
Primjena konvolucijske neuronske mreže u brojanju i
lokalizaciji proteina fotografiranih super-
rezolucijskom mikroskopijom

Meić, Ivan

Master's thesis / Diplomski rad

2020

Degree Grantor / Ustanova koja je dodijelila akademski / stručni stupanj: University of
Zagreb, Faculty of Science / Sveučilište u Zagrebu, Prirodoslovno-matematički fakultet

Permanent link / Trajna poveznica: https://urn.nsk.hr/urn:nbn:hr:217:020655

Rights / Prava: In copyright / Zaštićeno autorskim pravom.

Download date / Datum preuzimanja: 2024-04-28

Repository / Repozitorij:

Repository of the Faculty of Science - University of
Zagreb

https://urn.nsk.hr/urn:nbn:hr:217:020655
http://rightsstatements.org/vocab/InC/1.0/
http://rightsstatements.org/vocab/InC/1.0/
https://repozitorij.pmf.unizg.hr
https://repozitorij.pmf.unizg.hr
https://zir.nsk.hr/islandora/object/pmf:8415
https://repozitorij.unizg.hr/islandora/object/pmf:8415
https://dabar.srce.hr/islandora/object/pmf:8415

University of Zagreb

Faculty of Science

Department of Biology

Ivan Meić

Application of convolutional neural network for protein counting and
localization photographed by super-resolution microscopy

Primjena konvolucijske neuralne mreže u brojanju i lokalizaciji proteina
fotografiranih super-rezolucijskom mikroskopijom

Graduation Thesis

Zagreb, 2020.

This graduation thesis was conducted at University of Vic – Central University of Catalonia, Vic,

Spain, under supervision of dr.sc. Carlo Manzo. This thesis was submitted for evaluation to the

Department of Biology, Faculty of Science at University of Zagreb with aim of obtaining title

Master of Molecular Biology.

BASIC DOCUMENTATION CARD

University of Zagreb

Faculty of Science

Department of Biology Graduation thesis

Application of convolutional neural network for protein counting and

localization photographed by super-resolution microscopy

Ivan Meić

Rooseveltov trg 6, 10000 Zagreb, Croatia

In recent years novel microscopy techniques have led to the development of super-resolution

imaging with increased resolution compared to conventional microscope techniques. A branch

of super-resolution microscopy, based on single-molecule localization that includes techniques

such as Photoactivated localization microscopy (PALM) and Stochastic Optical Reconstruction

Microscopy (STORM), enables researchers to study cellular processes with increased resolution.

Single-molecule localization microscopy relies on collecting a set of images where only a subset

of optically resolvable fluorophores is emitting light. The analysis of these images allows for

reconstruction of high-quality super-resolution images. This graduation thesis proposes a further

step in super-resolution image analysis, based on the analysis of individual protein localization. It

proposes to use the multiple counts produced by a single protein to predict its position. Position

is predicted beyond overcounting artifact through a neural network, in order to predict the

protein number and position. Counting proteins from super-resolution image is a problem

because of fluorophore overcounting. Unlike previous papers trying to solve this problem, this

graduation thesis does not use any modelling and relies only on neural network's ability to learn

from data. This approach provides researchers with a fast performing algorithm that requires

minimal knowledge about neural networks and image analysis. The main object of this

graduation thesis is to create and measure how well the state of the art image processing neural

network can localize and count proteins.

(24 pages, 15 figures, 2 tables, 18 references, original in English)

Thesis deposited in Central Biological Library

Keywords: super-resolution microscopy, CNN, machine learning, protein counting and

localization

Supervisors: Assoc. Prof. Carlo Manzo and Assoc. Prof. Damjan Franjević

Reviewers: Assoc. Prof. Damjan Franjević, Assist. Prof. Rosa Karlić, Assist. Prof. Sunčica Bosak,

Assoc. Prof. Inga Marijanović

Thesis accepted: 19. 2. 2020.

TEMELJNA DOKUMENTACIJSKA KARTICA

Sveučilište u Zagrebu

Prirodoslovno-matematički fakultet

Biološki odsjek Diplomski rad

Primjena konvolucijske neuralne mreže u brojanju i lokalizaciji proteina

fotografiranih super-rezolucijskom mikroskopijom

Ivan Meić

Rooseveltov trg 6, 10000 Zagreb, Hrvatska

Razvoj novih tehnika mikroskopije tijekom proteklih nekoliko godina doveo je do razvoja super-

rezolucijske mikroskopije s povećanom rezolucijom u odnosu na konvencionalne tehnike

mikroskopije. Grana super-rezolucijske mikroskopije, bazirana je na lokalizaciji jedne molekule i

uključuje tehnike “Photoactivated localization microscopy” (PALM) i “Stochastic Optical

Reconstruction Microscopy” (STORM), koje omogućuju znanstvenicima proučavanje staničnih

procesa s povećanom rezolucijom. Mikroskopija lokalizacije jedne molekule oslanja se na

prikupljanje seta slika gdje samo podskup optički razlučivih fluorofora emitira svjetlost. Analiza

tih slika omogućuje rekonstrukciju visoko kvalitetnih super-rezolucijskih slika. Ovaj diplomski rad

predlaže sljedeći korak u analizi super-rezolucijskih slika, baziran na analizi lokalizacije pojedinog

proteina. Rad upotrebljava višestruko brojanje signala jednog proteina za predviđanje pozicije

proteina. Predviđena lokalizacija nadilazi artefakte višestrukog brojanja kroz upotrebu neuralne

mreže, s ciljem brojanja i lokalizacije protein. Brojanje proteina sa slika super-rezolucijske

mikroskopije predstavlja problem zbog višestrukog brojanja fluorofora. Za razliku od ostalih

radova koji pokušavaju riješiti ovaj problem, ovaj diplomski rad ne koristi modeliranje nego se

oslanja na sposobnost neuralne mreže da ući iz podataka. Ovaj pristup pruža znanstvenicima

brzo izvršavajući algoritam koji zahtjeva minimalno znanje o neuralnim mrežama i analizi slika.

Glavni cilj ovog diplomskog rada je izraditi i izmjeriti koliko dobro suvremena neuralna mreža za

obradu slika može lokalizirati i prebrojati proteine.

 (24 stranice tekste, 15 slike, 2 tablica, 18 literaturnih izvora, jezik izvornika: engleski)

Rad je pohranjen u Središnjoj biološkoj knjižnici

Ključne riječi: super-rezolucijska mikroskopija, CNN, strojno učenje, brojanje i lokalizacija

proteina

Voditelji: izv. prof. dr. sc. Carlo Manzo i izv. prof. dr. sc. Damjan Franjević

Ocjenitelji: izv. prof. dr. sc. Damjan Franjević, doc. dr. sc. Rosa Karlić, doc. dr. sc. Sunčica Bosak,

izv. prof. dr. sc. Inga Marijanović

Rad prihvaćen: 19. 2. 2020.

List of abbreviations:

NN – neural network

CNN – convolutional neural network

RMSE- root mean square error

ML – machine learning

Contents
1. Introduction ... 1

1.1. Microscopy and machine learning ... 1

1.2. Super-resolution microscopy ... 1

1.3. Machine learning and deep learning .. 2

1.4. Generalization .. 3

1.5. Neural networks ... 3

1.5.1. Basics of Neural Networks ... 3

1.5.2. Convolutional neural network (CNN) .. 6

1.6. Objective of the experiment .. 8

2. Materials and methods ... 9

2.1. Super-resolution image generation ... 9

2.2. Image normalization and standardization.. 9

2.3. CNN architecture .. 10

2.4. Training ... 10

2.5. Localization algorithm for CNN localization probabilities and validation 10

3. Results ... 12

4. Discussion .. 18

5. Conclusion ... 21

6. References ... 22

7. Appendix .. 24

8. Curriculum vitae .. 33

1

1. Introduction

1.1. Microscopy and machine learning

Microscopy has been a major tool in cell biology for centuries. It has been used for a

wide range of application from visualizing cellular processes to use in diagnostics. In the past

couple of years a set of unique challenges has arisen in microscopy. These problems arise from

the huge amount of data generated by microscopy aided by high-throughput imaging techniques

and need to analyze that data effectively. These kinds of problems can be efficiently solved with

machine learning (ML). Image pattern recognition has been a challenge for ML until early 2010s

when deep learning based on neural networks (NN) became promising tool for image pattern

recognition. Examples of problems that can be solved with this novel technique include image

labeling for big data sets, image segmentation which includes finding cells and sub-cellular

structures on images and image super-resolution microscopy. Synergy between machine

learning research especially CNN and microscopy is novel, with most of papers on this topic

appearing in the last couple of years (Von Chamier et al. 2019).

1.2. Super-resolution microscopy

There is a fundamental limit to resolution for all conventional microscopy methods called

Abbe’s diffraction limit. It states that spatial resolution is approximately half of optical

wavelength. All cellular processes and structures that occur on a smaller scale than the ones

defined by visible light and Abbe’s law should be studied and visualized with other methods. To

work around this problem novel methods have been developed, including stimulated emission

depletion, structured illumination microscopy and localization microscopy (Nehme 2018).

Localization microscopy includes techniques such as Photoactivated localization microscopy

(PALM) (Betzig et al. 2006) and Stochastic Optical Reconstruction Microscopy (STORM) (Betzig et

al. 2006). Localization microscopy relies on collecting images containing light emissions from a

set of nanometer size fluorophores. The first step in performing an experiment is to attach

nanoscale fluorophores to sample. These fluorophores can transition to active state after light

excitation. In active state fluorophores can either go to dark state while emitting light and

afterwards be reactivated again multiple times or it can get photo-bleached meaning that

fluorophore will not emit light again. Fluorophore’s ability to transition from activated to dark

state multiple times results in a process called fluorophores blinking. Second step takes a series

of microscopy images after exposure to light, sample can be exposed to light multiple times.

After every light exposure fluorophores will start emitting light stochastically, meaning not all

fluorophores emit at the same time but only a subset of them. Fluorophores in images cannot

have overlapping emission signals because those signals cannot be resolved. To avoid

overlapping signals fluorophores need to be spatially separated and if possible separated in time,

this separation is achieved through blinking (Rollins et al. 2014). Afterwards each frame is

analyzed to determine fluorophores localizations and collection of analyzed frames is then used

2

to construct a single image with higher resolution than one defined by Abbe’s law (Boyd et al.

2018).

The problem of constructing a single image has been solved with a variety of algorithms.

Algorithms based on sequential fitting of emitters followed by subtraction of the model PSF,

blinking statistic, sparsity, multi-emitter maximum likelihood estimation, single-image super-

resolution by directory learning and CNN named Deep-STORM (Nehme 2018). Aim of all these

algorithms is to reduce fluorophore signal area on microscopy images. The field of super

resolution image analysis has so far been mostly concentrated on constructing a super-

resolution image with previously mentioned algorithms. Besides constructing a super-resolution

image it is also important to find fluorophore localizations and to count fluorophores from set of

frames or from super-resolution image. The task of counting and localization is an important

problem in the field of quantitative bioimaging, which is trying to quantify and measure

biological properties from bioimages. Due to fluorophore blinking and signal overlaps it is not

possible to simply localize and count fluorophores and equate signals to labeled cell structure or

protein. As is described above, fluorophores do not emit just one signal instead they can appear

multiple times. This makes for good separation in space and time, but if every signal is counted

as one fluorophore it will lead to overcounting. The number of times one fluorophore blinks

depends on the experimental condition and used fluorophores. The number of blinks per

fluorophore can be modeled with geometric distribution (Lee et al. 2012). Depending on the

experimental condition and used fluorophore overcounting problem can be severe. This problem

is so far mostly resolved with modeling fluorophore blinking (Lee et al. 2012, Rollins et al. 2014,

Nieuwenhuizen et al. 2015, Fricke et al. 2015, Nicovich et al. 2017). To resolve the localization

and counting problem this graduation thesis proposes to use a neural network able to take in

super-resolution images and predict protein localizations. The next section will introduce basic

concepts of neural networks needed to understand this thesis.

1.3. Machine learning and deep learning

ML describes a group of algorithms able to learn from examples unlike other algorithms

which are programmed by hand to do specific tasks (Goodfellow et al. 2016). ML algorithm starts

with a mathematical model whose parameters are free to vary. To estimate the correct values of

the parameters data is presented to a ML model, usually pairs of input and output data. ML

parameters are then changed to best describe input output dependence. For example, if the task

is to predict if the cat is present in the image ML approach is to present a ML model with labeled

images with and without cat and let the ML algorithm set parameters. To solve this problem with

other algorithms the programmer would need to code rules in the algorithm to make that

prediction. ML encapsulates a vast range of algorithms, from simple ones like linear regression to

more complex ones like deep neural networks. For ML to be applicable to a problem two

conditions need to be met: first it is not clear how to write a program to perform a task and

second there is available data for a program to learn from. With the rising of available data and

improvements in processing speed machine learning research and application has been on a rise

for past few decades. These two phenomena have especially helped deep learning to reach

3

practical application. Deep learning is a subset of neural networks with multiple hidden layers.

This graduation thesis uses deep convolutional neural network and the next sections will

describe the main ideas and problems relevant to the application of this method.

1.4. Generalization

Generalization is an ability of ML algorithms to predict correct answers for data points it

has never seen. ML models have two pitfalls. First is a simple model that is unable to find

meaningful aspect of data for correct prediction. In this case the ML model will underperform

because important aspects of data are ignored. To fix this problem a more complex ML model

should be chosen. Second pitfall is an opposite, the model can be too complex and it falls short

on unseen data while excelling on data it was trained on. In this case ML model treats noise in

data as an important aspect in forming a prediction. This is a well know problem named

overfitting. Generalization guides programmer while developing ML model to avoid pitfalls and

find a ML model with enough complexity to handle the task at hand, but at the same time avoid

overfitting. This makes generalization an important ML model performance metrics (Bishop.

2006). To measure the ML model generalization ability available data is usually split into two

categories: train data that is used while the ML model is being trained and validation data that is

used to evaluate trained ML model performance.

1.5. Neural networks

NN represents a type of machine learning algorithm. There is a variety of different types

of NN specific for different application based on data structure, but the bases for all of them are

the same. In this section basic NN concepts will be explained after which convolutional neural

networks (CNN) specifics will be explained.

1.5.1. Basics of Neural Networks

NNs are ML models loosely based on a way human brain works. The entire field was

started from a desire to understand and model human brain. At the beginning most ideas in NN

research were based on neurophysiology ever since the field is moving away from

neurophysiology and is adopting ideas from mathematics and statistics. Currently the field has

completely moved from neurophysiology to data modeling tool (Rojas 1996).

NN building blocks and fundamental units are neurons, which are nothing like human

neurons and actually represent mathematical operations shown in Figure 1. The first neuron

operation is the weighted sum of neuron input points. In some cases, it is beneficial to add bias

to resulting weighted sum. After summation the result is passed through an activation function

(Bishop 2006).

4

𝑓(𝑏 + ∑ 𝑥𝑖 ∗ 𝑤𝑖

𝑛

𝑖=1

)

Figure 1. Operation performed by one neuron. f is an activation function, B represents bias, xi are input values and wi are
corresponding weights.

Activation functions are different functions whose main role is to introduce nonlinearity

to NNs. Nonlinearity is one of the most important properties of NNs that enables them to

become universal approximators (Hornik 1991). Without activation functions the NN is reduced

to linear regression. The second important reason to use an activation function is to limit neuron

output values in a range. Having a range of values enables neural outputs to be treated as

probability if the range is between 0 and 1. Having a range of values for a neuron's output also

reduces problems during NN training with exploding and vanishings gradients (Goodfellow et al.

2016). Examples of activation functions used most commonly are ReLu and sigmoid function

shown in Figure 2.

𝑅𝑒𝐿𝑢(𝑥) = max (0, 𝑥)

𝜎(𝑥) =
1

1 + 𝑒−𝑥

Figure 2. Shows ReLu and sigmoid functions ReLu activation function returns the input value if it is bigger than zero,
otherwise it is zero or less function returns zero. Sigmoid function symbolized with 𝝈 , has important property of returning

values from 0 to 1 for any input.

Neurons are grouped into layers. NNs have 3 basic types: input layer, hidden layer and
output layer (Bishop 2006), the NN scheme is shown in Figure 3. Input layer is the first layer
responsible for taking on input values. Neurons in an input layer are unlike other neurons
because they represent input to a network and do not perform any mathematical operation. E.g.
if NN is built to predict the price of a house based on: number of rooms, number of bathrooms
and house area. Number of neurons in input layer is three. Hidden layers are the heart of a NN
they perform an operation described above. Number of neurons in a hidden layer and number of
hidden layers in a NN can vary significantly depending on a problem at hand. Output layer gives a
final NN prediction. It is constructed depending on how many predictions NN needs to output.
Activation functions in output layer usually differ from one used in the hidden layer, they
dependent on NN prediction type. E.g. from the previous house example number of neurons in
output layer is one, it is house price. The activation function would be linear because it needs to
output a price not a probability of an event.

5

Figure 3. Example of NN’s graphical representation taken form Bre et al. (2018).

To find an optimal weight for each neuron is a complicated task, especially for NN with

multiple hidden layers. Backpropagation algorithm is used to solve this problem. The first

requirement is to define a loss function. Loss function is a NN performance estimator, it uses a

distance measure between correct answers and NN prediction (Bishop 2006). E.g. for our house

price example loss function could be a root mean square error. Backpropagation goal is to

minimize loss function, which makes NN prediction more correct. To minimize loss function

derivative of loss function is calculated. Partial derivation for every parameter in a layer is

calculated using chain rule of derivation. Starting from a last hidden layer, layer-by-layer partial

derivations are calculated going to the first hidden layer. Backpropagation got its name due to

this process of going backwards through a network. After derivation for every parameter in a NN

is calculated it is time to change those parameters. There is a range of different optimization

parameters with combined information from current variable value and its derivation to

calculate a new value for a parameter. Besides derivation and current value every optimization

algorithm takes in a learning rate as an input. Learning rate regulates parameter change in every

step. A bigger learning rate value will change NN parameter faster, a smaller learning rate on the

other hand will change NN parameter values slowly. Combining these three inputs optimization

algorithm calculates new parameter values. Currently there are multiple optimization algorithms

to choose from, but at its core they are all based on a simple rule current value is subtracted

from partial derivation for parameter multiplied with learning rate (Bishop 2006), the equation is

shown in Figure 4.

6

𝜃𝑝: = 𝜃𝑝 − 𝛼
𝜕

𝜕𝜃𝑝
𝐽(𝜃𝑝)

Figure 4. The basic equation for optimization algorithm. 𝜽𝒑 is NN parameter, 𝜶 is learning rate,
𝝏

𝝏𝜽𝒑

𝑱(𝜽𝒑) represent loss

function partial derivative with respect to 𝜽𝒑.

Backpropagation and optimization can be executed on all examples at one or on a subset

of examples, these methods are called batch gradient descent and stochastic gradient descent,

respectively. One cycle of performing optimization on all examples is called an epoch. Number of

epochs determines how many times process of weights adjustment will be done across all

training examples (Wilson and Martinez 2003).

After the training process is completed NN performance is tested on examples NN has

not seen before. This step tests NN generalization ability. Overall quality of NN is based on

generalization ability and is used to guide next step of the NN design process.

1.5.2. Convolutional neural network (CNN)

To analyze images with classical NN every grayscale pixel is represented by one number

and for a typical colored image every pixel is represented by three numbers. If the size of an

image is 620x480 pixels2 it means it has 297 600 pixels. If that image is grayscale its NN would

have 297 600 neurons in the input layer and if it is a typical colored image its NN would have 892

800 neurons in the input layer. Classical NN would require an enormous number of parameters

just for first hidden layer. Such an enormous amount of parameters just for first layer would

make classical NN hard to train and its performance would be slow after training. Probably the

biggest problem would be NN susceptibility to overfitting.

Another specific requirement for images is translational pattern recognition. Pattern

position in an image is not important, the only important thing is the pattern’s presence or

absence. For example, if NN task is to locate abnormal cell among healthy ones, abnormal cell

position and special rotation is not an important factor. Classical NN are unequipped for this

problem because they treat every pixel separately from one a nether. One pixel should be

treated in the context of surrounding pixels.

To solve these problems CNN uses convolution operation between a filter and a part of

an image. Filter is a n x n matrix, convolution operation is a dot product between the filter and

part of an image plus bias. Convolution is applied to one part of the image afterwards filter is

moved to a next position and applied again process is repeated across all of an image

(Goodfellow et al. 2016). This process replaces a classical neuron that was explained above.

Because a filter is usually significantly smaller than the image number of parameters is drastically

reduced. Most commonly used filter sizes are 3x3, 5x5, 7x7 and 9x9. To visualize a scale of

parameter reduction let’s look at previously mentioned 620x480 pixels2 image that would have

297 600 neurons in the input layer for classical NN, if that network had ten filters of size 9 for

inpute layer it would only require 640 parameters instead of 297 600. The second benefit of

filter usage is filter application across different image sections. This enables filter to specialize in

7

recognition of a single pattern. His application across all image positions means it can recognize

a pattern at any image position. Third benefit is in filter construction itself, because filter is a

matrix it takes image subset equal to filter size not a single pixel. This means filter interprets part

of an image in context, not a single pixel out of context.

Stride is used to specify filters shift. For example, if the stride is (2,2) it means the filter

will be moved 2 pixels in horizontal direction and when the filter is moved in vertical direction it

will be moved by 2 pixels as well. Applying a filter this way will result in lower usage of pixels at

image edges. To solve this problem image size can be extended by adding more values at the

image edge by a process called padding. Added values are usually just zeros. Padding is usually

used to preserve the image size from one layer to the next and to use pixels at an image edge

same number of times as rest of pixels.

Part of most of modern CNNs is pooling layer. Pooling layer separates image form

previous layer into equal parts based on pool size and returns one number from image subsets.

Most commonly used pooling is maxpooling. It takes image subset and outputs the maximum

value from that subset, another example is average pooling which return image subset average.

Pooling main role is to reduce the number of parameters in a network, making the training

process faster and network more computationally manageable (Goodfellow et al. 2016).

The opposite process of pooling is upsampling. It repeats input across a defined number

of columns and rows. Upsampling is a computationally cheap way to increase image from one

layer to the next. Its role is to achieve desirable image size.

8

1.6. Objective of the experiment

1. Create and optimize CNN architecture with the capability to predict the probability

density for protein position and estimate the number of proteins from single molecule

localization microscopy.

2. Develop an algorithm for protein localization from the CNN localization probability

output.

3. Benchmark the model by measuring the CNN performance with Jaccard index and RMSE.

9

2. Materials and methods

This graduation thesis describes CNN that takes as input super resolution image and

outputs image containing protein localization probability. Second part of this graduation thesis

describes an algorithm used for protein localization bases on CNN predicted probabilities. After

proteins have been localized Jaccard index and RMSE are calculated. Algorithms were written in

Python 3.7, Keras library (Chollet 2015) back by TensorFlow was used to write CNN.

2.1. Super-resolution image generation

The first step in super-resolution image generation is to simulate protein coordinate

positions. To do it x and y protein coordinates are sampled from uniform distribution, if the

distance between two coordinate point is smaller than critical distance one coordinate will be

moved by value sampled from a normal distribution with mean zero and standard deviation

equal to critical distance. Critical distance is equal to the smallest assumed distance between

two proteins in super-resolution image. When scaled, these coordinates represent output data

for CNN. The next step in super-resolution image generation is to assign fluorophores to protein

positions. Number of fluorophores assigned to a protein is sampled from a geometric

distribution whose parameter is set to 0.2. Fluorophores are positioned around proteins by

adding protein coordinate to values sampled from a normal distribution with mean zero and

standard deviation equal to super-resolution microscopy localization precision. Fluorophores

localizations are then rendered with Gaussian blur to create final super-resolution image. The

code is based on DEEP-STORM paper (Nehme 2018).

Images were simulated with Code 1. (see Appendix). Code 1 was written by Carlo Manzo.

Generated input images have 45 proteins per image, pixel size of 25 nm, super resolution

localization precision of 1 nm and protein dimensions of 0.2 nm. Rendering factor 5 meaning

after rendering pixel size is 5. The output image is a grid with zeros except for protein position

coordinates where it is one. The output image is twice the size of input image, meaning that the

zoom factor is 2.

2.2. Image normalization and standardization

To secure better convergence properties input image set is normalized and standardized.

First all values are converted to float values. Every image is then individually scaled to zero to 1

range using the formula in Figure 5.

𝑛𝑒𝑤_𝑖𝑚𝑎𝑔𝑒 =
𝑖𝑚𝑎𝑔𝑒 − 𝑖𝑚𝑎𝑔𝑒. 𝑚𝑖𝑛𝑖𝑚𝑢𝑚

𝑖𝑚𝑎𝑔𝑒. 𝑚𝑎𝑥𝑖𝑚𝑢𝑚 − 𝑖𝑚𝑎𝑔𝑒. 𝑚𝑖𝑛𝑖𝑚𝑢𝑚

Figure 5. Image normalization formula.

After normalization image is standardized to mean zero with standard deviation equal to 1 using

the formula in Figure 6.

10

𝑛𝑒𝑤_𝑖𝑚𝑎𝑔𝑒 =
𝑖𝑚𝑎𝑔𝑒 − 𝑖𝑚𝑎𝑔𝑒. 𝑚𝑒𝑎𝑛

𝑖𝑚𝑎𝑔𝑒. 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑_𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

Figure 6. Image standardization formula.

Code for image preprocessing can be found in the Appendix, Code 2.

2.3. CNN architecture

Convolution process used in a network is composed of 3 layers. First layer does standard

convolution without applying any activation function and without a bias. Stride is one in

horizontal and vertical direction and filter size is 5 x 5. Convolution results are normalized by

batch in a second layer. Third layer applies a ReLu activation function to normalize data. This

layer will be named conv_bn_relu.

The network has encoder-decoder architecture. Encoder stage consists of repeating two

conv_bn_relu followed by maxpooling layer. Every pooling layer halves image output size. This

layer schedule doubles number of filters in every block starting from 16 to 128. Decoding stage

starts after and uses the same block structure except instead of maxpoolng it uses upsampling.

Number of filters is halved in every block from 128 to 8 and output image size is doubled. Last

layer in a network is a conventional layer with applied sigmoid function.

2.4. Training

The network was trained with 2000 pairs of network input/output images with train

validation split 70 : 30.

Only two classes of output prediction exist. Either the coordinate is a protein location

labeled with one or it is not in which case it is labeled with zero. Binary loss function is one best

suited for the given problem and is used to train a network. The network was trained with Adam

optimizer over 100 epochs and batch size of 32. Learning rate was set to 0,001 with a new

learning rate set if the validation data set loss has not been reduced for 5 epochs. The newly

selected learning rate is half of previous value. Training process has been run on The Institute of

Photonic Sciences (ICFO) server. Code for CNN architecture and training can be found in the

Appendix, Code 3.

2.5. Localization algorithm for CNN localization probabilities and validation

The first stage of the network localization algorithm is to convert the probability
distribution given by the network to location coordinates. Network probabilities predictions are
converted to a range from 0 to 1. This conversion makes it easy to choose a threshold value
above which network predictions are considered valid. Pixels are then grouped to a same group
if they are above threshold value and if they are one pixel away from a group in all directions.

11

Regions’ centroids are calculated afterwards, they represent protein localization. Localization is
than followed by validation.

Performance metrics are Jaccard index and root mean square error (RMSE).

Jaccard index

Jaccard index is defined as the ratio between number of elements in overlapping sets

and number of elements in union set. The element is in overlapping set if the Euclidean distance

between centroids is smaller than 20 nm. Union set is calculated as the sum of elements in both

sets minus overlapping set.

Root mean square error (RMSE)

Root mean square error, shown in Figure 7., is the square root of the quotient of

summed squared Euclidean distances and number of samples.

𝑹𝑴𝑺𝑬 = √
∑ (𝒚𝒑𝒓𝒆𝒅 − 𝒚𝒄𝒐𝒓𝒓)𝟐𝒏

𝒊

𝒏

Figure 7. RMSE formula ypred is algorithm prediction, ycorr is correct value and n is number of elements used in calculation

The first step of validation is to calculate Euclidean distances are between all predicted

protein localizations and correct protein localizations. Points corresponding to smallest

Euclidean distance are then classified to overlapping set if their Euclidean distance is smaller

than 20 nm. Overlapping threshold value of 20 nm is chosen as it is the typical localization

precision of STORM method. If point is in an overlapping set its Euclidean distance will be used

to calculate RMSE. Centroids corresponding to that distance will be removed from a list of

Euclidean distances and new smallest value will be chosen and process repeated until all

Euclidean distances are processed. Last step is to calculate the Jaccard index and RMSE after the

algorithm has gone through all images. Descriptive localization and validation algorithm can be

found in the Appendix, Code 4.

12

3. Results

Figures 8. and 9. show side by side comparisons between a) simulated super-resolution

microscopy image before rendering with specified correct protein localizations and b) super-

resolution image after rendering, c) CNN network prediction and d) image with true and

predicted protein position. Examples given in Figures 8. and 9. clearly show CNN ability to reduce

the space of possible fluorophores localizations in a non trivial way for super-resolution images.

To give a clearer example of CNN localization ability Figure 10. shows post-CNN prediction

analysis steps required to localize fluorophores. Visualized steps are described in a CNN

validation algorithm, Figure 10. includes steps until Euclidean distance calculation.

Figure 8. Image creation steps (a, b) and protein localization prediction steps (c, d) for images with 5 proteins per image. a)
shows first two steps in image generation with Code 1, green dots represent protein location and yellow represent
fluorophores location, b) final product of Code 1. is rendered microscopy image for STORM method, c) localization

probability predicted with CNN used in this graduation thesis, d) final output of localization algorithm, red dots represent
protein localizations predicted at the threshold value of 0.2 , green dots represent true protein localizations.

13

Figure 9. Image creation steps (a, b) and protein localization prediction steps (c, d) for images with 25 proteins per image.
a)shows first two steps in image generation with Code 1, green dots represent protein location and yellow represent

fluorophores location, b) final product of Code 1 is rendered microscopy image for STORM method c) localization
probability predicted with CNN used in this master thesis, d) final output of localization algorithm, red dots represent

protein localizations predicted at threshold value of 0.2 , green dots represent true protein localizations.

14

Figure 10. Validation algorithm process. a) network input image, b) CNN prediction scaled to rage from 0 to 1, c) predicted
protein localizations areas with threshold value grater then 0.2, d) green dots are correct protein location and red ones are

localizations predicted from areas.

As described before, the Jaccard index is a metric used to validate the localization

quality. Figure 11. shows the CNN performance across images with different number of proteins.

The number of proteins per images start at 5 and is increasing by 5 until 50 proteins per image.

Because it is necessary to choose a threshold value for localization prediction Figure 11. shows

the CNN performance at different threshold values. Threshold values start from 0.05 and is

increasing by 0.05 to 0.95.

To include most protein in overlapping Jaccard index threshold value with biggest Jaccard

index should be chosen. To clearly show the algorithm‘s localization ability Figure 12. is extracted

from Figure 11. and shows the Jaccard index value for images with different number of proteins

per images with threshold value set to 0.15 as it is a value with which most images have their

maximum. It has to be noted that images with 5, 10 and 15 proteins per image have peaked at

15

different values. To better show where the maximums are Table 1. contains optimal threshold

values across a range of proteins per image.

Figure 11. Jaccard index for varying number of proteins per image at different threshold values. X axis represent threshold
value, y represent Jaccard index. Legend in the upper right corner annotates line with corresponding number of proteins

per image.

Figure 12. Jaccard index value for images with different number of proteins per image at threshold value 0.15. X axis
represents number of proteins per image, y represents Jaccard index value.

16

Table 1. Table containing maximum values for Jaccard index across a range of proteins per image and threshold at which it
is achieved.

Other metric used for validation, beside the Jaccard index, is RMSE. RMSE values for

images with different number of proteins per image at different threshold values are shown in

Figure 14. Images used for Jaccard index testing were also used for RMSE testing.

Figure 15. is used to better show dependence between number of proteins per image

and RMSE. It shows dependency at 0.95 threshold values. That threshold value was chosen

because RMSE is the smallest across different image sets. Table 2. shows lowest RMSE value and

corresponding threshold value for different number of proteins per image.

Number of proteins per image Threshold Jaccard index / %

5 0.40 57

10 0.30 60

15 0.20 58

20 0.20 54

25 0.15 55

30 0.15 51

35 0.15 49

40 0.15 47

45 0.15 44

50 0.15 42

Figure 14. RMSE for varying number of proteins per image with different threshold values. X axis represent threshold value,
y represent RMSE, legend in the upper right corner annotates line with corresponding number of proteins per image.

17

Figure 15. RMSE value for images with different number of proteins per image at threshold value of 0,95.

Table 2. Table containing minimum values for RMSE across range of proteins per image and threshold at which it is
achieved.

Number of proteins per image Threshold RMSE / nm

5 0.95 38

10 0.95 38

15 0.95 34

20 0.95 32

25 0.95 32

30 0.95 31

35 0.95 29

40 0.90 33

45 0.95 30

50 0.95 32

18

4. Discussion

The goal of this graduation thesis was to train a CNN network to localize proteins from

super-resolution microscopy images and to test network performance on never seen super-

resolution images. To test network performance Jaccard index and RMSE were chosen. Those

two parameters are currently used in the field of localization microscopy.

To show the necessity and usefulness of machine learning in localization prediction it is

important to consider Figure 10. showing localization algorithm at work. As it can be seen signal

strength and size do not perfectly correspond to network localization probability for that area. It

is also important to note how some low signal spread out areas can be localized as one

localization and other as multiple localization. This shows how network mapping from super-

resolution images to localization probabilities is nonlinear and hard for humans to understand

and code. Coupled with ability to simulate data this makes localization problem suitable for

machine learning. It has been shown how similar problems use of machine learning has led to

reduction in running time and better performance (Boyd et al.2018, Nehme et al. 2018). With

the development of easy-to-use CNN packages for different programming languages this

approach makes it easy to adopt this model to similar problems in a future with slight

modification.

For Jaccard index two trends can be observed. First is the decline in Jaccard index for

images with higher number of proteins per image. This observation is in line with previous work

on localization and super-resolution image reconstruction (Boyd et al.2018). This phenomenon

is caused by overlapping signals from different fluorophores close to one another. With

increasing number of proteins, it is more likely to get areas with signal overlaps that are hard to

localize. A second phenomenon is related to reduction in the optimal threshold value for images

with more proteins per image. Figure 8. shows how network trained on images with bigger

number of fluorophores naturally expects a bigger number of fluorophores in an image and

threshold needs to be increased to remove low probability localization. It can be postulated that

a network trained on a smaller number of fluorophores per image would give less low

probability positions, on the other hand network train that way would under perform on images

with high number of proteins. It can be seen in Figure 11. that network optimizes its

performance at the threshold value of 0.15 meaning a lot of low value position predictions are

accurate. First part of Figure 12. shows low values for Jaccard index. It is important to note that

this is related to suboptimal threshold value for a range between 5 and 15 proteins per image.

The first observation for RMSE comes from Figure 15. showing a trend toward smaller

values for images with bigger number of proteins per image and that increase after 35 proteins

per image. For the decrease between 5 and 35 proteins per image it can seem contradictory if

we consider a network performance problem in areas with overlapping signals. Possible

explanations can be that network is trained on images with higher number of proteins and thus

is better tuned to those cases. Increase in RMSE after 35 proteins per image can be contributed

to overlapping signals. The second observation is in Figure 14. showing trend toward smaller

RMSE for bigger threshold values. With an increasing threshold number of predicted

19

localizations and their area is reduced. It can be concluded that localizations for which network

probability localization is high is most likely correct and close to real localization position.

To localize as many correct positions as possible, it is better to optimize for Jaccard index

and use smaller threshold value. If goal is to find only the most precise localizations threshold

should be set to high value to minimize RMSE. This dichotomy should be solved based on a

problem at hand.

As machine learning task can perform only as good as the data they have been trained on

and are required to work with, it is important to discuss images used in this graduation thesis.

Code 1. used to create images introduces a lot of stochasticity to date. Stochasticity is

introduced through the position and number of fluorophores around proteins. For this reasons

Jaccard index is relatively small and RMSE is relatively large. If the images had higher amount of

ambiguity Jaccard index would be even smaller and RMSE bigger, if images have a less ambiguity

Jaccard index would be bigger and RMSE smaller. In practical applications data used to train

neural networks should be as similar to experimental super-resolution images as possible. To

secure the best performance, experimental super-resolution images with their protein

localization should be used to train the network. This is not always possible and simulated

images can be used, but performance will possibly drop compared to experimental super-

resolution images. To optimize localization performance it is also advised to modified

experiment to have a relatively constant number of proteins per image and to avoid having too

many fluorophores per image.

Field of super-resolution microscopy for protein localization and counting is novel, as a

consequence, there is a lack of consistency in reporting same quality metrics (Boyd et al.2018).

CNN in this graduation thesis is compared with two methods that perform similar task:

Alternating Descent Conditional Gradient method (ADCG) (Boyd et al. 2017) and DeepLoco

(Boyd et al. 2018). This graduation thesis will use values reported by the DeepLoco paper

because they tested the best algorithms in the field for Jaccard index and RMSE metric.

DeepLoco is based on CNN, while ADCG is based on combines nonconvex and convex

optimization techniques to remove the blur caused by diffraction. This comparison is not perfect

because ADCG and DeepLoco localize fluorophores, and not the proteins that those fluorophores

correspond to. Another difference is in data generation, DeepLoco method is not completely

equal to the method used in this graduation thesis. Their results show DeepLoco RMSE in the

range from 11,61 to 18,22 and ADCG RMSE in the range from 14,95 to 19,36 for low and high

number of proteins per image respectively. And DeepLoco Jaccard index in the range from 0,89

to 0,61 and ADCG Jaccard index in the range from 0,79 to 0,53 for low and high number of

proteins per image respectively. It is important to note that low number of proteins per image

reported in DeepLoco paper is lower than the one used in this graduate thesis. From the

comparison of the results obtained by Boyd et al. 2018 it can be concluded, that RMSE and

Jacard index have worse performance for images with a small number of proteins per image.

This can be contributed to CNN training with images with high number of proteins per image,

and can be fixed by using images with a smaller number of proteins per image for CNN training.

Jaccard index and RMSE approach values similar to those of DeepLock and ADCG when the

20

number of proteins per image is high. This suggests the importance of CNN training with a

representative data set. Because ADCG and DeepLoco localize fluorophores, and not proteins

labeled by these fluorophores it is expected for them to have better performance due to them

not needing to combine multiple fluorophores to calculate one protein position. By getting

Jaccard index and RMSE values similar to ones gotten for a simpler task, it can be concluded that

the CNN developed in this graduation thesis has a performance comparable to state of the art

algorithms used in the field.

21

5. Conclusion

After CNN was created and trained and its performance was evaluated on Jaccard index and

RMSE following conclusions can be made:

1. CNN encoder-decoder architecture is a good option for solving protein localization

problem in super-resolution imaging. Further algorithms can be used to interpret

CNN probability distribution and give point localizations for proteins.

2. Proteins localized by high threshold will be closer to real protein localization then

those localized with low threshold value, but algorithm will under estimate number

of proteins.

3. Proteins localized by low threshold will be further away from real protein localization

then those localized with high threshold value, but number of proteins localized will

be closer to reality.

22

6. References

Betzig E., Patterson G. H., Sougrat R., Lindwasser O. W., Olenych S., Bonifacino J. S., Davidson M.

W., Lippincott-Schwartz J., Hess H. F. (2006): Imaging intracellular fluorescent proteins at

nanometer resolution. Science 313 (5793): 1642–1645.

Bishop C. M. (2006): Pattern Recognition and Machine Learning. Springer-Verlag, Secaucus.

Boyd N., Jonas E., Babcock H. P., Recht B. (2018): Deeploco: Fast 3d localization microscopy using

neural networks. BioRxiv: 267096.

Boyd N., Schiebinger G., Recht B. (2017): The alternating descent conditional gradient method

for sparse inverse problems. SIAM Journal on Optimization 27(2): 616-639.

Bre F., Gimenez J. M., Fachinott V. D. (2018): Prediction of wind pressure coefficients on building

surfaces using artificial neural networks. Energy and Buildings 158: 1429–1441.

Chollet F. (2015): Keras. https://github.com/fchollet/keras.

Fricke F., Beaudouin J., Eils R., Heilemann,M. (2015): One, two or three? Probing the

stoichiometry of membrane proteins by single-molecule localization microscopy. Scientific

reports 5: 14072.

Goodfellow I., Bengio Y., Courville A. (2016): Deep Learning. MIT Press, Cambridge.

Hornik K. (1991): Approximation capabilities of multilayer feedforward networks. Neural

networks 4 (2): 251–257.

Lee S.-H., Shin J. Y., Lee A., Bustamante C. (2012): Counting single photoactivatable fluorescent

molecules by photoactivated localization microscopy (PALM). Proceedings of the National

Academy of Sciences 109 (43): 17436–17441.

Nehme E., Weiss L. E., Michaeli T., Shechtman Y. (2018): Deep-STORM: super-resolution single-

molecule microscopy by deep learning. Optica 5 (4): 458 - 464.

Nicovich P.R., Owen D.M., Gaus K. (2017): Turning single-molecule localization microscopy into a

quantitative bioanalytical tool. Nature protocols 12 (3): 453.

Nieuwenhuizen R.P., Bates M., Szymborska A., Lidke K.A., Rieger B., Stallinga S. (2015):

Quantitative localization microscopy: effects of photophysics and labeling stoichiometry. PloS

one 10 (5): p.e0127989.

Rojas R. (1996): Neural Networks - A Systematic Introduction. Springer-Verlag, Berlin.

Rollins G. C., Shin J. Y., Bustamante C., Pressé S. (2014): Stochastic approach to the molecular

counting problem in superresolution microscopy. Proceedings of the National Academy of

Sciences 112 (2): E110–E118.

23

Rust M. J., Bates M., Zhuang X. (2006): Sub-diffraction-limit imaging by stochastic optical

reconstruction microscopy (STORM). Nature Methods 3 (10): 793–795.

Von Chamier L., Laine R. F., Henriques R. (2019): Artificial intelligence for microscopy: what you

should know. Biochemical Society Transactions 47 (4): 1029–1040.

Wilson D. R., Martinez T. R. (2003): The general inefficiency of batch training for gradient

descent learning. Neural Networks 16 (10): 1429–1451.

24

7. Appendix

Code 1. Simulation of input/ output images

import numpy as np

import scipy as scipy

import matplotlib.pyplot as plt

import pylab

from itertools import chain

from scipy.spatial.distance

import pdist, squareform

from scipy.special import erf

from PIL import Image

def generate_molecules(pixels,n,min_d):

xn=np.random.uniform(0,(pixels-1),n)

yn=np.random.uniform(0,(pixels-1),n)

z=np.stack((xn,yn), axis=-1)

 D = squareform(pdist(z)) + 1000*min_d*np.identity(n)

 while D.min()<min_d:

 nd1, ind2 = np.where(D <min_d)

 unique = (ind1 < ind2)

 ind1 = ind1[unique]

xn[ind1]=xn[ind1]+np.random.normal(0,min_d,ind1.shape[-1])

yn[ind1]=yn[ind1]+np.random.normal(0,min_d,ind1.shape[-1])

 z=np.stack((xn,yn), axis=-1)

 D = squareform(pdist(z)) + 1000*min_d*np.identity(n)

 return [xn,yn]

def frame_simulation(pixels,xn,yn,stdev, disp_locs):

n=xn.shape[-1]

25

x=[]

y=[]

localization=np.random.geometric(p=0.2, size=n)

 for i in range(0,n):

Xij = np.random.normal(loc=0,scale=stdev, size=int(localization[i]))

Yij = np.random.normal(loc=0,scale=stdev, size=int(localization[i]))

x.append(xn[i] + Xij)

y.append(yn[i] + Yij)

x_unchain= np.asarray(list(chain.from_iterable(x)))

y_unchain= np.asarray(list(chain.from_iterable(y)))

 if disp_locs==1:

 fig = plt.figure(1, figsize=(5.5,5.5))

plt.scatter(xn,yn,c='b',marker='+')

plt.scatter(x_unchain,y_unchain,c='r',marker='.')

plt.axis('equal')

plt.xlim((0,pixels))

plt.ylim((0,pixels))

plt.gca().invert_yaxis()

plt.show()

 return [x_unchain,y_unchain]

def MolKernel(x_inx,y_inx,x_pos,y_pos,stdev):

[xx,yy] = np.meshgrid(x_inx,y_inx)

img_kernel = (0.5*(erf(np.true_divide((xx-x_pos+0.5),(np.sqrt(2)*stdev))) - erf(
np.true_divide((xx-x_pos-0.5),(np.sqrt(2)*stdev)))))*(0.5*(erf(np.true_divide((yy-
y_pos+0.5),(np.sqrt(2)*stdev))) - erf(np.true_divide((yy-y_pos-0.5),(np.sqrt(2)*stdev))
)))

img_kernel=img_kernel/img_kernel.sum()

return img_kernel

def map_into_image(x,y,pixels, fact, st):

26

 M=np.zeros((pixels*fact,pixels*fact))

 xx=np.linspace(0,fact*pixels-1,fact*pixels)

yy=np.linspace(0,fact*pixels-1,fact*pixels)

 for i in range(0,x.shape[-1]):

img=MolKernel(xx,yy,fact*x[i],fact*y[i],fact*st)

M=M+img

 M=M/M.max()

return np.asarray(np.uint16(M*(2**16-1)))

def protein_position_cord_sys(x, y, pixels, fact):

x = x.astype(int)

y = y.astype(int)

M=np.zeros((pixels*fact,pixels*fact))

 for i in range(0,len(x), 1):

 M[y[i],x[i]] = 1

 return M

Code 2. Image normalization and standardization

import numpy as np

def preprocessing (images):

 images = images.astype('float32')

 for i in range(0,images.shape[0]):

 image = images[i]

 image = np.squeeze(image)

 min_val = image.min()

 max_val = image.max()

 image = (image - min_val)/(max_val - min_val)

 isd = np.std(image)

27

 imean = np.mean(image)

 image = (image- imean)/isd

 images[i] = image

 return images

Code 3. Image formatting for CNN and CNN architecture plus code used to save training
process and trained CNN

from os.path import exists

from os import mkdir

import numpy as np

import tensorflow as tf

from keras import backend as K

from keras.callbacks import ModelCheckpoint, ReduceLROnPlateau

from keras.layers import Input, Activation, UpSampling2D, Convolution2D, MaxPooling2D,
BatchNormalization

from sklearn.model_selection import train_test_split

from keras.models import model_from_json, Model

from keras import backend as K

from keras import optimizers

from keras import losses

import math

from PIL import Image

def CNN_model_1(train, result, n, dirName, n_epoc, batch_size_n):

 train = preprocessing(train)

 image_train, image_test, result_train, result_test = train_test_split(train, result,
test_size=0.3, random_state=42)

 n_pixel_image = image_train.shape[1]

 n_pixel_result = result_train.shape[1]

 image_train = image_train.reshape(image_train.shape[0], n_pixel_image, n_pixel_image, 1)

28

 result_train = result_train.reshape(result_train.shape[0], n_pixel_result, n_pixel_result, 1)

 image_test = image_test.reshape(image_test.shape[0], n_pixel_image, n_pixel_image, 1)

 result_test = result_test.reshape(result_test.shape[0], n_pixel_result, n_pixel_result, 1)

def conv_bn_relu(nb_filter, rk, ck, name):

 def f(input):

 conv = Convolution2D(nb_filter, kernel_size=(rk, ck), strides=(1,1),

 padding="same", use_bias=False,

 kernel_initializer="Orthogonal",name='conv-'+name)(input)

 conv_norm = BatchNormalization(name='BN-'+name)(conv)

 conv_norm_relu = Activation(activation = 'relu',name='relu-
'+name)(conv_norm)

 return conv_norm_relu

 return f

 def CNN(input, name):

 f1 = conv_bn_relu(16,5,5,name+'F1')(input)

 f2 = conv_bn_relu(16,5,5,name+'F2')(f1)

 pool1 = MaxPooling2D(pool_size=(2,2),name=name+'Pool1')(f2)

 f3 = conv_bn_relu(32,5,5,name+'F3')(pool1)

 f4 = conv_bn_relu(32,5,5,name+'F4')(f3)

 pool2 = MaxPooling2D(pool_size=(2,2),name=name+'Pool2')(f4)

 f5 = conv_bn_relu(64,5,5,name+'F5')(pool2)

 f6 = conv_bn_relu(64,5,5,name+'F6')(f5)

 pool3 = MaxPooling2D(pool_size=(2,2),name=name+'Pool3')(f6)

 f7 = conv_bn_relu(128,5,5,name+'F7')(pool3)

 f8 = conv_bn_relu(128,5,5,name+'F8')(f7)

 up1 = UpSampling2D(size=(2, 2),name=name+'Upsample1')(f8)

 f9 = conv_bn_relu(64,5,5,name+'F9')(up1)

 f10 = conv_bn_relu(64,5,5,name+'F10')(f9)

 up2 = UpSampling2D(size=(2, 2),name=name+'Upsample2')(f10)

 f11 = conv_bn_relu(32,5,5,name+'F11')(up2)

29

 f12 = conv_bn_relu(32,5,5,name+'F12')(f11)

 up3 = UpSampling2D(size=(2, 2),name=name+'Upsample3')(f12)

 f13 = conv_bn_relu(16,5,5,name+'F13')(up3)

 f14 = conv_bn_relu(16,5,5,name+'F14')(f13)

 up4 = UpSampling2D(size=(2, 2),name=name+'Upsample4')(f14)

 f15 = conv_bn_relu(8,5,5,name+'F15')(up4)

 f16 = conv_bn_relu(8,5,5,name+'F16')(f15)

 return f16

 def buildModel(input_dim_1):

 input_ = Input (shape = (input_dim_1))

 act_ = CNN (input_,'CNN')

 density_pred = Convolution2D(1, kernel_size=(1, 1), strides=(1, 1), padding="same",

activation="sigmoid", use_bias = False,
kernel_initializer="Orthogonal",name='Prediction')(act_)

 model = Model (inputs= input_, outputs=density_pred)

 opt = optimizers.Adam(lr=0.001)

 model.compile(optimizer=opt, loss = 'binary_crossentropy')

 return model

 checkpointer = ModelCheckpoint("%s/Model_N_prot_%d_weights.h5" % (dirName, n),
verbose=0, save_best_only=True, save_weights_only=True)

 K.set_image_dim_ordering('tf')

 change_lr = ReduceLROnPlateau(monitor='val_loss', factor=0.5, patience=5,
min_lr=0.00000005)

 model = buildModel((n_pixel_image, n_pixel_image, 1))

 if not exists('%s/model_architecture.json' % dirName):

 with open("%s/model_architecture.json" % dirName, 'w') as f:

 f.write(model.to_json())

 validation_loss = []

 loss = []

30

model_history = model.fit(image_train, result_train, epochs=n_epoc
,batch_size=batch_size_n,validation_data=(image_test, result_test),callbacks=[change_lr,
checkpointer], verbose=2)

 validation_loss.append(model_history.history['val_loss'])

 validation_loss = np.array(validation_loss)

 validation_loss = validation_loss.transpose()

 loss.append(model_history.history['loss'])

 loss = np.array(loss)

 loss = loss.transpose()

 Out = np.column_stack((loss, validation_loss))

 np.savetxt('%s/Validation_loss_loss_N_prot_%d.dat' % (dirName, n), Out)

Code 4. Localization algorithm for CNN localization probabilities and validation

from skimage import io, measure

import numpy as np

from scipy.spatial.distance import cdist

import math

def jacc_ind_RMSE(model, network_input, network_output, threshold, pixsize, zoomfact):

 intersect = 0

 n_model = 0

 n_gt = 0

 dist_sqrt = 0

 n_assigned = 0

 n_pixel_image = network_input.shape[1]

 for im_ind in range(0,network_input.shape[0],1):

 image_x = network_input[im_ind]

 image_x = image_x.reshape(1,n_pixel_image, n_pixel_image, 1)

 prediction = model.predict(image_x)

 prediction = np.squeeze(prediction)

31

 prediction = np.interp(prediction, (prediction.min(), prediction.max()), (0, 1))

 prediction = measure.label(prediction > threshold)

 centroids_model = measure.regionprops(prediction)

 x_cor_m = []

 y_cor_m = []

 for i in range(0, len(centroids_model), 1):

 x_cor_m.append(centroids_model[i]['centroid'][1])

 y_cor_m.append(centroids_model[i]['centroid'][0])

 model_cord = np.stack((x_cor_m,y_cor_m), axis = 1)

 res_x = network_output[im_ind]

 x_cor_gt = []

 y_cor_gt = []

 for i in range (0, res_x.shape[0], 1):

 for j in range(0, res_x.shape[1] ,1):

 if res_x[i,j] == 1:

 x_cor_gt.append(j)

 y_cor_gt.append(i)

 gt_cord = np.stack((x_cor_gt,y_cor_gt), axis = 1)

 euclidian_distance = cdist(model_cord, gt_cord, metric = 'euclidean')

 for i in range(0, euclidian_distance.shape[0], 1):

mat_ind = np.unravel_index(euclidian_distance.argmin(),
euclidian_distance.shape)

 min_value = euclidian_distance[mat_ind]

 euclidian_distance[mat_ind[0],:] = 'inf'

 euclidian_distance[:,mat_ind[1]] = 'inf'

 if min_value < 50/(pixsize/zoomfact):

 intersect += 1

 dis_nm = min_value * pixsize

 dist_sqrt += dis_nm * dis_nm

 n_assigned += 1

32

 n_model += len(model_cord)

 n_gt += len(gt_cord)

 jaccard_index = intersect / (n_gt + n_model - intersect)

 if n_assigned == 0:

 RMSE = math.inf

 else:

 squerd_mean_error = dist_sqrt / n_assigned

 RMSE = math.sqrt(squerd_mean_error)

 return(jaccard_index, RMSE)

33

8. Curriculum vitae

Education

2017-2020: Master of Molecular Biology, University of Zagreb, Croatia

• Internship at the University of Vic laboratory for Quantitative BioImaging, Vic 2/2019 –

6/2019

• Graduation thesis: Application of convolutional neural network for protein counting and

localization photographed by super-resolution microscopy - Adviser professor: Assoc.

Prof Carlo Manzo and Assoc. Prof Damjan Franjević

2014-2017: Bachelor of biology, University of Zagreb, Croatia

• Student teaching associate at Microbiology course, Department of Biology, Faculty of

Science, University of Zagreb

• Bachelor thesis: Slime molds (Mycetozoa) - doc. dr. sc. Sunčica Bosak

2010-2014: Medical School, Šibenik

Other projects:

• Night of Biology 2017 and 2018

• Student section for Bioinformatics at BIUS

Member

• BIUS student research project

Design and construction of a working microbial fuel cell

Languages

• English B2

