in opposite directions

y
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FIG. 7. Real-space density distribution, noninteracting case U =
0. (a) Initial state. (b) After 50 ms (75 driving periods), evolution
using the time-dependent Hamiltonian Ĥ (t ). (c) Evolution using
effective Hamiltonian without correction Ĥeff,0. (d) Evolution using
effective Hamiltonian with correction Ĥeff,1.

along x axes (while the center of mass still moves in the +ex

direction). By comparing Fig. 7(c) and Fig. 7(d), we conclude
that this effect stems from the next-nearest-neighbor hopping
along x present in the effective Hamiltonian (7), as it does
not happen in the effective model without the correction term
(6). This type of separation was already observed in Ref. [22],
where the next-nearest-neighbor hopping terms were also
present. When the interactions between particles are included,
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FIG. 8. Real-space density distribution after 50 ms (75 driving
periods), interacting case. U is given in units where J = 1. (a) Evo-
lution using the time-dependent Hamiltonian Ĥ (t ), U = 0.01. (b)
Same with U = 0.05. (c) Evolution using the effective Hamiltonian
Ĥeff,1, U = 0.01. (d) Same with U = 0.05.
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this separation is not so prominent [Fig. 8(a), U = 0.01],
and it almost completely disappears when the interactions are
strong enough [Fig. 8(b), U = 0.05]. This is also the case
when the evolution is governed by the effective Hamiltonian
Ĥeff,1; see Figs. 8(c) and 8(d). Atomic cloud widths dx =√

〈x2〉 − 〈x〉2 during the expansion are plotted in Fig. 9. We
observe a slow expansion of the cloud in y direction, Fig. 9(b),
and much faster expansion along x direction, Fig. 9(a), which
comes about as a consequence of the cloud separation. On top
of this, we observe that the interactions enhance expansion
along y. Surprisingly, the opposite is true for the dynamics
along x. This counterintuitive effect is often labeled as self-
trapping and its basic realization is known for the double-
well potential [58,59]. In brief, strong repulsive interactions
can preserve the density imbalance between the two wells,
as the system cannot release an excess of the interaction
energy. In our case, the situation is slightly more involved
as the cloud splitting is inherent (induced by the corrections
of the ideal effective Hamiltonian). Apart from this, due to
the driving the total energy is not conserved. However, our
numerical results indicate that the interaction energy is slowly
released in the second expansion stage, Fig. 14. Effectively,
in this way the interactions cancel out the contribution of the
next-nearest-neighbor hopping and favor the measurement of
the properties of the model (6). In Fig. 10(a) we show that
deviations between different approximations based on Ĥ (t ),

Ĥeff,1, and Ĥeff,0 in the anomalous drift x(t ) nearly vanish at
U = 0.01.

Another desirable effect might be that the interactions
make the momentum-space probability density more ho-
mogeneous, see Appendix F, so that the real-space prob-
ability density becomes more localized. We can quantify
momentum-space homogeneity using the inverse participation
ratio R(t ) = 1∑

i P 2
i (t )

, where Pi (t ) = |ψi (t )|2 is the probability

that the state ψi is occupied at time t . Minimal value of
the inverse participation ratio (IPR) is 1 and it corresponds
to a completely localized state, while the maximal value is
equal to the total number of states (in our case 10 000) and
corresponds to the completely delocalized state, where the
particles have the same probability of being at any quasi-
momentum k. As stated before, the first Brillouin zone of
the lowest band has to be as homogeneously populated as
possible in order to properly measure the lowest band Chern
number. From Fig. 10(b), we see that IPR increases in time
when the interaction coefficient U is large enough, so we
can conclude that the interactions are actually beneficial for
measuring the Chern number, as they can “smooth out” the
momentum-space probability density. In Fig. 10(c) we give
estimates for the Chern number that can be extracted from
our numerical data for different values of U . We find the best
estimate c1 ∼ 0.99 for the intermediate interaction strength
U ∼ 0.01.

C. Staggered detuning

Here we briefly consider the effects of staggered detuning
that was introduced in the experimental study [26] during the
loading and band mapping sequences. This detuning can be
described by an additional term

δ

2

∑
l,m

[(−1)l + (−1)m]n̂l,m (15)

in the Hamiltonians Ĥ (t ) and Ĥeff,1. We will ignore the
higher-order [at most O( 1

ω2 )] corrections that this term intro-
duces to the effective Hamiltonian. Staggered detuning does
not break the symmetry of the effective Hamiltonian Ĥeff,1,
but if δ is large enough, it can cause a topological phase
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Ĥeff,1

R
(t

)

t/T

U = 0.000
U = 0.005

U = 0.010
U = 0.030
U = 0.050

c 1
(t

)

t (ms)

U = 0.000
U = 0.005
U = 0.010
U = 0.015

FIG. 10. (a) Comparison of anomalous drifts obtained from evolution using the time-dependent Hamiltonian Ĥ (t ) (solid purple line),
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enough, IPR approaches the maximal possible value (10 000 in this case), which is equal to the total number of states and corresponds to the
completely delocalized state. U is given in units where J = 1. (c) Chern number of the lowest band obtained for different interaction strengths
as the ratio of the theoretical prediction for the anomalous drift and numerical results: c1(t ) = ( 2Fa2

πh̄

∫ t
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transition and make all bands topologically trivial. By numer-
ically calculating the Berry curvature and Chern numbers c′

i ,
we find that this transition occurs at δc ≈ 1.38 J ; see Fig. 11.
This value is lower than the one for the ordinary Harper-
Hofstadter Hamiltonian for α = 1/4, which is δc = 2 J [26],
due to the different hopping amplitudes J ′

x and J ′
y , and due to

the additional J 2
x /ω correction that we consider.

We now investigate how this topological transition can be
probed through the dynamical protocol used in the exper-
iment. We again numerically calculate the anomalous drift
and the evolution of the filling factor, but now with staggered
detuning (15) included in the Hamiltonian Ĥinitial (C2) used
to obtain the initial state, in the equations of motion (10) and
(11), and in the definitions of the band populations ηi (t ) (C4).
Using these results, we repeat the procedure for the extraction
of the lowest band Chern number from numerical data that
was carried out in the previous section. The Chern number
obtained by comparing the anomalous drift to the prediction
calculated from the filling factor is then averaged over the
time interval t ∈ (20, 40) ms. This interval was chosen in
order to avoid the initial quadratic regime and the finite-
size effects at later times. The resulting lowest band Chern
numbers for several different values of detuning δ in both the
noninteracting case and the case of intermediate interaction
strength U = 0.01 are presented in Fig. 11.

We can see that the calculated value of the Chern number
decreases from c1 = 1 to c1 = 0 with increasing detuning
δ. The obtained value of the Chern number is lower than 1
even before the phase transition occurs. This is due to our
choice of the initial state, which is not perfectly homogeneous
in momentum space. Close to the phase transition, both the
energy bands and the Berry curvature have pronounced peaks
at the same regions of the first Brillouin zone, and these
regions are initially less populated. Because of this, the Berry
curvature at these regions contributes less to the anomalous
drift, which lowers the measured Chern number. This effect is

somewhat reduced by the interactions, as they smooth out the
momentum-space probability density, and might also cancel
out the detuning term. Similar interplay of interactions and
staggering was observed in the fermionic Hofstadter-Hubbard
model [60]. The obtained results are in line with experimental
measurements [26].

V. CONCLUSIONS

Motivated by the recent experimental results reporting the
Chern numbers of topological bands in cold-atom setups,
we studied numerically bosonic transport in a driven optical
lattice. The considered driving scheme and the range of micro-
scopic parameters were chosen to be close to those in a recent
experimental study [26]. The driving frequency was set to be
high enough in order to avoid strong energy absorption for the
relevant time scales. Additionally, the system was restricted to
a two-dimensional lattice, even though the actual experimen-
tal setup had continuous transverse degrees of freedom. This
restriction stabilizes the system [29,31,41] and leads to lower
heating rates than those in the experiment. It corresponds to
the case of strongly confined third dimension.

We investigated bosonic dynamics for the full time-
dependent Hamiltonian, the effective Floquet Hamiltonian,
and included the effects of weak repulsive interactions be-
tween atoms using the mean-field approximation. In the non-
interacting case, we found that the effective Hamiltonian and
its band structure depend on the frequency of the drive ω

through an additional J 2
x /ω correction term. The initial state

was set as a mixture of incoherent bosons homogeneously
populating the lowest band, but a possible direction of future
research could be to simulate the full loading sequence of an
initial Bose-Einstein condensate and to try to obtain the inco-
herent state through driving, as it was done in the experiment.

The main focus of this work is on the effects of weak in-
teractions. For a weak atomic repulsion, atomic transitions to
higher effective bands obtained in our simulations mainly oc-
cur due to a release of the initial interaction energy during the
atomic-cloud expansion. Although the effect is undesirable,
it can be properly taken into account in the extraction of the
Chern number. At larger interaction strengths, the transitions
are more pronounced as the system absorbs energy from the
drive. In this regime the good agreement between the full and
effective description is lost and the measurement should be-
come more complicated. In addition to causing redistribution
of atoms over bands, our results show that weak interactions
can also be beneficial in measuring the Chern number. Their
desirable effect comes about due to smoothening the atomic
distribution over the topological band and due to canceling
out the contribution of some less relevant terms to the bosonic
dynamics.
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APPENDIX A: EFFECTIVE MODEL

After a unitary transformation into the rotating frame ψ̃ =
e−iŴ tψ , where ψ̃ and ψ are the old and the new wave
functions, and Ŵ is the staggered potential, the new time-
dependent Hamiltonian that describes the experimental setup
is given by [26]

Ĥ (t ) = Jy

∑
l,m

(â†
l,m+1âl,m + â

†
l,m−1âl,m) + V̂ (+1)eiωt + V̂ (−1)e−iωt + U

2

∑
l,m

n̂l,m(n̂l,m − 1), (A1)

where

V̂ (+1) = κ/2
∑
l,m

n̂l,mg(l, m) − Jx

∑
lodd,m

(â†
l+1,mâl,m + â

†
l−1,mâl,m), (A2)

V̂ (−1) = κ/2
∑
l,m

n̂l,mg∗(l, m) − Jx

∑
leven,m

(â†
l+1,mâl,m + â

†
l−1,mâl,m), (A3)

g(l, m) = cos(lπ/2 − π/4)ei(φ0−mπ/2) + cos(lπ/2 + π/4)ei(mπ/2−φ0−π/2). (A4)

The kick operator is given by

K̂ (t ) = 1

iω

(
V̂ (+1)eiωt − V̂ (−1)e−iωt

) + O

(
1

ω2

)
(A5)

and the effective Hamiltonian by

Ĥeff = Ĥ0︸︷︷︸
Ĥ

(0)
eff

+ 1

ω
[V̂ (+1), V̂ (−1)]︸ ︷︷ ︸

Ĥ
(1)
eff

+ 1

2ω2
([[V̂ (+1), Ĥ0], V̂ (−1)] + [[V̂ (−1), Ĥ0], V̂ (+1)])︸ ︷︷ ︸

Ĥ
(2)
eff

+O

(
1

ω3

)
. (A6)

If we assume that the driving frequency is high and interactions are weak, the interaction term and almost all O( 1
ω2 ) terms

can be neglected. After substituting Eqs. (A1), (A2), and (A3) into Eq. (A6) we obtain

Ĥ
(0)
eff = − Jy

∑
l,m

(â†
l,m+1âl,m + â

†
l,m−1âl,m), (A7)

Ĥ
(1)
eff = 1

ω

[
κ

2

∑
l,m

â
†
l,mâl,mg(l, m) − Jx

∑
lodd,m

(â†
l+1,mâl,m + â

†
l−1,mâl,m),

(A8)
κ

2

∑
l,m

â
†
l,mâl,mg∗(l, m) − Jx

∑
leven,m

(â†
l+1,mâl,m + â

†
l−1,mâl,m)

]
= Ĥ1 + Ĥ2 + Ĥ3 + Ĥ4.

We will now separately calculate each term:

Ĥ1 = − Jxκ

2ω

∑
lodd,m,l′,m′

g∗(l′,m′)[â†
l+1,mâl,m + â

†
l−1,mâl,m, â

†
l′,m′ âl′,m′ ]

= − Jxκ

2ω

∑
lodd,m

[(g∗(l, m) − g∗(l + 1,m))â†
l+1,mâl,m + (g∗(l, m) − g∗(l − 1,m))â†

l−1,mâl,m], (A9)

Ĥ2 = − Jxκ

2ω

∑
leven,m,l′,m′

g(l′,m′)[â†
l′,m′ âl′,m′ , â

†
l+1,mâl,m + â

†
l−1,mâl,m]

= Jxκ

2ω

∑
leven,m

[(g(l, m) − g(l + 1,m))â†
l+1,mâl,m + (g(l, m) − g(l − 1,m))â†

l−1,mâl,m], (A10)

Ĥ3 = J 2
x

ω

∑
lodd,m,l′even,m

′
[â†

l+1,mâl,m + â
†
l−1,mâl,m, â

†
l′+1,m′ âl′,m′ + â

†
l′−1,m′ âl′,m′ ]

= J 2
x

ω

∑
lodd,m

(2â
†
l+1,mâl+1,m + â

†
l+3,mâl+1,m + â

†
l−1,mâl+1,m − 2â

†
l,mâl,m − â

†
l+2,mâl,m − â

†
l−2,mâl,m)

= J 2
x

ω

∑
l,m

(−1)l (2â
†
l,mâl,m + â

†
l+2,mâl,m + â

†
l−2,mâl,m), (A11)
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Ĥ4 = κ2

4ω

∑
l,m,l′,m′

g(l, m)g∗(l′,m′)[â†
l,mâl,m, â

†
l′,m′ âl′,m′ ] = 0. (A12)

Using trigonometric identities and

g(l, m) − g(l ± 1,m) = ±
√

2( sin[(2l ± 1 − 1)π/4]ei(π/4−mπ/2) + sin[(2l ± 1 + 1)π/4]ei(mπ/2−3π/4)), (A13)

we can rewrite the sum of terms (A9) and (A10) in a more convenient form:

Ĥ1 + Ĥ2 = Jxκ√
2ω

∑
l,m

(ei[(m−l)π/2−π/4]â
†
l,mâl−1,m + e−i[(m−l−1)π/2−π/4]â

†
l,mâl+1,m). (A14)

The only O( 1
ω2 ) (Ĥ (2)

eff ) term that cannot be neglected in the parameter range that we use is [26]

Jy

2

κ2

ω2

∑
l,m

(â†
l,m+1âl,m + â

†
l,m−1âl,m). (A15)

Finally, the effective Hamiltonian becomes

Ĥeff,1 = Jxκ√
2ω

∑
l,m

(ei[(m−l−1)π/2−π/4]â
†
l+1,mâl,m + e−i[(m−l)π/2−π/4]â

†
l−1,mâl,m) − Jy

(
1 − 1

2

κ2

ω2

)∑
l,m

(â†
l,m+1âl,m + â

†
l,m−1âl,m)

(A16)

+ J 2
x

ω

∑
l,m

(−1)l (2â
†
l,mâl,m + â

†
l+2,mâl,m + â

†
l−2,mâl,m), (A17)

with the renormalized nearest-neighbor hopping amplitudes J ′
x = Jxκ√

2ω
= Jy and J ′

y = Jy (1 − 1
2

κ2

ω2 ), and a next-nearest-neighbor

along ex hopping term proportional to J 2
x

ω
in (A17).

APPENDIX B: EFFECTIVE HAMILTONIAN IN MOMENTUM SPACE

If we choose the unit cell as in Fig. 1(a) [lattice sites A = (1, 0), B = (2, 0), C = (3, 0), and D = (4, 0)], the momentum-space
representation of the effective Hamiltonian without correction Ĥeff,0 (6) is given by a 4 × 4 matrix

Ĥeff,0(k) =

⎛
⎜⎜⎜⎜⎜⎝

0 J ′
xe

−i 3π
4 − J ′

ye
−ik·R2 0 J ′

xe
−i 3π

4 −ik·R1 − J ′
ye

ik·(R2−R1 )

J ′
xe

i 3π
4 − J ′

ye
ik·R2 0 J ′

xe
−i π

4 − J ′
ye

−ik·R2 0

0 J ′
xe

i π
4 − J ′

ye
ik·R2 0 J ′

xe
i π

4 − J ′
ye

−ik·R2

J ′
xe

i 3π
4 +ik·R1 − J ′

ye
ik·(R1−R2 ) 0 J ′

xe
−i π

4 − J ′
ye

ik·R2 0

⎞
⎟⎟⎟⎟⎟⎠, (B1)

where R1 and R2 are the lattice vectors R1 = (4, 0) and R2 = (1, 1) and k is in the first Brillouin zone, which is given by the
reciprocal lattice vectors b1 = π

2 (1,−1) and b2 = 2π (0, 1).

When the J 2
x

ω
correction is included in the effective Hamiltonian, Ĥeff,1 (7), the unit cell is doubled, see Fig. 1(b), and the first

Brillouin zone is therefore halved. If we now choose the lattice sites a = (1, 0), B = (2, 0), c = (3, 0), D = (4, 0), A = (2, 1),
b = (3, 1), C = (4, 1), and d = (5, 1) for the unit cell, the momentum-space representation of the effective Hamiltonian will be
an 8 × 8 matrix

Ĥeff,1(k) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 2J2
x

ω
J ′

xe
−i 3π

4 − J2
x
ω

(1 + eik·R1 ) J ′
xe

−i( 3π
4 −k·R1 ) 0 −J ′

ye
ik·R2 0 −J ′

ye
ik·R1

J ′
xe

i 3π
4

2J2
x

ω
J ′

xe
−i π

4
J2
x
ω

(1 + eik·R1 ) −J ′
y 0 −J ′

ye
ik·R2 0

− J2
x
ω

(1 + e−ik·R1 ) J ′
xe

i π
4 − 2J2

x
ω

J ′
xe

i π
4 0 −J ′

y 0 −J ′
ye

ik·R2

J ′
xe

i( 3π
4 −k·R1 ) J2

x
ω

(1 + e−ik·R1 ) J ′
xe

−i π
4

2J2
x

ω
−J ′

ye
−ik·(R1−R2 ) 0 −J ′

y 0

0 0 0 −J ′
ye

ik·(R1−R2 ) 2J2
x

ω
J ′

xe
−i 3π

4
J2
x
ω

(1 + eik·R1 ) J ′
xe

−i( 3π
4 −k·R1 )

−J ′
ye

−ik·R2 0 −J ′
y 0 J ′

xe
i 3π

4 − 2J2
x

ω
J ′

xe
−i π

4 − J2
x
ω

(1 + eik·R1 )

0 −J ′
ye

−ik·R2 0 −J ′
y

J2
x
ω

(1 + e−ik·R1 ) J ′
xe

i π
4

2J2
x

ω
J ′

xe
i π

4

−J ′
ye

−ik·R1 0 −J ′
ye

−ik·R2 0 J ′
xe

i( 3π
4 −k·R1 ) − J2

x
ω

(1 + e−ik·R1 ) J ′
xe

−i π
4 − 2J2

x
ω

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(B2)
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FIG. 12. Eight energy subbands of Ĥeff,1(k) for the driving frequency ω = 20. Subbands 1 and 2 form the lowest band with Chern number
c1 = 1, subbands 3, 4, 5, and 6 form the middle band with c2 = −2, and subbands 7 and 8 form the highest band with c3 = 1.

with the lattice vectors R1 = (4, 0) and R2 = (2, 2). The
reciprocal lattice vectors are then b1 = π

2 (1,−1) and b2 =
π (0, 1).

The energy bands of Ĥeff,1(k) are shown in Figs. 2 and 12.

APPENDIX C: DESCRIPTION OF INCOHERENT BOSONS

In a typical condensed-matter system constituent particles
are electrons. Due to their fermionic statistics, at low enough
temperatures, and with Fermi energy above the lowest band,
that band of the topological model is uniformly occupied,
and consequently the transverse Hall conductivity can be
expressed in terms of the Chern number (8) [10]. In con-
trast, weakly interacting bosons in equilibrium form a Bose-
Einstein condensate in the band minima and only probe the
local Berry curvature [21].

Yet in the experiment [26] the Chern number was suc-
cessfully measured using bosonic atoms of 87Rb. This was
possible because in the process of ramping up the drive (4),
the initial Bose-Einstein condensate was transferred into an
incoherent bosonic mixture. Conveniently, it turned out that
the bosonic distribution over the states of the lowest band
of the effective Floquet Hamiltonian was nearly uniform.
Motivated by the experimental procedure, we model the initial

bosonic state by a statistical matrix

ρ(t = 0) =
Nm∏
k=1

|k,Np〉〈k,Np|, (C1)

where the states |k〉 = a
†
k|0〉 approximately correspond to the

lowest-band eigenstates of Ĥeff and each of these Nm states is
occupied by Np atoms |k,Np〉 = N (a†

k )Np |0〉.
A procedure for selecting the states |k〉 is described in

Refs. [22,26]. In order to probe the Chern number of the low-
est band, the states |k〉 should correspond closely to the
lowest-band eigenstates of Ĥeff. At the same time, in the
experiment in the initial moment the atomic cloud is spatially
localized. According to Refs. [22,26] the optimal approach is
to consider a steep confining potential and to use the low-lying
eigenstates of

Ĥinitial = ĥeff +
(

r

r0

)ζ

, (C2)

where in our calculations ĥeff is either Ĥeff,0 from Eq. (6)
or Ĥeff,1 from Eq. (7) and the parameters of the confining
potential are set to r0 = 20, ζ = 20.
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FIG. 13. Population in higher bands, comparison of numerical results (solid line) with the Fermi’s golden rule in the first and second
approximation (dashed lines). Band populations are calculated for an initial BEC in an eigenstate of the effective Hamiltonian and then
averaged over (approximately) all states in the first band. (a) Initial state and evolution from the effective Hamiltonian with correction Ĥeff,1,
Eq. (7). (b) Without the correction, Ĥeff,0, Eq. (6).

The dynamics of the initial state (C1) is induced by a
double quench: at t0 = 0 the atomic cloud is released from
the confining potential and exposed to a uniform force of
intensity F along the y direction. During the whole procedure
the driving providing the laser-assisted tunneling, defined in
Eq. (4), is running.

The main observables of interest are the center-of-mass
position along x direction

x(t ) =
〈∑

l,m

l|ψl,m(t )|2
〉

(C3)

and the population of the ith band of the effective model

ηi (t ) =
〈 ∑

|k〉∈ith band

∣∣∣∣∣∑
l,m

αk∗
lmψlm(t )

∣∣∣∣∣
2〉

, (C4)

where the states |k〉 = ∑
l,m αk

lm|l, m〉 correspond to the eigen-
states of the effective model. Here, angle brackets 〈 〉 denote
averaging over Nsamples sets of initial conditions.

In the case of noninteracting particles, these and other
quantities can be numerically accessed by solving the single-
particle time-dependent Schrödinger equation for Nm differ-
ent initial states |k〉. This is equivalent to sampling the initial
state according to Eq. (9).

In the end, we give two technical remarks. First, all our
calculations are done in the rotating frame; see Eq. (A1) in
Appendix A. The staggered potential (2) is removed in this
way. Second, in the case when the evolution is governed by
the time-dependent Hamiltonian (10), the initial state is mul-
tiplied by the operator e−iK̂ (0) in order to properly compare
these results to the ones obtained from the evolution governed
by the effective Hamiltonian (11); see Eq. (5).

APPENDIX D: INITIAL QUADRATIC REGIME

For simplicity, we will consider only the case without
the confining potential and with very weak force F = 0.01.

The initial state is a Bose-Einstein condensate in one of the
eigenstates of the effective Hamiltonian. The results are later
averaged over all first band eigenstates.

Fermi’s golden rule predicts that the probability for transi-
tion from an initial state ψi to a final state ψf , induced by
a perturbation �Ĥ , is proportional to the square of matrix
elements |〈ψi |�Ĥ |ψf 〉|2. In this case, the perturbation is
�Ĥ = F ŷ. If we assume that the probability of a particle be-
ing in the initial state is always Pi (t ) = |ψi (t )|2 ≈ 1, Fermi’s
golden rule predicts [61]

P
FGR1
i→f (t ) = 1

h̄2 |〈ψi |�Ĥ |ψf 〉|2t2. (D1)

If we now also consider transitions from the other states to
the initial state, but keep the assumption that the populations
in other states are small Pj �=i (t ) = |ψj �=i (t )|2 � 1, the time-
dependent perturbation theory then predicts [61]

P
FGR2
i→f (t ) = |〈i|�Ĥ |f 〉|2 1 − 2 e− �

2h̄
t cos

(Ef −Ei

h̄
t
) + e− �

h̄
t

(Ef − Ei )2 + �2

4

,

(D2)

where � = 2π
h̄

|〈i|�Ĥ |f 〉|2 and Ei (Ef ) is the energy of the
initial (final) state.

We plot the numerical results and both theoretical predic-
tions from Fermi’s golden rule in Fig. 13. Here we can see
that all three curves agree well for short times, the second
approximation longer remains close to the numerical results,
and that the initial quadratic regime is reproduced by theory.
This is the so-called quantum Zeno regime [57].

APPENDIX E: ENERGY

Time evolution of kinetic and interaction energy per par-
ticle for different interaction strengths is plotted in Fig. 14.
Here we define the kinetic energy per particle as the expec-
tation value of the time-dependent Hamiltonian (A1) divided
by the total number of particles Ekin(t ) = 1

N
〈∑l,m,i,j ψ∗

l,m(t )
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FIG. 14. (a) Kinetic energy per particle (expectation value of the time-dependent Hamiltonian Ekin(t ) = 1
N

〈∑l,m,i,j ψ∗
l,m(t )

Hlm,ij (t )ψi,j (t )〉 divided by the total number of particles N ) for several different interaction strengths. (b) Interaction energy per particle

Eint (t ) = 1
N

U

2 〈 ∑
l,m |ψl,m(t )|2[|ψl,m(t )|2 − 1]〉. U is given in units where J = 1.

Hlm,ij (t )ψi,j (t )〉, while the interaction energy per particle

is Eint (t ) = 1
N

U
2 〈∑

l,m |ψl,m(t )|2[|ψl,m(t )|2 − 1]〉. Both ener-
gies grow with increasing interaction coefficient U .

When the interactions are strong enough and after long
enough time, the atoms become equally distributed between
the eigenstates of the Hamiltonian Ĥ (t ). As the energy
spectrum of Ĥ (t ) is symmetric around zero, the expectation
value of Ĥ (t ) (kinetic energy) should be zero when all
bands are equally populated. We can see this in Fig. 14(a),
where the kinetic energy approaches zero at t ≈ 50 ms for the
case U = 0.05.

The interaction energy at first rapidly decreases, as the
cloud rapidly expands after turning off the confinement

potential V̂conf , and after that continues to slowly decrease as
the cloud slowly expands; see Fig. 14(b).

These considerations also provide a possibility to discuss
the applicability of the approximative method introduced in
Sec. IV. As we work in the regime of high frequency ω =
20, we find that for weak interaction, at short enough times
of propagation, the energy is approximately conserved. At
stronger values of U � 0.01 we observe a slow increase in
the total energy on the considered time scales. In both cases
we do not find the onset of parametric instabilities [31]. If
present, these instabilities are signaled by an order of magni-
tude increase in energy on a short time scale, that we do not
find.
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Ĥ(t)

t/T = 75
U = 0.05
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FIG. 15. Momentum-space density distribution in all bands, η1(k) + η2(k) + η3(k). U is given in units where J = 1. Left: evolution using
the time-dependent Hamiltonian Ĥeff,1. Right: evolution using the time-dependent Hamiltonian Ĥ (t ). (a), (b) Initial state. (c), (d) Final state
after 50 ms (75 driving periods), noninteracting case U = 0. (e), (f) U = 0.01. (g), (h) U = 0.05.

053625-14



DYNAMICS OF WEAKLY INTERACTING BOSONS IN … PHYSICAL REVIEW A 98, 053625 (2018)

In addition, the two-body interaction can deplete the occu-
pancies of initial coherent modes [29,41] and limit the validity
of our approach. In principle, these types of processes can be
addressed by including quantum fluctuations along the lines
of the full truncated Wigner approach [45]. Yet, we set our
parameters in such a way that these additional contributions
are small.

APPENDIX F: MOMENTUM-SPACE DENSITY
DISTRIBUTION

The momentum-space probability densities at the initial
moment and after 75 driving periods (50 ms) are shown in
Fig. 15. The interactions deplete the lowest band, but also
smooth out the density distribution.
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