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from data. This approach provides researchers with a fast performing algorithm that requires 

minimal knowledge about neural networks and image analysis. The main object of this 

graduation thesis is to create and measure how well the state of the art image processing neural 
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Razvoj novih tehnika mikroskopije tijekom proteklih nekoliko godina doveo je do razvoja super-

rezolucijske mikroskopije s povećanom rezolucijom u odnosu na konvencionalne  tehnike 

mikroskopije. Grana super-rezolucijske mikroskopije, bazirana je na lokalizaciji jedne molekule i 

uključuje tehnike “Photoactivated localization microscopy” (PALM) i “Stochastic Optical 

Reconstruction Microscopy” (STORM), koje omogućuju znanstvenicima proučavanje staničnih 

procesa s povećanom rezolucijom. Mikroskopija lokalizacije jedne molekule oslanja se na 

prikupljanje seta slika gdje samo  podskup optički razlučivih fluorofora emitira svjetlost. Analiza 

tih slika omogućuje rekonstrukciju visoko kvalitetnih super-rezolucijskih slika. Ovaj diplomski rad  

predlaže sljedeći korak u analizi super-rezolucijskih slika, baziran na analizi lokalizacije pojedinog 

proteina. Rad upotrebljava višestruko brojanje signala jednog proteina za predviđanje pozicije 

proteina. Predviđena lokalizacija nadilazi artefakte višestrukog brojanja  kroz upotrebu neuralne 

mreže, s ciljem brojanja i lokalizacije protein. Brojanje proteina sa slika super-rezolucijske 

mikroskopije predstavlja problem zbog višestrukog brojanja fluorofora. Za razliku od ostalih 

radova koji pokušavaju riješiti ovaj problem, ovaj diplomski rad ne koristi modeliranje nego se 

oslanja  na sposobnost neuralne mreže da ući iz podataka. Ovaj pristup pruža  znanstvenicima  

brzo izvršavajući algoritam koji zahtjeva minimalno znanje o neuralnim mrežama i analizi slika. 

Glavni cilj ovog diplomskog rada je izraditi i izmjeriti koliko dobro suvremena neuralna mreža za 

obradu slika može lokalizirati i prebrojati proteine. 
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1. Introduction 

1.1. Microscopy and machine learning 
 

Microscopy has been a major tool in cell biology for centuries. It has been used for a 

wide range of application from visualizing cellular processes to use in diagnostics. In the past 

couple of years a set of unique challenges has arisen in microscopy. These problems arise from 

the huge amount of data generated by microscopy aided by high-throughput imaging techniques 

and need to analyze that data effectively. These kinds of problems can be efficiently solved with 

machine learning (ML). Image pattern recognition has been a challenge for ML until early 2010s 

when deep learning based on neural networks (NN) became promising tool for image pattern 

recognition. Examples of problems that can be solved with this novel technique include image 

labeling for big data sets, image segmentation which includes finding cells and sub-cellular 

structures on images and image super-resolution microscopy. Synergy between machine 

learning research especially CNN and microscopy is novel, with most of papers on this topic 

appearing in the last couple of years (Von Chamier et al. 2019). 

1.2. Super-resolution microscopy 
 

There is a fundamental limit to resolution for all conventional microscopy methods called 

Abbe’s diffraction limit. It states that spatial resolution is approximately half of optical 

wavelength. All cellular processes and structures that occur on a smaller scale than the ones 

defined by visible light and Abbe’s law should be studied and visualized with other methods. To 

work around this problem novel methods have been developed, including stimulated emission 

depletion, structured illumination microscopy and localization microscopy (Nehme 2018). 

Localization microscopy includes techniques such as Photoactivated localization microscopy 

(PALM) (Betzig et al. 2006) and Stochastic Optical Reconstruction Microscopy (STORM) (Betzig  et 

al. 2006). Localization microscopy relies on collecting images containing light emissions from a 

set of nanometer size fluorophores. The first step in performing an experiment is to attach 

nanoscale fluorophores to sample. These fluorophores can transition to active state after light 

excitation. In active state fluorophores can either go to dark state while emitting light and 

afterwards be reactivated again multiple times or it can get photo-bleached meaning that 

fluorophore will not emit light again.  Fluorophore’s ability to transition from activated to dark 

state multiple times results in a process called fluorophores blinking. Second step takes a series 

of microscopy images after exposure to light, sample can be exposed to light multiple times. 

After every light exposure fluorophores will start emitting light stochastically, meaning not all 

fluorophores emit at the same time but only a subset of them. Fluorophores in images cannot 

have overlapping emission signals because those signals cannot be resolved. To avoid 

overlapping signals fluorophores need to be spatially separated and if possible separated in time, 

this separation is achieved through blinking (Rollins et al. 2014). Afterwards each frame is 

analyzed to determine fluorophores localizations and collection of analyzed frames is then used 



2 
 

to construct a single image with higher resolution than one defined by Abbe’s law (Boyd et al. 

2018).  

The problem of constructing a single image has been solved with a variety of algorithms. 

Algorithms based on sequential fitting of emitters followed by subtraction of the model PSF, 

blinking statistic, sparsity, multi-emitter maximum likelihood estimation, single-image super-

resolution by directory learning and CNN named Deep-STORM (Nehme 2018). Aim of all these 

algorithms is to reduce fluorophore signal area on microscopy images.  The field of super 

resolution image analysis has so far been mostly concentrated on constructing a super-

resolution image with previously mentioned algorithms. Besides constructing a super-resolution 

image it is also important to find fluorophore localizations and to count fluorophores from set of 

frames or from super-resolution image. The task of counting and localization is an important 

problem in the field of quantitative bioimaging, which is trying to quantify and measure 

biological properties from bioimages. Due to fluorophore blinking and signal overlaps it is not 

possible to simply localize and count fluorophores and equate signals to labeled cell structure or 

protein. As is described above, fluorophores do not emit just one signal instead they can appear 

multiple times. This makes for good separation in space and time, but if every signal is counted 

as one fluorophore it will lead to overcounting. The number of times one fluorophore blinks 

depends on the experimental condition and used fluorophores. The number of blinks per 

fluorophore can be modeled with geometric distribution (Lee et al. 2012). Depending on the 

experimental condition and used fluorophore overcounting problem can be severe. This problem 

is so far mostly resolved with modeling fluorophore blinking (Lee et al. 2012, Rollins et al. 2014, 

Nieuwenhuizen et al. 2015, Fricke et al. 2015, Nicovich et al. 2017). To resolve the localization 

and counting problem this graduation thesis proposes to use a neural network able to take in 

super-resolution images and predict protein localizations. The next section will introduce basic 

concepts of neural networks needed to understand this thesis. 

1.3. Machine learning and deep learning 
 

ML describes a group of algorithms able to learn from examples unlike other algorithms 

which are programmed by hand to do specific tasks (Goodfellow et al. 2016). ML algorithm starts 

with a mathematical model whose parameters are free to vary. To estimate the correct values of 

the parameters data is presented to a ML model, usually pairs of input and output data. ML 

parameters are then changed to best describe input output dependence. For example, if the task 

is to predict if the cat is present in the image ML approach is to present a ML model with labeled 

images with and without cat and let the ML algorithm set parameters. To solve this problem with 

other algorithms the programmer would need to code rules in the algorithm to make that 

prediction. ML encapsulates a vast range of algorithms, from simple ones like linear regression to 

more complex ones like deep neural networks. For ML to be applicable to a problem two 

conditions need to be met: first it is not clear how to write a program to perform a task and 

second there is available data for a program to learn from. With the rising of available data and 

improvements in processing speed machine learning research and application has been on a rise 

for past few decades. These two phenomena have especially helped deep learning to reach 
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practical application. Deep learning is a subset of neural networks with multiple hidden layers. 

This graduation thesis uses deep convolutional neural network and the next sections will 

describe the main ideas and problems relevant to the application of this method. 

 

1.4. Generalization 
 

Generalization is an ability of ML algorithms to predict correct answers for data points it 

has never seen. ML models have two pitfalls. First is a simple model that is unable to find 

meaningful aspect of data for correct prediction. In this case the ML model will underperform 

because important aspects of data are ignored. To fix this problem a more complex ML model 

should be chosen. Second pitfall is an opposite, the model can be too complex and it falls short 

on unseen data while excelling on data it was trained on. In this case ML model treats noise in 

data as an important aspect in forming a prediction. This is a well know problem named 

overfitting. Generalization guides programmer while developing ML model to avoid pitfalls and 

find a ML model with enough complexity to handle the task at hand, but at the same time avoid 

overfitting. This makes generalization an important ML model performance metrics (Bishop. 

2006). To measure the ML model generalization ability available data is usually split into two 

categories: train data that is used while the ML model is being trained and validation data that is 

used to evaluate trained ML model performance.  

1.5. Neural networks 
 

NN represents a type of machine learning algorithm. There is a variety of different types 

of NN specific for different application based on data structure, but the bases for all of them are 

the same. In this section basic NN concepts will be explained after which convolutional neural 

networks (CNN) specifics will be explained. 

1.5.1. Basics of Neural Networks 
 

NNs are ML models loosely based on a way human brain works. The entire field was 

started from a desire to understand and model human brain. At the beginning most ideas in NN 

research were based on neurophysiology ever since the field is moving away from 

neurophysiology and is adopting ideas from mathematics and statistics. Currently the field has 

completely moved from neurophysiology to data modeling tool (Rojas 1996).    

NN building blocks and fundamental units are neurons, which are nothing like human 

neurons and actually represent mathematical operations shown in Figure 1.  The first neuron 

operation is the weighted sum of neuron input points. In some cases, it is beneficial to add bias 

to resulting weighted sum. After summation the result is passed through an activation function 

(Bishop 2006). 
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𝑓(𝑏 +  ∑ 𝑥𝑖 ∗ 𝑤𝑖

𝑛

𝑖=1

) 

Figure 1. Operation performed by one neuron. f is an activation function, B represents bias, xi are input values and wi are 
corresponding weights.  

Activation functions are different functions whose main role is to introduce nonlinearity 

to NNs. Nonlinearity is one of the most important properties of NNs that enables them to 

become universal approximators (Hornik 1991). Without activation functions the NN is reduced 

to linear regression. The second important reason to use an activation function is to limit neuron 

output values in a range. Having a range of values enables neural outputs to be treated as 

probability if the range is between 0 and 1. Having a range of values for a neuron's output also 

reduces problems during NN training with exploding and vanishings gradients (Goodfellow et al. 

2016). Examples of activation functions used most commonly are ReLu and sigmoid function 

shown in Figure 2.  

𝑅𝑒𝐿𝑢(𝑥) = max (0, 𝑥) 

𝜎(𝑥) =
1

1 + 𝑒−𝑥
 

Figure 2. Shows ReLu and sigmoid functions ReLu activation function returns the input value if it is bigger than zero, 
otherwise it is zero or less function returns zero. Sigmoid function symbolized with 𝝈 , has important property of returning 

values from 0 to 1 for any input. 

Neurons are grouped into layers. NNs have 3 basic types: input layer, hidden layer and 
output layer (Bishop 2006), the NN scheme is shown in Figure 3. Input layer is the first layer 
responsible for taking on input values. Neurons in an input layer are unlike other neurons 
because they represent input to a network and do not perform any mathematical operation. E.g. 
if NN is built to predict the price of a house based on: number of rooms, number of bathrooms 
and house area. Number of neurons in input layer is three. Hidden layers are the heart of a NN 
they perform an operation described above. Number of neurons in a hidden layer and number of 
hidden layers in a NN can vary significantly depending on a problem at hand. Output layer gives a 
final NN prediction. It is constructed depending on how many predictions NN needs to output. 
Activation functions in output layer usually differ from one used in the hidden layer, they 
dependent on NN prediction type. E.g. from the previous house example number of neurons in 
output layer is one, it is house price. The activation function would be linear because it needs to 
output a price not a probability of an event. 
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Figure 3. Example of NN’s graphical representation taken form Bre et al. (2018). 

To find an optimal weight for each neuron is a complicated task, especially for NN with 

multiple hidden layers. Backpropagation algorithm is used to solve this problem. The first 

requirement is to define a loss function. Loss function is a NN performance estimator, it uses a 

distance measure between correct answers and NN prediction (Bishop 2006). E.g. for our house 

price example loss function could be a root mean square error. Backpropagation goal is to 

minimize loss function, which makes NN prediction more correct. To minimize loss function 

derivative of loss function is calculated. Partial derivation for every parameter in a layer is 

calculated using chain rule of derivation. Starting from a last hidden layer, layer-by-layer partial 

derivations are calculated going to the first hidden layer. Backpropagation got its name due to 

this process of going backwards through a network. After derivation for every parameter in a NN 

is calculated it is time to change those parameters. There is a range of different optimization 

parameters with combined information from current variable value and its derivation to 

calculate a new value for a parameter. Besides derivation and current value every optimization 

algorithm takes in a learning rate as an input. Learning rate regulates parameter change in every 

step. A bigger learning rate value will change NN parameter faster, a smaller learning rate on the 

other hand will change NN parameter values slowly. Combining these three inputs optimization 

algorithm calculates new parameter values. Currently there are multiple optimization algorithms 

to choose from, but at its core they are all based on a simple rule current value is subtracted 

from partial derivation for parameter multiplied with learning rate (Bishop 2006), the equation is 

shown in Figure 4. 
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𝜃𝑝: = 𝜃𝑝 −  𝛼
𝜕

𝜕𝜃𝑝
𝐽(𝜃𝑝) 

Figure 4. The basic equation for optimization algorithm. 𝜽𝒑 is NN parameter,  𝜶 is learning rate,  
𝝏

𝝏𝜽𝒑

𝑱(𝜽𝒑) represent loss 

function partial derivative with respect to 𝜽𝒑. 

Backpropagation and optimization can be executed on all examples at one or on a subset 

of examples, these methods are called batch gradient descent and stochastic gradient descent, 

respectively. One cycle of performing optimization on all examples is called an epoch. Number of 

epochs determines how many times process of weights adjustment will be done across all 

training examples (Wilson and Martinez 2003).  

After the training process is completed NN performance is tested on examples NN has 

not seen before. This step tests NN generalization ability. Overall quality of NN is based on 

generalization ability and is used to guide next step of the NN design process. 

1.5.2. Convolutional neural network (CNN)  
 

To analyze images with classical NN every grayscale pixel is represented by one number 

and for a typical colored image every pixel is represented by three numbers. If the size of an 

image is 620x480 pixels2 it means it has 297 600 pixels. If that image is grayscale its NN would 

have 297 600 neurons in the input layer and if it is a typical colored image its NN would have 892 

800 neurons in the input layer. Classical NN would require an enormous number of parameters 

just for first hidden layer. Such an enormous amount of parameters just for first layer would 

make classical NN hard to train and its performance would be slow after training.  Probably the 

biggest problem would be NN susceptibility to overfitting. 

Another specific requirement for images is translational pattern recognition. Pattern 

position in an image is not important, the only important thing is the pattern’s presence or 

absence. For example, if NN task is to locate abnormal cell among healthy ones, abnormal cell 

position and special rotation is not an important factor. Classical NN are unequipped for this 

problem because they treat every pixel separately from one a nether. One pixel should be 

treated in the context of surrounding pixels. 

To solve these problems CNN uses convolution operation between a filter and a part of 

an image. Filter is a n x n matrix, convolution operation is a dot product between the filter and 

part of an image plus bias. Convolution is applied to one part of the image afterwards filter is 

moved to a next position and applied again process is repeated across all of an image 

(Goodfellow et al. 2016). This process replaces a classical neuron that was explained above. 

Because a filter is usually significantly smaller than the image number of parameters is drastically 

reduced. Most commonly used filter sizes are 3x3, 5x5, 7x7 and 9x9. To visualize a scale of 

parameter reduction let’s look at previously mentioned 620x480 pixels2 image that would have 

297 600 neurons in the input layer for classical NN, if that network had ten filters of size 9 for 

inpute layer it would only require 640 parameters instead of 297 600. The second benefit of 

filter usage is filter application across different image sections. This enables filter to specialize in 
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recognition of a single pattern. His application across all image positions means it can recognize 

a pattern at any image position. Third benefit is in filter construction itself, because filter is a 

matrix it takes image subset equal to filter size not a single pixel. This means filter interprets part 

of an image in context, not a single pixel out of context.  

Stride is used to specify filters shift. For example, if the stride is (2,2) it means the filter 

will be moved 2 pixels in horizontal direction and when the filter is moved in vertical direction it 

will be moved by 2 pixels as well. Applying a filter this way will result in lower usage of pixels at 

image edges. To solve this problem image size can be extended by adding more values at the 

image edge by a process called padding. Added values are usually just zeros. Padding is usually 

used to preserve the image size from one layer to the next and to use pixels at an image edge 

same number of times as rest of pixels. 

Part of most of modern CNNs is pooling layer. Pooling layer separates image form 

previous layer into equal parts based on pool size and returns one number from image subsets. 

Most commonly used pooling is maxpooling. It takes image subset and outputs the maximum 

value from that subset, another example is average pooling which return image subset average. 

Pooling main role is to reduce the number of parameters in a network, making the training 

process faster and network more computationally manageable (Goodfellow et al. 2016). 

The opposite process of pooling is upsampling. It repeats input across a defined number 

of columns and rows. Upsampling is a computationally cheap way to increase image from one 

layer to the next. Its role is to achieve desirable image size.  
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1.6. Objective of the experiment 
 

1. Create and optimize CNN architecture with the capability to predict the probability 

density for protein position and estimate the number of proteins from single molecule 

localization microscopy. 

2. Develop an algorithm for protein localization from the CNN localization probability 

output. 

3. Benchmark the model by measuring the CNN performance with Jaccard index and RMSE. 
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2. Materials and methods 
 

This graduation thesis describes CNN that takes as input super resolution image and 

outputs image containing protein localization probability. Second part of this graduation thesis 

describes an algorithm used for protein localization bases on CNN predicted probabilities. After 

proteins have been localized Jaccard index and RMSE are calculated. Algorithms were written in 

Python 3.7, Keras library (Chollet 2015) back by TensorFlow was used to write CNN.  

2.1. Super-resolution image generation 
 

The first step in super-resolution image generation is to simulate protein coordinate 

positions. To do it x and y protein coordinates are sampled from uniform distribution, if the 

distance between two coordinate point is smaller than critical distance one coordinate  will be 

moved by value sampled from a normal distribution with mean zero and standard deviation 

equal to critical distance. Critical distance is equal to the smallest assumed distance between 

two proteins in super-resolution image. When scaled, these coordinates represent output data 

for CNN. The next step in super-resolution image generation is to assign fluorophores to protein 

positions. Number of fluorophores assigned to a protein is sampled from a geometric 

distribution whose parameter is set to 0.2. Fluorophores are positioned around proteins by 

adding protein coordinate to values sampled from a normal distribution with mean zero and 

standard deviation equal to super-resolution microscopy localization precision. Fluorophores 

localizations are then rendered with Gaussian blur to create final super-resolution image. The 

code is based on DEEP-STORM paper (Nehme 2018). 

Images were simulated with Code 1. (see Appendix). Code 1 was written by Carlo Manzo. 

Generated input images have 45 proteins per image, pixel size of 25 nm, super resolution 

localization precision of 1 nm and protein dimensions of 0.2 nm. Rendering factor 5 meaning 

after rendering pixel size is 5. The output image is a grid with zeros except for protein position 

coordinates where it is one. The output image is twice the size of input image, meaning that the 

zoom factor is 2. 

2.2. Image normalization and standardization 
 

To secure better convergence properties input image set is normalized and standardized. 

First all values are converted to float values. Every image is then individually scaled to zero to 1 

range using the formula in Figure 5. 

𝑛𝑒𝑤_𝑖𝑚𝑎𝑔𝑒 =  
𝑖𝑚𝑎𝑔𝑒 − 𝑖𝑚𝑎𝑔𝑒. 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 

𝑖𝑚𝑎𝑔𝑒. 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 − 𝑖𝑚𝑎𝑔𝑒. 𝑚𝑖𝑛𝑖𝑚𝑢𝑚
 

Figure 5. Image normalization formula. 

After normalization image is standardized to mean zero with standard deviation equal to 1 using 

the formula in Figure 6. 
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𝑛𝑒𝑤_𝑖𝑚𝑎𝑔𝑒 =  
𝑖𝑚𝑎𝑔𝑒 − 𝑖𝑚𝑎𝑔𝑒. 𝑚𝑒𝑎𝑛

𝑖𝑚𝑎𝑔𝑒. 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑_𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛
 

Figure 6. Image standardization formula. 

Code for image preprocessing can be found in the Appendix, Code 2. 

 

2.3. CNN architecture 
 

Convolution process used in a network is composed of 3 layers. First layer does standard 

convolution without applying any activation function and without a bias. Stride is one in 

horizontal and vertical direction and filter size is 5 x 5. Convolution results are normalized by 

batch in a second layer. Third layer applies a ReLu activation function to normalize data. This 

layer will be named conv_bn_relu. 

The network has encoder-decoder architecture. Encoder stage consists of repeating two 

conv_bn_relu followed by maxpooling layer. Every pooling layer halves image output size. This 

layer schedule doubles number of filters in every block starting from 16 to 128. Decoding stage 

starts after and uses the same block structure except instead of maxpoolng it uses upsampling. 

Number of filters is halved in every block from 128 to 8 and output image size is doubled. Last 

layer in a network is a conventional layer with applied sigmoid function. 

2.4. Training 
 

The network was trained with 2000 pairs of network input/output images with train 

validation split 70 : 30.  

Only two classes of output prediction exist. Either the coordinate is a protein location 

labeled with one or it is not in which case it is labeled with zero. Binary loss function is one best 

suited for the given problem and is used to train a network. The network was trained with Adam 

optimizer over 100 epochs and batch size of 32. Learning rate was set to 0,001 with a new 

learning rate set if the validation data set loss has not been reduced for 5 epochs. The newly 

selected learning rate is half of previous value. Training process has been run on The Institute of 

Photonic Sciences (ICFO) server. Code for CNN architecture and training can be found in the 

Appendix, Code 3. 

2.5. Localization algorithm for CNN localization probabilities and validation 
 

The first stage of the network localization algorithm is to convert the probability 
distribution given by the network to location coordinates. Network probabilities predictions are 
converted to a range from 0 to 1. This conversion makes it easy to choose a threshold value 
above which network predictions are considered valid. Pixels are then grouped to a same group 
if they are above threshold value and if they are one pixel away from a group in all directions. 
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Regions’ centroids are calculated afterwards, they represent protein localization.  Localization is 
than followed by validation.  

Performance metrics are Jaccard index and root mean square error (RMSE). 

Jaccard index 

Jaccard index is defined as the ratio between number of elements in overlapping sets 

and number of elements in union set. The element is in overlapping set if the Euclidean distance 

between centroids is smaller than 20 nm. Union set is calculated as the sum of elements in both 

sets minus overlapping set. 

Root mean square error (RMSE) 

Root mean square error, shown in Figure 7., is the square root of the quotient of 

summed squared Euclidean distances and number of samples. 

𝑹𝑴𝑺𝑬 = √
∑ (𝒚𝒑𝒓𝒆𝒅 − 𝒚𝒄𝒐𝒓𝒓)𝟐𝒏

𝒊

𝒏
 

Figure 7. RMSE formula ypred is algorithm prediction, ycorr is correct value and n is number of elements used in calculation 

The first step of validation is to calculate Euclidean distances are between all predicted 

protein localizations and correct protein localizations. Points corresponding to smallest 

Euclidean distance are then classified to overlapping set if their Euclidean distance is smaller 

than 20 nm. Overlapping threshold value of 20 nm is chosen as it is the typical localization 

precision of STORM method. If point is in an overlapping set its Euclidean distance will be used 

to calculate RMSE. Centroids corresponding to that distance will be removed from a list of 

Euclidean distances and new smallest value will be chosen and process repeated until all 

Euclidean distances are processed. Last step is to calculate the Jaccard index and RMSE after the 

algorithm has gone through all images. Descriptive localization and validation algorithm can be 

found in the Appendix, Code 4.  
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3. Results 
 

Figures 8. and 9. show side by side comparisons between a) simulated super-resolution 

microscopy image before rendering with specified correct protein localizations and b) super-

resolution image after rendering, c) CNN network prediction and d) image with true and 

predicted protein position. Examples given in Figures 8. and 9. clearly show CNN ability to reduce 

the space of possible fluorophores localizations in a non trivial way for super-resolution images. 

To give a clearer example of CNN localization ability Figure 10. shows post-CNN prediction 

analysis steps required to localize fluorophores. Visualized steps are described in a CNN 

validation algorithm, Figure 10. includes steps until Euclidean distance calculation.  

 

Figure 8. Image creation steps (a, b) and protein localization prediction steps (c, d) for images with 5 proteins per image.  a) 
shows first two steps in image generation with Code 1, green dots represent protein location and yellow represent 
fluorophores location, b) final product of Code 1. is rendered microscopy image for STORM method, c) localization 

probability predicted with CNN used in this graduation thesis, d) final output of localization algorithm, red dots represent 
protein localizations predicted at the threshold value of 0.2 , green dots represent true protein localizations. 
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Figure 9.  Image creation steps (a, b) and protein localization prediction steps (c, d) for images with 25 proteins per image.  
a)shows first two steps in image generation with Code 1, green dots represent protein location and yellow represent 

fluorophores location, b) final product of Code 1 is rendered microscopy image for STORM method c) localization 
probability predicted with CNN used in this master thesis, d) final output of localization algorithm, red dots represent 

protein localizations predicted at threshold value of 0.2 , green dots represent true protein localizations. 
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Figure 10. Validation algorithm process. a) network input image, b) CNN prediction scaled to rage from 0 to 1, c) predicted 
protein localizations areas with threshold value grater then 0.2, d) green dots are correct protein location and red ones are 

localizations predicted from areas. 

As described before, the Jaccard index is a metric used to validate the localization 

quality. Figure 11. shows the CNN performance across images with different number of proteins. 

The number of proteins per images start at 5 and is increasing by 5 until 50 proteins per image. 

Because it is necessary to choose a threshold value for localization prediction Figure 11. shows 

the CNN performance at different threshold values. Threshold values start from 0.05 and is 

increasing by 0.05 to 0.95. 

To include most protein in overlapping Jaccard index threshold value with biggest Jaccard 

index should be chosen. To clearly show the algorithm‘s localization ability Figure 12. is extracted 

from Figure 11. and shows the Jaccard index value for images with different number of proteins 

per images with threshold value set to 0.15 as it is a value with which most images have their 

maximum. It has to be noted that images with 5, 10 and 15 proteins per image have peaked at 
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different values. To better show where the maximums are Table 1. contains optimal threshold 

values across a range of proteins per image.    

 

Figure 11. Jaccard index for varying number of proteins per image at different threshold values. X axis represent threshold 
value, y represent Jaccard index. Legend in the upper right corner annotates line with corresponding number of proteins 

per image.  

 

  

Figure 12. Jaccard index value for images with different number of proteins per image at threshold value 0.15. X axis 
represents number of proteins per image, y represents Jaccard index value. 
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Table 1. Table containing maximum values for Jaccard index across a range of proteins per image and threshold at which it 
is achieved. 

 

Other metric used for validation, beside the Jaccard index, is RMSE. RMSE values for 

images with different number of proteins per image at different threshold values are shown in 

Figure 14. Images used for Jaccard index testing were also used for RMSE testing. 

Figure 15. is used to better show dependence between number of proteins per image 

and RMSE. It shows dependency at 0.95 threshold values. That threshold value was chosen 

because RMSE is the smallest across different image sets. Table 2. shows lowest RMSE value and 

corresponding threshold value for different number of proteins per image.  

 

Number of proteins per image Threshold Jaccard index / % 

5 0.40 57 

10 0.30  60 

15 0.20  58 

20 0.20  54 

25 0.15  55 

30 0.15  51 

35 0.15  49 

40 0.15  47 

45 0.15  44 

50 0.15  42 

Figure 14. RMSE for varying number of proteins per image with different threshold values. X axis represent threshold value, 
y represent RMSE, legend in the upper right corner annotates line with corresponding number of proteins per image. 
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Figure 15. RMSE value for images with different number of proteins per image at threshold value of 0,95.  

 

Table 2. Table containing minimum values for RMSE across range of proteins per image and threshold at which it is 
achieved. 

 

 

 

 

 

 

 

 

 

Number of proteins per image Threshold RMSE / nm 

5 0.95  38 

10 0.95 38 

15 0.95 34 

20 0.95 32 

25 0.95 32 

30 0.95 31 

35 0.95 29 

40 0.90 33 

45 0.95 30 

50 0.95 32 
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4. Discussion 
 

The goal of this graduation thesis was to train a CNN network to localize proteins from 

super-resolution microscopy images and to test network performance on never seen super-

resolution images. To test network performance Jaccard index and RMSE were chosen. Those 

two parameters are currently used in the field of localization microscopy.  

To show the necessity and usefulness of machine learning in localization prediction it is 

important to consider Figure 10. showing localization algorithm at work. As it can be seen signal 

strength and size do not perfectly correspond to network localization probability for that area. It 

is also important to note how some low signal spread out areas can be localized as one 

localization and other as multiple localization. This shows how network mapping from super-

resolution images to localization probabilities is nonlinear and hard for humans to understand 

and code. Coupled with ability to simulate data this makes localization problem suitable for 

machine learning. It has been shown how similar problems use of machine learning has led to 

reduction in running time and better performance (Boyd  et al.2018, Nehme et al. 2018). With 

the development of easy-to-use CNN packages for different programming languages this 

approach makes it easy to adopt this model to similar problems in a future with slight 

modification.  

For Jaccard index two trends can be observed. First is the decline in Jaccard index for 

images with higher number of proteins per image. This observation is in line with previous work 

on localization and super-resolution image reconstruction (Boyd  et al.2018). This phenomenon 

is caused by overlapping signals from different fluorophores close to one another. With 

increasing number of proteins, it is more likely to get areas with signal overlaps that are hard to 

localize. A second phenomenon is related to reduction in the optimal threshold value for images 

with more proteins per image. Figure 8. shows how network trained on images with bigger 

number of fluorophores naturally expects a bigger number of fluorophores in an image and 

threshold needs to be increased to remove low probability localization. It can be postulated that 

a network trained on a smaller number of fluorophores per image would give less low 

probability positions, on the other hand network train that way would under perform on images 

with high number of proteins. It can be seen in Figure 11. that network optimizes its 

performance at the threshold value of 0.15 meaning a lot of low value position predictions are 

accurate. First part of Figure 12. shows low values for Jaccard index. It is important to note that 

this is related to suboptimal threshold value for a range between 5 and 15 proteins per image. 

The first observation for RMSE comes from Figure 15. showing a trend toward smaller 

values for images with bigger number of proteins per image and that increase after 35 proteins 

per image. For the decrease between 5 and 35 proteins per image it can seem contradictory if 

we consider a network performance problem in areas with overlapping signals. Possible 

explanations can be that network is trained on images with higher number of proteins and thus 

is better tuned to those cases. Increase in RMSE after 35 proteins per image can be contributed 

to overlapping signals. The second observation is in Figure 14. showing trend toward smaller 

RMSE for bigger threshold values. With an increasing threshold number of predicted 
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localizations and their area is reduced. It can be concluded that localizations for which network 

probability localization is high is most likely correct and close to real localization position.  

To localize as many correct positions as possible, it is better to optimize for Jaccard index 

and use smaller threshold value. If goal is to find only the most precise localizations threshold 

should be set to high value to minimize RMSE. This dichotomy should be solved based on a 

problem at hand.  

As machine learning task can perform only as good as the data they have been trained on 

and are required to work with, it is important to discuss images used in this graduation thesis. 

Code 1. used to create images introduces a lot of stochasticity to date. Stochasticity is 

introduced through the position and number of fluorophores around proteins. For this reasons 

Jaccard index is relatively small and RMSE is relatively large. If the images had higher amount of 

ambiguity Jaccard index would be even smaller and RMSE bigger, if images have a less ambiguity 

Jaccard index would be bigger and RMSE smaller.  In practical applications data used to train 

neural networks should be as similar to experimental super-resolution images as possible. To 

secure the best performance, experimental super-resolution images with their protein 

localization should be used to train the network. This is not always possible and simulated 

images can be used, but performance will possibly drop compared to experimental super-

resolution images. To optimize localization performance it is also advised to modified 

experiment to have a relatively constant number of proteins per image and to avoid having too 

many fluorophores per image. 

Field of super-resolution microscopy for protein localization and counting is novel, as a 

consequence, there is a lack of consistency in reporting same quality metrics (Boyd  et al.2018). 

CNN in this graduation thesis is compared with two methods that perform similar task: 

Alternating Descent Conditional Gradient method (ADCG) (Boyd  et al. 2017) and DeepLoco 

(Boyd et al. 2018). This graduation thesis will use values reported by the DeepLoco paper 

because they tested the best algorithms in the field for Jaccard index and RMSE metric. 

DeepLoco is based on CNN, while ADCG is based on combines nonconvex and convex 

optimization techniques to remove the blur caused by diffraction. This comparison is not perfect 

because ADCG and DeepLoco localize fluorophores, and not the proteins that those fluorophores 

correspond to. Another difference is in data generation, DeepLoco method is not completely 

equal to the method used in this graduation thesis. Their results show DeepLoco RMSE in the  

range from 11,61 to 18,22 and ADCG RMSE in the range from 14,95 to 19,36 for low and high 

number of proteins per image respectively. And DeepLoco Jaccard index in the range from 0,89 

to 0,61 and ADCG Jaccard index in the range from 0,79 to 0,53 for low and high number of 

proteins per image respectively. It is important to note that low number of proteins per image 

reported in DeepLoco paper is lower than the one used in this graduate thesis. From the 

comparison of the results obtained by Boyd et al. 2018 it can be concluded, that RMSE and 

Jacard index have worse performance for images with a small number of proteins per image. 

This can be contributed to CNN training with images with high number of proteins per image, 

and can be fixed by using images with a smaller number of proteins per image for CNN training. 

Jaccard index and RMSE approach values similar to those of DeepLock and ADCG when the 
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number of proteins per image is high. This suggests the importance of CNN training with a 

representative data set. Because ADCG and DeepLoco localize fluorophores, and not proteins 

labeled by these fluorophores it is expected for them to have better performance due to them 

not needing to combine multiple fluorophores to calculate one protein position. By getting 

Jaccard index and RMSE values similar to ones gotten for a simpler task, it can be concluded that 

the CNN developed in this graduation thesis has a performance comparable to state of the art 

algorithms used in the field. 
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5. Conclusion 
 

After CNN was created and trained and its performance was evaluated on Jaccard index and 

RMSE following conclusions can be made: 

1. CNN encoder-decoder architecture is a good option for solving protein localization 

problem in super-resolution imaging. Further algorithms can be used to interpret 

CNN probability distribution and give point localizations for proteins. 

 

2. Proteins localized by high threshold will be closer to real protein localization then 

those localized with low threshold value, but algorithm will under estimate number 

of proteins.  

 

3. Proteins localized by low threshold will be further away from real protein localization 

then those localized with high threshold value, but number of proteins localized will 

be closer to reality. 
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7. Appendix 
 

Code 1. Simulation of input/ output images 

import numpy as np 

import scipy as scipy 

import matplotlib.pyplot as plt 

import pylab 

from itertools import chain 

from scipy.spatial.distance  

import pdist, squareform 

from scipy.special import erf 

from PIL import Image 

 

def generate_molecules(pixels,n,min_d): 

xn=np.random.uniform(0,(pixels-1),n) 

yn=np.random.uniform(0,(pixels-1),n) 

z=np.stack((xn,yn), axis=-1) 

     D = squareform(pdist(z)) + 1000*min_d*np.identity(n) 

     while D.min()<min_d: 

          nd1, ind2 = np.where(D <min_d) 

          unique = (ind1 < ind2) 

          ind1 = ind1[unique] 

xn[ind1]=xn[ind1]+np.random.normal(0,min_d,ind1.shape[-1]) 

yn[ind1]=yn[ind1]+np.random.normal(0,min_d,ind1.shape[-1]) 

          z=np.stack((xn,yn), axis=-1) 

          D = squareform(pdist(z)) + 1000*min_d*np.identity(n) 

     return [xn,yn] 

 

def frame_simulation(pixels,xn,yn,stdev, disp_locs): 

n=xn.shape[-1] 
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x=[] 

y=[] 

localization=np.random.geometric(p=0.2, size=n)   

     for i in range(0,n): 

Xij = np.random.normal(loc=0,scale=stdev, size=int(localization[i])) 

Yij = np.random.normal(loc=0,scale=stdev, size=int(localization[i])) 

x.append(xn[i] + Xij) 

y.append(yn[i] + Yij) 

x_unchain= np.asarray(list(chain.from_iterable(x))) 

y_unchain= np.asarray(list(chain.from_iterable(y))) 

    if disp_locs==1: 

          fig = plt.figure(1, figsize=(5.5,5.5)) 

plt.scatter(xn,yn,c='b',marker='+') 

plt.scatter(x_unchain,y_unchain,c='r',marker='.') 

plt.axis('equal') 

plt.xlim((0,pixels)) 

plt.ylim((0,pixels)) 

plt.gca().invert_yaxis() 

plt.show() 

     return [x_unchain,y_unchain] 

 

def MolKernel(x_inx,y_inx,x_pos,y_pos,stdev): 

[xx,yy] = np.meshgrid(x_inx,y_inx) 

img_kernel = (0.5*(erf(  np.true_divide( (xx-x_pos+0.5),(np.sqrt(2)*stdev) )  ) - erf(  
np.true_divide(  (xx-x_pos-0.5),(np.sqrt(2)*stdev) )  )))*( 0.5*(erf(   np.true_divide( (yy-
y_pos+0.5),(np.sqrt(2)*stdev)  )  ) - erf(  np.true_divide( (yy-y_pos-0.5),(np.sqrt(2)*stdev) )   
))) 

img_kernel=img_kernel/img_kernel.sum() 

return img_kernel 

 

def map_into_image(x,y,pixels, fact, st): 
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  M=np.zeros((pixels*fact,pixels*fact))     

     xx=np.linspace(0,fact*pixels-1,fact*pixels) 

yy=np.linspace(0,fact*pixels-1,fact*pixels)    

     for i in range(0,x.shape[-1]): 

img=MolKernel(xx,yy,fact*x[i],fact*y[i],fact*st) 

M=M+img 

      M=M/M.max()     

return np.asarray(np.uint16(M*(2**16-1))) 

 

def protein_position_cord_sys(x, y, pixels, fact): 

x = x.astype(int) 

y = y.astype(int) 

M=np.zeros((pixels*fact,pixels*fact)) 

     for i in range(0,len(x), 1): 

          M[y[i],x[i]] = 1 

     return M 

 

Code 2.  Image normalization and standardization 

 

import numpy as np 

 

def preprocessing (images): 

  images = images.astype('float32') 

     for i in range(0,images.shape[0]): 

         image = images[i] 

       image = np.squeeze(image) 

         min_val = image.min() 

         max_val = image.max() 

         image = (image - min_val)/(max_val - min_val) 

         isd = np.std(image) 
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         imean = np.mean(image) 

         image = (image- imean)/isd 

         images[i] = image 

     return images 

 

Code 3.  Image formatting for CNN and CNN architecture plus code used to save training 
process and trained CNN 

 

from os.path import exists  

from os import mkdir 

import numpy as np 

import tensorflow as tf 

from keras import backend as K 

from keras.callbacks import ModelCheckpoint, ReduceLROnPlateau 

from keras.layers import Input, Activation, UpSampling2D, Convolution2D, MaxPooling2D, 
BatchNormalization 

from sklearn.model_selection import train_test_split 

from keras.models import model_from_json, Model 

from keras import backend as K 

from keras import optimizers 

from keras import losses 

import math 

from PIL import Image 

 

def CNN_model_1(train, result, n, dirName, n_epoc, batch_size_n): 

     train = preprocessing(train) 

 image_train, image_test, result_train, result_test = train_test_split(train, result, 
test_size=0.3, random_state=42) 

     n_pixel_image = image_train.shape[1] 

     n_pixel_result = result_train.shape[1] 

     image_train = image_train.reshape(image_train.shape[0], n_pixel_image, n_pixel_image, 1) 
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     result_train = result_train.reshape(result_train.shape[0], n_pixel_result, n_pixel_result, 1) 

     image_test = image_test.reshape(image_test.shape[0], n_pixel_image, n_pixel_image, 1) 

     result_test = result_test.reshape(result_test.shape[0], n_pixel_result, n_pixel_result, 1) 

def conv_bn_relu(nb_filter, rk, ck, name): 

          def f(input): 

               conv = Convolution2D(nb_filter, kernel_size=(rk, ck), strides=(1,1), 

                                    padding="same", use_bias=False, 

                                    kernel_initializer="Orthogonal",name='conv-'+name)(input) 

               conv_norm = BatchNormalization(name='BN-'+name)(conv) 

 conv_norm_relu = Activation(activation = 'relu',name='relu-
'+name)(conv_norm) 

               return conv_norm_relu 

          return f 

     def CNN(input, name): 

          f1 = conv_bn_relu(16,5,5,name+'F1')(input) 

          f2 = conv_bn_relu(16,5,5,name+'F2')(f1) 

          pool1 = MaxPooling2D(pool_size=(2,2),name=name+'Pool1')(f2) 

          f3 = conv_bn_relu(32,5,5,name+'F3')(pool1) 

          f4 = conv_bn_relu(32,5,5,name+'F4')(f3) 

          pool2 = MaxPooling2D(pool_size=(2,2),name=name+'Pool2')(f4) 

          f5 = conv_bn_relu(64,5,5,name+'F5')(pool2) 

          f6 = conv_bn_relu(64,5,5,name+'F6')(f5) 

          pool3 = MaxPooling2D(pool_size=(2,2),name=name+'Pool3')(f6) 

          f7 = conv_bn_relu(128,5,5,name+'F7')(pool3) 

          f8 = conv_bn_relu(128,5,5,name+'F8')(f7) 

          up1 = UpSampling2D(size=(2, 2),name=name+'Upsample1')(f8) 

          f9 = conv_bn_relu(64,5,5,name+'F9')(up1) 

          f10 = conv_bn_relu(64,5,5,name+'F10')(f9) 

          up2 = UpSampling2D(size=(2, 2),name=name+'Upsample2')(f10) 

          f11 = conv_bn_relu(32,5,5,name+'F11')(up2) 
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          f12 = conv_bn_relu(32,5,5,name+'F12')(f11) 

          up3 = UpSampling2D(size=(2, 2),name=name+'Upsample3')(f12) 

          f13 = conv_bn_relu(16,5,5,name+'F13')(up3) 

          f14 = conv_bn_relu(16,5,5,name+'F14')(f13) 

          up4 = UpSampling2D(size=(2, 2),name=name+'Upsample4')(f14) 

          f15 = conv_bn_relu(8,5,5,name+'F15')(up4) 

          f16 = conv_bn_relu(8,5,5,name+'F16')(f15) 

         return f16        

     def buildModel(input_dim_1): 

          input_ = Input (shape = (input_dim_1)) 

          act_ = CNN (input_,'CNN') 

          density_pred = Convolution2D(1, kernel_size=(1, 1), strides=(1, 1), padding="same", 

activation="sigmoid", use_bias = False, 
kernel_initializer="Orthogonal",name='Prediction')(act_) 

          model = Model (inputs= input_, outputs=density_pred) 

          opt = optimizers.Adam(lr=0.001)  

          model.compile(optimizer=opt, loss = 'binary_crossentropy')  

         return model 

 checkpointer = ModelCheckpoint("%s/Model_N_prot_%d_weights.h5" % (dirName, n), 
verbose=0, save_best_only=True, save_weights_only=True) 

     K.set_image_dim_ordering('tf')  

 change_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=5, 
min_lr=0.00000005) 

     model = buildModel((n_pixel_image, n_pixel_image, 1)) 

 

     if not exists('%s/model_architecture.json' % dirName): 

          with open("%s/model_architecture.json" % dirName, 'w') as f: 

               f.write(model.to_json()) 

  validation_loss = []  

     loss = [] 
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model_history = model.fit(image_train, result_train, epochs=n_epoc 
,batch_size=batch_size_n,validation_data=(image_test, result_test),callbacks=[change_lr, 
checkpointer], verbose=2) 

     validation_loss.append(model_history.history['val_loss']) 

     validation_loss = np.array(validation_loss) 

     validation_loss = validation_loss.transpose() 

    loss.append(model_history.history['loss']) 

     loss = np.array(loss) 

     loss = loss.transpose() 

     Out = np.column_stack((loss, validation_loss)) 

     np.savetxt('%s/Validation_loss_loss_N_prot_%d.dat' % (dirName, n), Out) 

 

Code 4.  Localization algorithm for CNN localization probabilities and validation 

 

from skimage import io, measure 

import numpy as np  

from scipy.spatial.distance import cdist 

import math 

 

def jacc_ind_RMSE(model, network_input, network_output, threshold, pixsize, zoomfact): 

     intersect = 0 

     n_model = 0 

     n_gt = 0 

     dist_sqrt = 0 

     n_assigned = 0 

     n_pixel_image = network_input.shape[1] 

     for im_ind in range(0,network_input.shape[0],1): 

          image_x = network_input[im_ind] 

          image_x = image_x.reshape(1,n_pixel_image, n_pixel_image, 1) 

          prediction = model.predict(image_x) 

          prediction = np.squeeze(prediction) 
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          prediction = np.interp(prediction, (prediction.min(), prediction.max()), (0, 1)) 

          prediction = measure.label(prediction > threshold) 

          centroids_model = measure.regionprops(prediction) 

          x_cor_m = [] 

          y_cor_m = [] 

          for i in range(0, len(centroids_model), 1): 

               x_cor_m.append(centroids_model[i]['centroid'][1]) 

               y_cor_m.append(centroids_model[i]['centroid'][0]) 

          model_cord = np.stack((x_cor_m,y_cor_m), axis = 1) 

          res_x = network_output[im_ind] 

          x_cor_gt = [] 

          y_cor_gt = [] 

          for i in range (0, res_x.shape[0], 1): 

               for j in range(0, res_x.shape[1] ,1): 

                   if res_x[i,j] == 1: 

                        x_cor_gt.append(j) 

                        y_cor_gt.append(i) 

          gt_cord = np.stack((x_cor_gt,y_cor_gt), axis = 1) 

          euclidian_distance =  cdist(model_cord, gt_cord, metric = 'euclidean') 

          for i in range(0, euclidian_distance.shape[0], 1): 

mat_ind = np.unravel_index(euclidian_distance.argmin(), 
euclidian_distance.shape) 

               min_value = euclidian_distance[mat_ind] 

               euclidian_distance[mat_ind[0],:] = 'inf' 

               euclidian_distance[:,mat_ind[1]] = 'inf' 

               if min_value < 50/(pixsize/zoomfact): 

                   intersect += 1 

                   dis_nm = min_value * pixsize 

                   dist_sqrt += dis_nm * dis_nm 

                   n_assigned += 1 



32 
 

           n_model += len(model_cord) 

           n_gt += len(gt_cord) 

      jaccard_index = intersect / (n_gt + n_model - intersect) 

      if n_assigned == 0: 

           RMSE = math.inf  

      else: 

           squerd_mean_error = dist_sqrt / n_assigned 

          RMSE = math.sqrt(squerd_mean_error)  

     return(jaccard_index, RMSE) 
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