Naslov Shape derivative techniques in optimal design
Naslov (hrvatski) Tehnike derivacije oblika u optimalnom dizajnu
Autor Petar Kunštek
Mentor Marko Vrdoljak (mentor)
Član povjerenstva Nenad Antonić (predsjednik povjerenstva)
Član povjerenstva Krešimir Burazin (član povjerenstva)
Član povjerenstva Marko Vrdoljak (član povjerenstva)
Član povjerenstva Boris Muha (član povjerenstva)
Ustanova koja je dodijelila akademski / stručni stupanj Sveučilište u Zagrebu Prirodoslovno-matematički fakultet (Matematički odsjek) Zagreb
Datum i država obrane 2020-02-27, Hrvatska
Znanstveno / umjetničko područje, polje i grana PRIRODNE ZNANOSTI Matematika
Univerzalna decimalna klasifikacija (UDC ) 51 - Matematika
Sažetak Optimal design theory, also known as shape optimization is quite indispensable in many fields like aeronautics, architecture, medicine, computer science. Applications vary from classical, as construction of an aircraft wing, to more recent as in inverse problems of electrical impedance tomography (non-invasive method of medical scanning), picture segmentation or in 3D printing. From the engineering point of view the main aspect of design process is improving a current design. In such optimal design problems the shape sensitivity analysis plays a central role in finding a solution and creation of numerical methods. In this thesis we consider optimal design problems for stationary diffusion equation, seeking for an arrangement of two isotropic materials, with prescribed amounts, which maximizes a given functional. The optimality of a distribution is measured by an objective function, which is usually an integral functional depending on the distribution of materials and the state function, obtained as a solution of the associated boundary value problem for the corresponding partial differential equation. Commonly, optimal design problems do not have solutions (if they exist, such solutions are usually called classical). Therefore, one can consider a proper relaxation of the original problem by the homogenization method which consists of using generalized composite materials. By enlarging the admissible set of the relaxed problem we can consider an artificial optimal design problem which can be rewritten as a saddle point problem. We further show that it is equivalent to a simpler relaxation problem given only in terms of the local proportion of the original materials for which necessary and sufficient conditions of optimality are obtained. Since every classical solution of the considered artificial optimal design problem is also a (classical) solution of the original problem it can be used to construct a family of classical solutions. The aim of the first chapter of the thesis is to present some classes of optimal design problems on an annulus with classical solutions. The first class is a single state equation problem with a constant right-hand side and homogeneous Dirichlet boundary condition. By analysing the optimality conditions, we are able to show that there exists a unique (classical) solution. We prove that, depending on the amounts of given materials, only two optimal configurations in both two- and three-dimensional case are possible. The second class of problems deals with a two-state optimal design problem. In the second chapter shape derivative results for the considered problem are presented. Assuming that the interface between phases is regular, for the optimal design problem the first and the second order shape derivative are calculated using different techniques e.g. the chain rule approach and the averaged adjoint approach. The presented results are later used in construction of numerical methods. Shape derivatives can be written in a form of domain integral or as an integral over the interface. The domain expression or distributed shape derivative seems more appropriate for numerical implementation since boundary representations include jumps of a discontinuous functions over the interface. The third chapter is devoted to numerical methods for the optimal design problem presented in the first section. Descent methods based on distributed first and second order shape derivatives are implemented and tested. We observe a stable convergence of both descent methods with a novel Newton-like method converging in half as many steps.
Sažetak (hrvatski) Teorija optimalnog dizajna, poznata i kao teorija optimizacije oblika je izuzetno važna zbog svog teorijskog i praktičnog aspekta. Postoje mnoge njene primjene u različitim interdisciplinarnim područjima poput mehanike, arhitekture, medicine i računarstva. Primjene su široke od klasičnih problema poput konstrukcije krila aviona pa sve do aktualnih kao što su inverzni problem električne impedancijske tomografije (neinvazivne metode medicinskog snimanja), problem segmentacije slike ili 3D printanje. U ovom radu promatra se problem optimalnog dizajna u kojem je cilj odrediti raspored jednog ili više materijala u danom univerzalnom skupu. Optimalnost rasporeda (distribucije) materijala mjeri se funkcionalom energije koji ovisi o rješenju jednog ili više rubnih problema. U pripadnoj parcijalnoj diferencijalnoj jednadžbi koeficijenti ovise o rasporedu materijala. Zadaća optimalnog dizajna najčešće nema rješenje (tzv. klasična rješenja). Upravo zato je potrebno gledati pogodnu relaksaciju originalnog problema. U prvom poglavlju disertacije proučava se relaksirana zadaća koju uz proširenje dopustivog dizajna dopušta primjenu teorije sedlaste točke. Nova, proširena zadaća optimalnog dizajna može se zapisati koristeći samo lokalni omjer količina originalnih materijala. Problem se dodatno može zapisati kao konveksni problem minimizacije što daje mogućnost proučavanja nužnih i dovoljnih uvjeta optimalnosti. S obzirom da je svako klasično rješenje novog problema ujedno i rješenje originalnog problema dobivamo mogućnost konstrukcije klasičnih rješenja. Cilj ove disertacije je proučiti probleme na prstenu u kojima se javljaju klasična rješenja. Konkretno, za stacionarnu jednadžbu difuzije s konstantnom desnom stranom pokazana je egzistencija i jedinstvenost rješenja. Ovisno o danoj količini materijala za prostor dimenzije 2 i 3 postoje samo dvije moguće strukture za optimalni dizajn. Promatra se i zadaća optimalnog dizajna, s dva rubna problema, u kojoj postoji klasično rješenje. Drugo poglavlje disertacije posvećeno je analizi derivacije oblika. Uz dodatnu regularnost granice između materijala analizira se osjetljivost oblika zadaće transmisije. Konkretno, koriste se dvije tehnike derivacije oblika: lančano pravilo i usrednjena adjungirana metoda. Obje tehnike su uspješno iskorištene čime je dobivena derivacija oblika prvog i drugog reda. Prema strukturnom teoremu, derivacije oblika dopuštaju zapis preko volumnih integrala ili preko integrala po rubu. Pokazuje se da je volumna forma prikladnija numeričkom rješavanju kod zadaća transmisije. Naime, pripadnu graničnu formu derivacije oblika je numerički teže tretirati u kontekstu derivacije oblika zbog prekida podintegralne funkcije na rubu. Treće poglavlje disertacije posvećeno je numeričkim metodoma za probleme optimalnog dizajna iz prvog poglavlja. Metode silaska koje koriste prvu i drugu derivaciju oblika su implementirane te testirane na zadaćama optimalnog dizajna za koje imamo klasična rješenja. Opažena je stabilna konvergencija prema optimalnom rješenju za obje metode s time da aproksimativna Newtnonova metoda ima dvostruku veću brzinu konvergencije. Obje metode konvergiraju neovisno o početnoj aproksimaciji.
Ključne riječi
optimal design
homogenization
optimality conditions
shape derivative
shape optimization
Newton method
gradient method
Ključne riječi (hrvatski)
optimalni dizajn
homogenizacija
uvjeti optimalnosti
derivacija oblika
optimizacija oblika
Newtonova metoda
gradijentna metoda
Jezik engleski
URN:NBN urn:nbn:hr:217:084036
Datum promocije 2020
Studijski program Naziv: Matematika Vrsta studija: sveučilišni Stupanj studija: poslijediplomski doktorski Akademski / stručni naziv: doktor/doktorica znanosti, područje prirodnih znanosti, polje matematika (dr. sc.)
Vrsta resursa Tekst
Opseg viii, 131 str.
Način izrade datoteke Izvorno digitalna
Prava pristupa Otvoreni pristup
Uvjeti korištenja
Datum i vrijeme pohrane 2020-06-05 13:17:00