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A B S T R A C T

In counting experiments associated with pulsed sources, a high data collection rate can lead to considerably large
counting losses, especially in the case of spallation Time-of-Flight facilities equipped with medium and short flight
paths where the research interest is focused on higher neutron energies where counting losses can be quite large
due to the higher neutron flux, the more compressed time frame compared to the one on lower energies and the
higher cross-section depending on the reaction. Examples of such measurements are the neutron induced fission
experiments at the new experimental area EAR-2 at the n_TOF facility at CERN. Although analytical expressions
to account for this inefficiency exist in literature, the introduced corrections are not always sufficient to retrieve
the true reaction rate, therefore a different approach is mandatory. This work explores the possibility to quantify
the counting losses using detector emulation devices and exponential fits in waiting time distributions. The
methodology is benchmarked in the test case of the standard 238U(n,f) cross-section with reference to 235U(n,f)
for bandwidths up to 1.9 MHz and counting losses that exceed 60%.

1. Introduction and overview

Nuclear physics experiments require the counting of certain observ-
ables such as the reaction rate. At high reaction rates, regardless of the
use of a continuous or a pulsed particle source, the probability to detect
overlapped events increases. This overlapping, known in literature as
pile-up, eventually leads to counting losses and depends on the high
instantaneous pulse rate, the attributes of the formed signals (i.e. width)
as well as on the dead-time of the acquisition system, therefore a special
treatment is required to account for this effect in the analysis of the
measured observable.

1.1. Continuous sources

In the simplest case of continuous sources, pile-up and dead-time cor-
rection models have been studied and developed over several decades.
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These models treat a detector as either an extended, non-extended
or a mixture of both systems as described in the review papers by
Müller [1,2], providing analytical expressions to calculate the correction
factor 𝑓DT or, similarly, the ratio between the corrected 𝑁c and the
observed 𝑁o interaction rate for a given fixed dead time 𝜏. The two most
common models used are the extended and non-extended, which are
often referred to as paralyzable and non-paralyzable, respectively [3].
In the former model an event that is recorded during the detector’s dead-
time, will result in the extension of the dead-time period while in the
latter the same event will be lost since the dead-time period remains
intact regardless of the arrival of new events. The proposed correction
factors 𝑓DT are shown in Eqs. (1a) and (1b) for the paralyzable and
non-paralyzable model, respectively.

𝑓DT =
𝑁c
𝑁o

= 1
𝑒−𝑁c𝜏

(1a)
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𝑓DT =
𝑁c
𝑁o

= 1
1 −𝑁o𝜏

(1b)

In the aforementioned models, a prior knowledge of the intrinsic
dead-time is required, however, a methodology has recently been devel-
oped for in-beam 𝛾-spectroscopy measurements [4] where an artificial
dead-time can be considered and the appropriate corrections can be
introduced based on well defined counting rates.

1.2. Pulsed sources

In the case of pulsed particle sources a different approach is neces-
sary since the detector is only periodically triggered as opposed to the
case of a continuous particle source. A subset of research infrastructures
that make use of a pulsed source are time-of-flight facilities where the
recorded observable is sorted in timing channels. The number of counts
recorded in a given channel 𝑖 depends on the number of counts in the
neighbouring channels due to the dead-time [5] which is an additional
constraint in modelling the pile-up effect.

Three basic models are currently used in timing applications to
predict the counting losses occurring in the 𝑖th channel by pile-up
effects, for a given number of bursts 𝑁b and a dead-time that is given in
channels by the difference 𝑖− 𝑖0. In the approximation of small counting
losses, Bollinger et al. [6] calculated the corrected number of counts in
the channel 𝑖, 𝑁c(𝑖) as shown in Eq. (2)

𝑁c(𝑖) =
𝑁o(𝑖)

1 −
𝑖−1
∑

𝑗=𝑖0

𝑁o(𝑗)∕𝑁b −𝑁o(𝑖)∕2𝑁b

(2)

Alternatively, in the approximation of small intensity variations of the
incident particle beam, Coates [7] gives the corrected number of events
as shown in Eq. (3)

𝑁c(𝑖) = −𝑁b ln
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Moore [8] describes a more general case where the beam intensity of the
incident particles might vary appreciably with a relative variance 𝜎2, as
can be seen in Eq. (4). It has to be noted that for small variations in the
beam intensity, the denominator in Eq. (4) becomes 1 and subsequently
the correction is the same as the one seen in Eq. (3).

𝑁c(𝑖) = −𝑁b
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(4)

Finally, the innovative and detailed works of Guerrero et al. [9] and
Mendoza et al. [10] explore the possibility of pile-up corrections in
the case of rapidly varying counting rates using software techniques.
It has to be noted that these methodologies have been successfully used
and experimentally validated in the case of detector arrays for either
constant or varying counting rates in (𝑛, 𝛾) reactions in the resolved
resonance region.

1.3. Waiting time distributions

A general approach that can be used either for constant or pulsed
sources, takes advantage of the fact that counting experiments are

Fig. 1. Illustration of counting losses in the waiting time distribution. In small time
differences, recorded counts are less than the expected ones which follow an exponential
decay distribution, due to counting losses occurred during the experiment.

described by the Poisson distribution and therefore, as calculated ana-
lytically in Appendix,2 the time difference between consecutive events,
at a constant counting rate 𝑅, follows an exponential decay distribu-
tion [13], as shown in Eq. (5)
𝑑𝑃
𝑑𝑡

= 𝑅𝑒−𝑅𝑡 (5)

where 𝑑𝑃∕𝑑𝑡 describes the probability density to detect an event after
the detection of another. It has to be noted that this expression is valid
only at a constant reaction rate or in the approximation of reaction rates
that do not vary appreciably, therefore it is not recommended to be
applied in the resolved resonance region.

This characteristic of counting experiments can be used to quantify
counting losses as illustrated in Fig. 1. The experimental points are
expected to follow the theoretical probability distribution seen in Eq.
(5) down to a certain time difference. Below this difference they diverge
due to counting losses (grey shaded area) which are attributed either to
the finite resolution of the detector signals, the intrinsic dead-time of
the detection system or inefficient pulse reconstruction, if applied. To
quantify these losses and therefore calculate the correction factor 𝑓DT,
the experimental data has to be fitted using Eq. (5). The ratio between
the integral of the fitted curve (extrapolated until it intercepts the y-axis)
and the data points provides the correction factor 𝑓DT, as expressed in
Eq. (6).

𝑓DT =
Extrapolated Fitted Integral

Experimental Integral (6)

A similar approach has been recently implemented in the backward
extrapolation method [14] where reactor data are corrected using
artificial signals and fourth degree polynomial fits.

2. Detector emulation

As discussed previously, the available counting-loss correction mod-
els are able to provide reliable corrections within certain counting rates.
Additionally, the fitting of waiting time distributions can be globally
used provided that the reaction rate is constant and the distributions
themselves have enough statistics to perform the fits without introduc-
ing additional uncertainties.

The alternative methodology proposed deals with the prediction
of the True Counting Rate (Rtrue) in an experiment, given a recorded
Experimental Counting Rate (Rexp) using detector emulation devices
and basically provides a hardware estimation of the counting losses

2 A more detailed description on Poissonian statistics can be found in the
textbooks by R.D. Evans [11] and A. Papoulis [12].
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occurred. The basic idea is to generate emulated signals that feature
the same characteristics as the detector signals of the real measurement
at given frequencies that represent Rtrue, feed them in the acquisition
system of the experimental campaign and analyse them using the same
data analysis framework used in the real experiment to calculate Rexp.
The ratio between Rtrue and Rexp represents the dead-time correction
factor 𝑓DT for each input frequency, as expressed in Eq. (7). In addition
to individual correction factors, this methodology provides a function
Rtrue = 𝑓 (Rexp), derived from the emulated data, that can be used to
estimate Rtrue at given counting rates Rexp recorded in an experiment.

𝑓DT =
True Counting Rate

Experimental Counting Rate =
Rtrue
Rexp

(7)

2.1. Experimental set-up

In order to extract the correction function Rtrue = 𝑓 (Rexp), a dual-
channel CAEN DT5800 desktop digital detector emulator [15] was used.
This module has the possibility to generate user-defined signals at user-
specified frequencies and distributions, such as the Poisson distribution
and can emulate the intrinsic dead-time of a detector, which in the
framework of the present work was negligible. This methodology has
been benchmarked with fission cross-section measurements at the n_TOF
facility [16–18] at CERN and the input signal shapes were derived from
the Micromegas detector [19–24] used in the fission experiments.

The goal of this study was to quantify the counting losses due to
the finite resolution of the detector signals and possible inefficient
offline signal reconstruction. In order to avoid introducing too many
parameters in this study that could lead to incorrect corrections, a
constant amplitude of 1 V was initially chosen as an output of the
emulator instead of a more realistic amplitude distribution. This choice
also helps to pinpoint, cases where there is an unrecoverable pile-up, as
explained later in the text.

The signals were generated sequentially following a Poisson distri-
bution, so as to emulate a counting experiment at various frequencies
ranging from 20 kHz up to 1.9 MHz. The output was then sent to the
n_TOF Data Acquisition System [25] and recorded by 12-bit flash ADCs
at a 900 MHz sampling rate. The acquisition was enabled at a 500 ms
cycle with a 10 ms acquisition window. The total cycles (or bunches)
recorded per frequency, were in the order of ∼103, which gives a total
acquisition time in the order of ∼10 s and consequently ∼106 total
number of counts, making the statistical uncertainty of the recorded
counts negligible.

It has to be mentioned that during the tests for the validation of
the methodology it was observed that the higher the counting rate the
more important it becomes to have the emulation data characteristics
as close as possible to those of the experimental data, since all the
details of the signal shape play a more significant role in the pulse shape
reconstruction performances.

2.2. Data analysis

The signals recorded by the data acquisition system, were processed
offline using the pulse shape analysis routine of the experimental
data [26] based on the calculation of the first derivative of each recorded
waveform. Among other quantities, the amplitude and arrival time of
each signal were stored for further processing. Fig. 2 shows a typical
signal reconstruction that was achieved at 1 MHz using negative signals
with a constant amplitude of 1 V that corresponds to around 100 ADC
channels (dashed grey line).

Fig. 2. Typical signal reconstruction recorded at 1 MHz. Apart from the raw and the
reconstructed signals, different pile-up cases which are marked with symbols, are shown.
See text for further details.

Fig. 3. Typical amplitude spectrum reconstructed at 400 kHz input frequency. Apart
from the main peak around 100 ADC channels, which corresponds to the constant input
amplitude, double, triple and quadruple piled-up events are evident around 200, 300 and
400 ADC channels. The dashed spectrum illustrates the shape of the normal and the double
pile-up peak and is reconstructed from a low input frequency run of 40 kHz. The spectra
are normalised with respect to the acquisition time.

2.2.1. Signal reconstruction
When introducing a pulse shape analysis routine to analyse data,

a one-to-one signal reconstruction is not guaranteed specially in cases
where data is recorded at high counting rates. An example of unrecov-
ered pile-up is shown in Fig. 2 and is marked with a magenta triangle.
In this case, the high counting rate resulted in the formation of a triple
pile-up event right after the arrival of the unrecovered signal, which
led the reconstruction routine to discard it. It has to be noted that since
the reconstruction routine uses a set of user-defined parameters, this
unrecovered signal could possibly be recognised as a true event with
different parameters. The method proposed in this work takes also into
account such cases and can provide correction for an inefficient use of
the reconstruction routine, since this leads to counting losses as well.

Prominent examples of unrecoverable pile-up are the signals marked
with grey triangles (Fig. 2). Although the routine is able to successfully
reconstruct the waveform, it cannot distinguish signals that arrive very
close to each other, resulting in the formation of a bigger signal similar
in shape to the input one and therefore in the misinterpretation of two or
more signals as a single one. The initial choice of a constant amplitude
in the input signals pinpoints these cases since the signal amplitude
is higher than 100 channels by a factor of 2, 3, etc. which would be
impossible to know in the case of an amplitude distribution.

The last two simple cases seen in Fig. 2 are examples where the
reconstruction works well, either for normal and isolated signals (green
rhombi) or for piled-up events that can successfully be recovered (blue
squares).

Fig. 3 shows a typical amplitude spectrum reconstructed for an input
frequency of 40 kHz, where apart from the main peak at ∼100 ADC
channels, double, triple and quadruple unrecoverable piled-up events
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Fig. 4. Experimental amplitude distribution of fission fragments that was given as an
input to the detector emulator.

are evident at the peaks around 200, 300 and 400 ADC channels,
respectively.

A simple yet efficient means to validate that the signal reconstruction
is properly done, is to calculate the 𝑅true directly from the amplitude
spectra. Since the input amplitude was chosen to be ∼100 channels,
double, triple and quadruple piled-up events can be easily spotted in
the peaks around 200, 300 and 400 ADC channels. The double (triple
or quadruple) pile-up peak is formed by two (three or four) events
that arrived almost at the same time and they formed a signal twice
(thrice or four times) the input amplitude. The integral of each peak,
will give the total number of events in each category. To calculate the
real number of events in each peak, the integral has to be multiplied by
2, 3 or 4 depending on which peak it was calculated for. The sum of
all the peak integrals divided by the acquisition live time will provide
the experimental counting rates 𝑅exp which were in a good agreement
within 3% with respect to the input 𝑅true. This small discrepancy is
attributed to the fact that the pile-up peaks are not isolated but are
overlapping, rendering the integration range relatively uncertain.

Finally, in order to obtain a more realistic emulation of the actual
fission fragments distribution the pulse-height spectrum from a fission
experiment at the n_TOF facility was considered (seen in Fig. 4).

2.2.2. Pile-up correction
To extract the pile-up correction factor from the data retrieved from

the detector emulator, exponential fits were applied to the waiting
time distributions for the bandwidth 20 kHz up to 1.9 MHz. A typical
fit can be seen in Fig. 5 for 1 MHz. As described in Section 1.3,
below a time difference (in this case around 1 μs), which dictates the
fitting range, the experimental points diverge from the exponential
distribution. Below ∼500 ns a sudden drop of the counting rate occurs,
corresponding to the time difference between two consecutive events
below which they are no longer distinguished by the detection and
data analysis system. This time is directly related to the width of the
detector signal and is considered to be close to its FWHM and is known
in literature as resolving time. According to Eq. (6), the correction factor
𝑓DT will be calculated as the ratio between the integral of the fitted
curve (extrapolated until it intercepts the y-axis) and the integral of the
experimental points. It has to be mentioned that, as seen from the 95%
confidence band in Fig. 5, the experimental points exhibit so clear an
exponential distribution that small changes in the fitting range do not
appreciably affect the parameters of the fitting curve (below 0.1%) and
therefore in this case the correction factor 𝑓DT is calculated with an
estimated uncertainty of the order of 0.1%.

Additional calculations were also performed based on Eq. (7) for
cross-checking. The Rtrue was obtained from the detector emulator,
therefore it is known, while the Rexp was calculated by integrating
the amplitude spectra, for each frequency and dividing that with the
total acquisition time in each case. The 𝑓DT in this calculation was in
agreement within less than 0.1% compared to the ones calculated from

Fig. 5. Exponential decay fit at the waiting time distribution in the case of 1 MHz.
Apart from the experimental points and the fitting function, the confidence band at 95%
confidence level is shown.

Fig. 6. Relation between the experimental (Rexp) and the true counting rate (Rtrue). The
experimental data has been parameterised using a parabolic function. The inset shows the
correction factor 𝑓DT as a function of Rexp and the parabolic parametrisation that was used
to describe their relation.

the waiting time distributions. This very good agreement can also be
seen and justified in Fig. 5. Since the total counts recorded were in the
order of 106, a 0.1% difference implies that there is a discrepancy in
the thousands (i.e. 103 counts) and as seen in Fig. 5 the area of the
confidence band, which is proportional to the fit uncertainty, becomes
larger around 7 μs where the count values are indeed in the order of
∼103.

Finally the functions Rtrue = 𝑓 (Rexp) and 𝑓DT = 𝑓 (Rexp) were calcu-
lated by fitting the experimental data points with a parabolic function,
as seen in Fig. 6. For the Rtrue = 𝑓 (Rexp) relation, the second order
parameter was found to be 6.3(1)×10−4 kHz−1, the first one 0.96(1) while
the value of 1(3) kHz was obtained for the constant one. For the 𝑓DT =
𝑓 (Rexp) case, the second order parameter was found to be 9.7(3) × 10−8

kHz−2, the first one 4.95(3)×10−4 kHz while the value of 9.95(1)×10−1 was
obtained for the constant one. The correction factor 𝑓DT was extracted
using Eq. (7) with a total estimated uncertainty around 2% as calculated
by uncertainty propagation. The uncertainties of Rexp and Rtrue were
calculated by varying the parameters of the fitting curve within their
uncertainties. It has to be mentioned that both the constant amplitude as
well as the fission fragment amplitude distribution provided consistent
fitting parameters, within their corresponding uncertainties.

3. Benchmarking

To benchmark the developed counting-loss correction methodolo-
gy, time-of-flight data from the 238U(n,f) experiment was used. This
measurement, which was performed using two reference samples (238U
and 235U), took place at the newly commissioned experimental area
EAR-2 [27], of the n_TOF facility at CERN. Particular features of this
experimental area, that lies ∼20 m above a spallation lead target, are
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Fig. 7. Evaluated neutron flux for n_TOF EAR-2 in the energy region 1–4 MeV. The inset
contains the neutron flux in the energy region 1 meV–100 MeV. Both fluxes are plotted
with an isolethargic binning of 100 bins per energy decade.

Fig. 8. Experimental counting rates recorded for the 235U and 238U reference samples in
the energy region 2–4 MeV during the fission measurement at the EAR2 of n_TOF as well
as the corresponding correction factors as calculated from the emulated data.

the high instantaneous flux and the wide neutron beam energy range
spanning from the meV region up to tens of MeV [28]. In addition, in the
region around 1.5 MeV, where typical fission cross-sections have values
of the order of a few barns, the neutron flux exhibits its maximum value
as well as variations all the way up to 4 MeV as seen in Fig. 7.

The time frame of interest in this region is compressed due to the
fact that for a flight path in the order of ∼20 m the time-of-flight
difference for incident neutron energies of 1 and 4 MeV is of the order of
700 ns, during which the neutron flux is reduced by a factor of ∼9. As a
consequence, taking into account the short time of 700 ns and the signal’s
relatively large FWHM of 200 ns, as well as the high instantaneous flux
and fission cross-section, the probability to have piled-up pulses in this
energy range is very high. These reasons justify the high experimental
counting rates that were recorded for the 235U and 238U reference
samples in this energy range as shown in Fig. 8.

3.1. Application in the case of the 238U(n,f) cross-section

The high instantaneous counting rate (herein counting rate) in this
energy region led to significant counting losses that could not be
recovered using the available correction models for pulsed sources.
More specifically, the models described in Eqs. (2) and (3) were used
to correct the recorded yield for both 238U and 235U in order to extract
the 238U(n,f) cross-section 𝜎(8) with reference to the 235U(n,f) one 𝜎(5)

using Eq. (8).

𝜎(8) = 𝑌 (8)

𝑌 (5)
𝑛(5)

𝑛(8)
𝑓 (8)

DT

𝑓 (5)
DT

𝑓 (8)
misc

𝑓 (5)
misc

𝜎(5) (8)

where

• 𝑌 are the observed counts

• 𝑛 is the areal density of the sample expressed in nuclei/cm2.
• 𝑓DT is the dead-time correction factor.
• 𝑓misc is the product of all other correction factors introduced in

the analysis (amplitude cut, self-absorption, impurities etc.) which
are not of relevance in the context of this work. Details for these
factors and how they were calculated, can be found in [29,30].

It has to be noted that the superscripts (8) and (5) refer to the 238U
and 235U samples, respectively.

The correction factors 𝑓DT were calculated based on the differ-
ent methods discussed in the introduction as well as using the new
methodology proposed in this work. Firstly, the correction factors 𝑓DT
obtained from the Bollinger and Coates models as seen in Eqs. (2) and
(3), respectively for a fixed dead-time of 200 ns, which corresponds to
the signal FWHM, were in agreement within 0.2%. Secondly, the 𝑓DT
factor calculated using the same fixed dead-time and Moore’s correction
model, as seen in (4), was also in good agreement within 0.1%, compared
to the aforementioned models since the beam intensity variation was
in the order of less than 5% and as described in [8] variations in the
order of 15% are considered to be small. It has to be noted that when
applying these methodologies, the signals that were recorded within the
fixed dead-time, where properly rejected and not taken into account in
the cross-section calculation.

In addition, fits in the waiting time distributions were used. In order
to perform the fits, as described previously, the reaction rate has to be
constant or must not vary appreciably. In addition, the waiting time
distributions must rely on good statistics so as to reduce the uncertainty
of the fitting parameters. For these reasons, the recorded reaction rate
was divided in the binning seen in Fig. 8. A typical fit performed in 235U
for signals detected at time-of-flights that correspond to the incident
neutron energies between 2 and 2.2 MeV can be seen in Fig. 9 where
the waiting time is calculated as the time difference between the initial
pulse that arrives in the time interval that corresponds to the 2–2.2 MeV
energy region and any pulse that is successfully reconstructed in time-of-
flights all the way down to the end of the acquisition window. The end of
the fitting range, however, was chosen to be a time significantly smaller
than the time difference that corresponds to the end of the acquisition
window because in larger times the waiting time distribution follows the
behaviour of the reaction rate and therefore structures that deviate from
the theoretical behaviour (i.e. resonances in the cross-sections, dips in
the flux etc.) are expected which had an impact on the goodness of the
fit. It has to be mentioned that the uncertainty in the correction factor
𝑓DT is estimated of the order of 10% and is derived from the uncertainty
of the parameters of the fitting curve for small variations in the fitting
range.

Finally, Fig. 10 shows the evaluated 238U(n,f) cross-section (ENDF/B-
VII.1 [31]) which is considered as standard above 2 MeV and the
calculated cross-sections using the models in Eqs. (2), (3) and (4), fits in
the waiting time distributions and the developed methodology to correct
for the counting losses occurred, in the energy region of 1.8–4 MeV.

3.2. Discussion and remarks

The results obtained using different correction models, indicate
miscalculations in the case of high counting rates. More specifically the
models of Bollinger et al. [6], Coates [7] and Moore [8] underestimate
the dead-time correction, mainly in the case of 235U, resulting in a
238U(n,f) cross-section calculation that is overestimated by ∼20% with
respect to the ENDF/B-VII.1 evaluation. The uncertainty bars seen in
Fig. 10 (blue squares) correspond to the statistical uncertainty of the
recorded yield, since there is not any reference whatsoever on the
uncertainty of these models.

The application of the fitting methodology of waiting time distri-
butions in time-of-flight data was proven to be more reliable since the
correction factors that were calculated based on it, provide a 238U(n,f)
cross-section that is in agreement with the evaluation within 3% on
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Fig. 9. Exponential decay fit at the waiting time distribution of 235U for signals that
arrived in time-of-flights that correspond to 2–2.2 MeV incident neutron energies. Apart
from the experimental points and the fitting function, the confidence band at 95%
confidence level is shown.

Fig. 10. The 238U(n,f) cross-section with reference to 235U(n,f) as calculated using the
dead-time correction models seen in the legend in the energy range 1.8–4 MeV along with
the ENDF/B-VII.1 evaluation, which is considered as standard above 2 MeV.

average. However the uncertainty of this method depends on the quality
of the fits in the waiting time distributions. Since these distributions
were calculated by making compromises between the statistics, the
variation of the reaction yield and an adequate binning to reproduce
the cross section, an uncertainty of the order of 15% can be justified.
The uncertainty bars seen in Fig. 10 (green triangles) were calculated
as the quadratic sum of the statistical uncertainties along with the
uncertainties of the correction factors 𝑓DT both for 238U and 235U in
each case.

Finally, the developed methodology predicts correction factors 𝑓DT
that can reproduce the 238U(n,f) cross-section with discrepancies that
are smaller than 2% and an uncertainty that is in the order of 3% and
is dictated by the accuracy of the fitting of the 𝑓DT.

4. Conclusion

In counting experiments associated with pulsed sources and the
time-of-flight technique, counting losses can be very high resulting in
an underestimation of the reaction yield. Correction models do exist
in literature, but cannot always provide adequate corrections in the
case of high expected counting rates that can reach up to 1.9 MHz
and counting losses that exceed 60%. Such is the case of fission cross-
section measurements with the Micromegas detectors at the second
experimental area (EAR-2) at the n_TOF facility at CERN, which offers
a high instantaneous neutron flux resulting in a recorded reaction rate
of the MHz order in the case of 238U(n,f) and 235U(n,f) reactions.

Since the models that were used did not prove to be adequate to
account for the occurring counting losses, a new methodology has been
developed based on detector emulation devices and fits in waiting time
distributions, which can be used regardless of the particle detector.
This methodology was benchmarked using 238U(n,f) and 235U(n,f)

experimental data for a bandwidth of 20 kHz–1.9 MHz and predicted
correction factors that could reproduce the standard 238U(n,f) cross-
section with reference to the 235U(n,f) one with maximum discrepancies
in the order of 2% with an estimated uncertainty in the order of 3%.
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Appendix. Waiting time distributions

Counting experiments are described by the Poisson distribution
therefore the probability of observing 𝑥 events in a time interval 𝛿𝑡,
given a counting rate 𝑅 = 𝑁∕𝛿𝑡, is expressed by the Poisson
distribution function

𝑃𝑁 (𝑥) = 𝑁𝑥

𝑥!
𝑒−𝑁 =

(𝑅𝛿𝑡)𝑥

𝑥!
𝑒−𝑅𝛿𝑡 (A.1)

where 𝑁 is the average number of events recorded in the 𝛿𝑡 time
window.

A.1. Useful probabilities

In order to make the mathematical formalism that follows less
complex, the probabilities given below need to be calculated using Eq.
(A.1). The probability of not observing events in a time interval 𝛿𝑡 can
be calculated as

𝑃𝑁 (𝑥 = 0) = 𝑒−𝑅𝛿𝑡 (A.2)

while the probability of observing a single event in the approximation
of a small time interval 𝛿𝑡, is

𝑃𝑁 (𝑥 = 1) = 𝑅𝛿𝑡 𝑒−𝑅𝛿𝑡 𝛿𝑡→0
←←←←←←←←←←←←←←←←←←←←→ 𝑅𝛿𝑡 (A.3)

A.2. Consecutive pulses

Assuming a varying counting rate 𝑅(𝑡) and a pulse arriving at a
time 𝑡0, as shown in Fig. A.11 where the vertical thick lines indicate
the position of each pulse, the waiting time distribution of consecutive
events can be calculated. The next pulse was chosen to arrive within
the time window (𝑡, 𝑡+𝛥𝑡) while the time frame between the two pulses
(𝑡0, 𝑡) was divided in 𝑚 equal intervals 𝛿𝑡, so that 𝛿𝑡 = 𝑚∕𝑡 → 0. This
implies that 𝑚 is relatively large, therefore the 𝛿𝑡 width is considered to
be constant.

The fact that the next pulse was chosen to arrive within the time
window (𝑡, 𝑡 + 𝛥𝑡) can be equally expressed as having none pulses in
the 𝛿𝑡 sub-intervals and exactly one pulse in the 𝛥𝑡 window. The total
probability can be written as follows3

𝑃 = 𝑝0(0) × 𝑝1(0) × 𝑝2(0) ×⋯ 𝑝𝑚(0) × 𝑝𝑡 (1) (A.4)

Considering the probabilities that were previously calculated in Eqs.
(A.2) and (A.3), Eq. (A.4) yields

𝑃 = 𝑒−𝑅(𝑡0)𝛿𝑡 × 𝑒−𝑅(𝑡1)𝛿𝑡 × 𝑒−𝑅(𝑡2)𝛿𝑡 ×⋯

𝑒−𝑅(𝑡𝑚)𝛿𝑡 × 𝑅(𝑡)𝛥𝑡 𝑒−𝑅𝛥𝑡

3 𝑃 expresses the probability of having the next pulse in the time window
(𝑡, 𝑡+𝛥𝑡) and 𝑝𝑖(𝑥) are the probabilities of having 𝑥 pulses in the time interval 𝑡𝑖.
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Fig. A.11. Snapshot of two consecutive pulses where the first pulse arrives at 𝑡0 while the
second within the time window (𝑡, 𝑡+𝛥𝑡). The relative distance between them was divided
in 𝑚 equal parts in order to calculate the distribution of the time difference between
consecutive events.

Fig. A.12. Waiting time probability density function in the case of a constant counting
rate 𝑅 = 1 Hz. The probability to detect the next event in later times is considerably
smaller than detecting it in nearest ones, as indicated by the shaded sections.

= exp

{

−
𝑚
∑

𝑖=0

(

𝑅(𝑡𝑖) 𝛿𝑡
)

}

× 𝑅(𝑡)𝛥𝑡 𝑒−𝑅𝛥𝑡 (A.5)

Since 𝑚 is chosen to be large, without loss of generality, the sum in
the previous expression tends to an integral. In addition, only one
pulse is expected to arrive in the time window (𝑡, 𝑡 + 𝛥𝑡) which can
mathematically be expressed as a combination of either a small counting
rate 𝑅(𝑡) or a time window 𝛥𝑡 that can be considered so infinitesimal
that only one pulse can fit in. This assumption can lead to the following
expression for the probability 𝑃 in Eq. (A.5):

𝑃 = exp
(

−∫

𝑡

0
𝑅(𝜏)d𝜏

)

𝑅(𝑡)𝛥𝑡 (A.6)

The probability densityd𝑃∕d𝑡 can then be deduced from Eq. (A.6):

d𝑃
d𝑡

= exp
(

−∫

𝑡

0
𝑅(𝜏)d𝜏

)

𝑅(𝑡) (A.7)

In the case of a constant counting rate 𝑅 the probability density shown
in Eq. (A.7) becomes an exponential decay:
d𝑃
d𝑡

= 𝑅𝑒−𝑅 𝑡 (A.8)

The resulting calculation in Eq. (A.8) can be interpreted as follows:
The probability to have a large separation between consecutive pulses,
with respect to the counting rate, converges to 0. More specifically, at
a constant counting rate 𝑅 it is more probable to detect the next event
close to the first one or similarly it is less and less probable to detect it in
much later times as illustrated in Fig. A.12, where the shaded sections
represent the arrival probabilities for the case of a constant counting
rate 𝑅 = 1 Hz.

A.3. The general case

The general case regards the calculation of the waiting time dis-
tributions from the first event, to the next, to the second next, to the

Fig. A.13. Probability density functions 𝑑𝑔∕𝑑𝑡 of the waiting time distributions 𝑔𝑖(𝑡) for
up to five consecutive pulses in the case of a constant counting rate 𝑅 = 1 Hz.

Fig. A.14. Snapshot of three consecutive pulses where the first pulse arrives at 𝑡 = 𝑡0, the
second at 𝑡 = 𝑡1 and the third at an arbitrary time 𝑡.

third next etc. Such an example is presented in Fig. A.14. In this case
the first pulse arrives at 𝑡 = 𝑡0, the second at 𝑡 = 𝑡1 and the third at
a random time 𝑡. It is evident that these distributions form a family of
distributions 𝑔𝑖(𝑡) with 𝑔1(𝑡) being the distribution describing the waiting
time between consecutive pulses in the time interval 𝑡, 𝑔2(𝑡) being the
distribution describing the waiting time to have two adjacent pulses in
the time window 𝑡 after the first event etc. The distribution 𝑔1(𝑡) has been
described and calculated in A.2. The 𝑔2(𝑡) distribution can be calculated
by following a similar reasoning:

After the arrival of the first pulse at 𝑡 = 𝑡0, there is not any pulse
between 𝑡 = 𝑡0 and 𝑡 = 𝑡1, there is one pulse at 𝑡 = 𝑡1, there is no pulse
in the (𝑡1, 𝑡) time window and there is one pulse at the arbitrary time
𝑡. The aforementioned scenario can be expressed as follows using Eqs.
(A.2) and (A.3):

• No pulse between 𝑡 = 𝑡0 and 𝑡1 : 𝑝(0) = 𝑒−𝑅 (𝑡1−𝑡0)

• One pulse at 𝑡1 : 𝑝(1) = 𝑅 𝛿𝑡1
• No pulse between 𝑡1 and 𝑡2 : 𝑝(0) = 𝑒−𝑅(𝑡−𝑡1)

• One pulse at 𝑡 : 𝑝(1) = 𝑅 𝛿𝑡

Without loss of generality 𝑡 = 𝑡0 can be considered as 𝑡 = 0 and
therefore the resulting probability density function 𝑑𝑔2∕𝑑𝑡 is given as:

d𝑔2(𝑡)
d𝑡

= ∫

𝑡

0
𝑅2𝑒−𝑅𝑡d𝑡1 = 𝑡𝑅2𝑒−𝑅𝑡 (A.9)

Similarly regarding the 𝑔3 distribution it can be proven that the proba-
bility density functiond𝑔3∕d𝑡 can be written as:
d𝑔3(𝑡)
d𝑡

= 1
2
𝑡2𝑅3𝑒−𝑅𝑡 (A.10)

Finally a general expression for the probability density functions
d𝑔𝑖∕d𝑡 of the family of distributions 𝑔𝑖(𝑡), which is known in literature
as the Erlang distribution, can be calculated to be:
d𝑔𝑖(𝑡)
d𝑡

= 1
(𝑖 − 1)!

𝑅(𝑅𝑡)𝑖−1𝑒−𝑅𝑡 (A.11)
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For a constant counting rate 𝑅 = 1 Hz, Fig. A.13 shows the
probability density functionsd𝑔∕d𝑡 for the waiting time distributions 𝑔𝑖(𝑡)
for up to five consecutive pulses.
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