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Exchange forces on the movable dot (“shuttle”) in a magnetic shuttle device depend on the parity of the number
of shuttling electrons. The performance of such a device can therefore be tuned by changing the strength U of
Coulomb correlations to block or unblock parity fluctuations. We show that by increasing U the spintromechanics
of the device crosses over, at U = Uc(T ), from a mechanically stable regime to a regime of spin-induced shuttle
instabilities (neglecting electric forces). This is due to enhanced spin-dependent mechanical forces as parity
fluctuations are reduced by a Coulomb blockade of tunneling and demonstrates that single-electron manipulation
of single-spin controlled nanomechanics is possible.

DOI: 10.1103/PhysRevB.100.045408

I. INTRODUCTION

Single electronics [1] and spintronics [2] are mesoscopic
research areas related to two fundamental properties of elec-
trons: their charge and their spin. Strong Coulomb correlations
and quantum coherent electron spin dynamics in nanometer-
size conductors make them candidates for future device appli-
cations. In this context it is interesting to explore the interplay
between spin and charge degrees of freedom on the nanometer
length scale.

Tunneling injection of electrons into a nanoconductor is an
obvious way to control the amount of both charge and spin
accumulated in a nanometer scale spatial domain. However,
in contrast to the amount of electric charge the amount of
electron spin that can be accumulated by this process is
limited. This is because while electrons with different spin
projections can be injected into the conductor, the net spin
accumulated depends—assuming a spin-degenerate electronic
spectrum—on the parity of the number of injected electrons.
The net accumulated spin, at equilibrium, is at most equal to a
single electron spin and this occurs only for an odd number
of injected electrons. Quantum fluctuations of the electron
number destroy all effects originating from parity, thus pro-
hibiting the tunneling accumulation of a finite average amount
of spin. By suppressing these parity fluctuations the Coulomb
blockade phenomenon enhances the probability for a finite
spin to be accumulated. This opens an intriguing possibility
to use the interplay between single-electronic and spintronic
properties for designing the functionality of nanoconductors.

Spintromechanics [3] relies on a coupling between me-
chanical degrees of freedom and the electron spin in mag-
netic nanoelectromechanical (NEM) devices [4,5] (see, e.g.,
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reviews Refs. [6,7]). The coupling is due to the magnetic
exchange interaction between spins accumulated in the mov-
able part of the NEM device (a metal grain or molecule here
called a “dot”) and the magnetization in the leads. This makes
spintromechanical phenomena an important tool for probing
the spin accumulated in a nanoconductor. One can therefore
expect a prominent role for Coulomb correlations in the
spintromechanical performance of magnetic NEM devices.

Below we consider the interplay between spintromechani-
cal and single-electron performances of a magnetic NEM sys-
tem, taking the magnetic shuttle device (see, e.g., Refs. [8,9])
as an example. We demonstrate that a dramatic change of the
mechanical behavior of the shuttle device can be induced by
using a gate to increase the electron-number (parity) fluctu-
ations in the dot, corresponding to a lifting of the Coulomb
blockade of tunneling. As a consequence of the related in-
crease of the fluctuations of the spin-dependent mechanical
force on the dot the shuttle instability of the magnetic NEM
device, predicted to occur in the absence of parity fluctuations
in Ref. [10], is suppressed.

A typical magnetic shuttle device comprises two magnetic
metallic electrodes, which form a standard tunnel junction,
while a movable small conductor (dot) is trapped (e.g., by van
der Waals forces) in the tunneling region of the device. By
biasing the device by a voltage difference or a temperature
gradient, a flow of electrons is induced between the magnetic
electrodes with the possibility for extra electrons to be resident
in the dot. In a steady state, the electric charge and net electron
spin accumulated in the dot interact with the electric field
(caused by the bias voltage) and with the magnetic (exchange)
forces (caused by the interaction of the quantum dot spin
with the magnetizations of the leads). This is how a coupling
between mechanical vibrations and electron tunneling through
the device is induced (see Appendix A). In this paper, we
neglect electric forces compared to exchange ones, which is
justified for low bias voltages (see Appendix B).
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FIG. 1. Mechanism of Coulomb-promoted spintromechanics: A
spin-up electron (↑) loaded to the shuttle (lower left [red] dot)
from the fully polarized source electrode (S) interacts with the
magnetizations in the leads to create a magnetic exchange force
that attracts the shuttle to the source. An external magnetic field
“rotates” the spin into a spin-down state (↓), thereby reversing the
sign of the exchange force so that the shuttle (lower right [blue]
dot) is pushed towards the drain (D). In the case of a full Coulomb
blockade (U ∗ → ∞, see text), which prevents double occupation, the
shuttle becomes mechanically active and energy is pumped into the
mechanical shuttle vibrations. With a partial Coulomb blockade dou-
ble occupation of the shuttle occurs with probability exp(−U ∗/T ),
where T is the temperature, leading to electron parity fluctuations,
which are detrimental to the energy pumping mechanism.

II. MODEL SYSTEM AND ANALYTICAL RESULTS

We model the quantum dot by a single spin-degenerate
electron level and assume that the leads are fully spin-
polarized half-metals with antiparallel magnetizations. In
Fig. 1 different tunneling and spin-flip events, which modify
the electronic population in the dot, are specified. Tunneling
events, leading to a singly and a doubly occupied dot, are
discriminated by the extra Coulomb energy cost U for the dot
to be doubly occupied. If the energy of the singly occupied
dot is ε0, then the activation energy U ∗ required for a second
electron to tunnel to the dot is

U ∗ = U + ε0 − μL, (1)

where μL is the chemical potential in the left lead.
Let us first consider the limit of strong Coulomb correla-

tions (U → ∞), in which case double occupation of the dot
is prohibited. Then, we note that an important requirement
for the proper operation of a magnetic shuttle device is that
an external magnetic field is applied perpendicular to the
magnetizations of the leads. (Note that for antiparallel leads
magnetization the net exchange magnetic field in the center
of the gap is zero and therefore the field acting on the dot
is small for small dot displacements.) This external magnetic
field makes it possible for a spin-up electron injected into the
dot from the source electrode, to flip its spin, as indicated
in Fig. 1. The resulting change of spin orientation enables
the exchange force to push the dot away from the source
towards the drain electrode, into which the extra electron
tunnels, thus causing the empty dot to move back to the source
electrode. This is the mechanism by which an electron flow
through the device can generate mechanical oscillations and,
under certain conditions, the spin-induced shuttle instability

predicted in Ref. [10] (where it was assumed that no more
than one electron occupies the dot at any time).

Next we explore the consequences of our ability to vary
the effect of the Coulomb correlations by increasing the
temperature or by gating the device. To that end we consider
strong Coulomb blockade regime, U ∗ � T , where T is the
temperature, in which case there is a small probability for a
spin-up second electron to tunnel into the dot already occu-
pied by a spin-down electron. Three electronic configurations
on the dot are now possible. Two of them, the dot singly
occupied by a spin-up electron—prevented to tunnel into the
drain since it has only spin-down states—and the dot doubly
occupied by one spin-up and one spin-down electron, are
“mechanically inactive” in the sense that no net work is done
during one oscillation period against the exchange force. Only
the third configuration, the dot singly occupied by a spin-
down electron, is mechanically active, which enables energy,
accumulated by electrons, to be transferred into mechanical
vibration energy.

The functionality of the magnetic shuttle device is deter-
mined by the coupling of three different degrees of freedom.
Those are related to: (i) the spatial tunneling motion of
electrons between the leads via the quantum dot, (ii) the rigid
mechanical motion of the movable dot, which affects electron
tunneling probabilities, and (iii) the electron spin dynamics,
which influences the mechanical motion of the dot through
the exchange force, acting on the quantum dot.

Referring to Fig. 1, the classical nanomechanics of the
shuttle vibrations can be described by Newton’s equation
for the oscillator with a spin- and displacement-dependent
“external” exchange force [11],

mẍ + mω2x = −α

2
[ρ↑{x(t )} − ρ↓{x(t )}]. (2)

Here the coefficient α is the magnitude of the exchange force
per unit spin experienced by a shuttle, situated in the middle
of the gap (x = 0) between the oppositely magnetized leads,
where the exchange energy J (x) = JL(x) − JR(x) � −αx [we
consider a magnetically symmetric contact, JL(0) = JR(0) ≡
J]; J is the strength of exchange interaction, m is the mass
of the dot, and ω is the angular frequency of the mechanical
vibrations of the dot.

The exchange force on the right-hand side of Eq. (2) is
proportional to the displacement-dependent amount of spin
accumulated in the dot, which depends on the difference
between the probabilities ρ↑(↓){x(t )} for the dot to be singly
occupied by a spin-up (-down) electron. These probabilities
are solutions to a complex kinetic problem for the quan-
tum evolution of the electron density operator ρ̂, describing
the interplay between mechanical vibrations, coherent spin
dynamics in the exchange and external magnetic fields and
incoherent tunneling of electrons (see Appendix A).

The corresponding equations can be derived to lowest
order in the tunneling probabilities by following the procedure
used in Ref. [11]. In this approach electrons in the leads are
described by equilibrium distribution functions and therefore
all electronic degrees of freedom in the leads are easily
averaged out. The electron distribution in the dot is described
using the Fock representation. In this representation, four
eigenstates, corresponding to the empty dot, |0〉, to the dot,
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singly occupied by a spin-up (-down) electron, |↑〉 (|↓〉), and
to the doubly occupied dot, |2〉, form a complete Hilbert space
for the single-level quantum dot. The matrix elements of the
density operator form a 6-vector with components: ρ0 ≡
〈0|ρ̂d |0〉, ρ↑ ≡ 〈↑ |ρ̂d | ↑〉, ρ↓ ≡ 〈↓ |ρ̂d | ↓〉, ρ↑↓ = ρ∗

↓↑ ≡
〈↑ |ρ̂d | ↓〉, ρ2 ≡ 〈2|ρ̂d |2〉. Here ρ0 (ρ2) is the probability for
the dot to be empty (doubly occupied), while the other matrix
elements correspond to a singly occupied dot (including
the nondiagonal components ρ↑↓, ρ↓↑). The number of
independent variables can be reduced by one using the
normalization condition ρ0 + ρ↑ + ρ↓ + ρ2 = 1. All matrix
elements experience two types of dynamical evolution:
(i) electron tunneling events, described by classical “collision”
integrals, and (ii) quantum coherent spin evolution in response
to the exchange field and to the external magnetic field H .
In order to study the mechanical motion of the quantum dot,
we are interested in the dynamics of the “spin active” linear
combination of distribution functions, ρ↑ − ρ↓. It is easy to
show that the symmetric spin-neutral quantities R0 = ρ0 +
ρ2 and ρ↑ + ρ↓ = 1 − R0 are decoupled from the equations
for the four other linear combinations: R1 = ρ0 − ρ2, R2 =
ρ↑ − ρ↓, R3 = −i(ρ↑↓ − ρ∗

↑↓), and R4 = ρ↑↓ + ρ∗
↑↓. It

follows that the set of equations, describing tunneling and
spin evolution of the density operator, can be written in the
compact form (A24)

d
−→
R

dt
= (Â� + ÂH + ÂJ )

−→
R + −→

B . (3)

Here the matrices Â�,H,J , which describe the dynamics,
caused by tunneling (Â�), spin evolution in the external
magnetic field (ÂH ), and spin evolution due to the exchange
interaction (ÂJ ), and the “source term”

−→
B are defined by

Eqs. (A25)–(A31).
Equations (2) and (A24) form a closed set of equations,

describing the spintromechanics of the magnetic shuttle de-
vice. Being nonlinear, they can in a general case only be
solved numerically. Whether a nanomechanical instability can
be triggered by injecting an electron current into the device
is the most important question to address. The answer can
be obtained by linearizing Eqs. (2) and (A24) with respect
to small mechanical dot displacements and by finding the
condition for the exponential growth (in time) of their am-
plitude. Having in mind the above qualitative analysis, one
expects that the criterion for a mechanical instability crucially
depends on the strength of the Coulomb charging energy U .
In the Coulomb blockade regime, U ∗ � T , the existence of a
shuttle instability for such a system was predicted in Ref. [11].
The solution of the linearized Eqs. (2) and (A24) can also
be found in the opposite limit of noninteracting electrons,
U = 0, for the case of a symmetric junction �L = �R ≡ �

(�L,R are partial dot tunneling widths). In this case we have
shown (see Appendix A) that the exchange interaction, caused
by the electron spin, results in a positive imaginary part
of the renormalized angular frequency � of the mechanical
vibrations. This corresponds to an exponential time decay
of the amplitude of mechanical vibrations [x(t ) ∼ exp(i�t )].
Straightforward calculations (see Appendix A) yield for the
rate of change r of the amplitude of the nanomechanical

vibrations at U = 0

r = −Im�(h) = − α2

16m

∑
j=L,R

f j (ε0 − h) − f j (ε0 + h)

h

× �(�2 + ω2 + 4h2)

(�2 − ω2 + 4h2)2 + 4ω2�2
. (4)

Here h̄ = 1, h = gμBH/2 is the external magnetic field in
energy units (μB is the Bohr magneton, g is the gyromagnetic
ratio). The negative value of the rate is evident from the
monotonic decay of the Fermi distribution function, f j (ε) =
1/{exp[(ε − μ j )/Tj + 1]}, determined by chemical potentials
μ j and temperatures Tj in the leads j = L, R. In the numerical
analysis below we assume that the temperatures in the leads
are the same, TL = TR = T , and in the unbiased device μL =
μR = εF .

The result, presented in Eq. (4), suggests that a cru-
cial change in spintromechanical performance occurs when
Coulomb correlations are tuned. While increasing U from
zero, one stimulates a performance, which eventually results
in the occurrence of a nanomechanical instability at a certain
critical value of U = Uc.

The temperature-dependent crossover from a mechanically
stable regime, where spontaneous dot fluctuations are damped
out, to a shuttling regime, where they are amplified, occurs
at U ∗

c when the ratio of double to single spin-down oc-
cupations reaches a critical value ρ2/ρ↓ = nc. The critical
value U ∗

c and nc are related by a simple steady state relation
�L exp(−U ∗/T ) = nc�R (here we neglect electron backflow
and we omit all terms proportional to small magnetic field). It
follows that the value of the critical activation energy is given
by the approximate formula

U ∗
c � T ln

(
�L

nc�R

)
, (5)

corresponding to a linear dependence of the critical Coulomb
energy on temperature and a slight (logarithmic) decrease of
the slope with an increase of the “asymmetry parameter” γ =
�R/�L of the shuttle device.

III. NUMERICAL RESULTS AND DISCUSSION

In order to analyze shuttle vibrations in the steady state,
eventually reached after a shuttle instability, linearizing the
problem with respect to dot displacements is not an adequate
approach. Instead, one has to deal with the full nonlinear and
nonlocal in time spintromechanical problem at hand numer-
ically. In Fig. 2 we present results of numerical solutions
to the coupled equations for the time development of the
density matrix components and of the mechanical oscillations
of the dot, which are valid for arbitrary (not only small) dot
displacements. In this case Eq. (2) has to be generalized by re-
placing the spintromechanical exchange force α = (2J/l ) by
a coordinate-dependent force, α → (2J/l ) cosh(x(t )/l ); l is
the decay length of the exchange interaction, and we consider
a magnetically symmetric junction (see Appendix A).

Results of numerical simulations of the nonlinear and
nonlocal temporal dynamics of the mechanical vibrations are
presented in Fig. 2(a). One can readily see that, depending on
how the Coulomb correlation energy U is related to a critical
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FIG. 2. Characteristics of the mechanical dot vibrations as de-
termined by Eqs. (2) and (A24) for the NEM device sketched in
Fig. 1: (a) The envelope of the dot vibrations (in units of the
tunneling length λ) as a function of time t (in units of h̄/�N ,
where �N = �L�R/(�L + �R ) is the width of the energy level on
the dot, �L,R being partial widths due to tunneling to the left and
right electrodes) plotted for three different values of the Coulomb
blockade energy U at T = 5�N and eV = 100�N . For small values of
U spontaneous vibrations are damped out (left panel), while for large
U they are amplified and develop into sustained finite-amplitude vi-
brations (right panel). A crossover between the two regimes occurs at
U = Uc, when the vibration amplitude stays constant over time (mid-
dle panel). (b) Temperature dependence of the critical value of the
Coulomb blockade energy Uc(T ) for eV = 10�N and symmetric tun-
nel junction γ = 1 (left panel), for eV = 100�N and different values
of the asymmetry parameter γ = �R/�L (right panel). The results
were obtained for the following parameters: vibration frequency ω =
1 �N/h̄, external magnetic field H = 0.5 �N/μB, magnetic exchange
energy J = 1.5 �N , dot level detuning energy (ε0 − εF ) = 2 �N , and
the electromechanical coupling constant κ = h̄2J/(mlλ�2

N ) = 0.09,
where κ is the coefficient multiplying r.h.s of Eq. (2) written in terms
of dimensionless variables x and t . Such a value of κ is in reasonable
agreement with characteristic masses of macromolecules.

value Uc, spontaneous small-amplitude vibrations are either
damped out (U < Uc, left panel), maintained at a constant
amplitude (U = Uc, middle panel), or amplified until they
reach some steady-state amplitude a0 (U > Uc, right panel).

It is remarkable that in the event of electron shuttling [as
illustrated in the right panel of Fig. 2(a)] the mechanical vi-
bration amplitude saturates even though no phenomenological
friction term is included in Eq. (2). The physical explanation
of this “self-saturation” effect is based on the fact that the
electron shuttling phenomenon relies on retardation effects
in the mechanical subsystem. These effects disappear in the
limit of oscillation amplitudes that are large enough for the
dot to come so close to the source and drain electrodes that
the tunneling rate of charge relaxation becomes higher than
the mechanical oscillation frequency. Such a “self-saturation”
effect was earlier predicted to occur at zero temperature in
electric [12] and magnetic [10] shuttles.

FIG. 3. Temperature dependence of the critical value of the
Coulomb blockade energy Uc(T ) for a device with a strongly biased
drain electrode εF − μR � T , for μL − εF = 50�N and different
values of the asymmetry parameter γ . Other parameters are the same
as in Fig. 2(b).

In Fig. 2(b) (left panel) we show the tempera-
ture dependence of Uc for a symmetric tunnel junction,
(γ ≡ �R/�L = 1), and for eV = 10�N , i.e., for the case when
one can reasonably neglect the electric force. In Appendix B,
we have shown that for Fel  Fm (Fel and Fm are the electric
and magnetic forces, respectively) the amplitude of an electric
shuttle is smaller than the amplitude of a magnetic shuttle by a
factor of

√
Fm/Fel. In Fig. 2(b) (right panel) we present the nu-

merically obtained temperature dependence of Uc for different
asymmetry parameters γ and eV = 100�N as an illustration
of instabilities driven purely by the magnetic force. The slope
of the curve decreases with an increase of γ . This result
agrees with what we anticipated from Eq. (5). It is clearly seen
from the figure that the linear temperature dependence of Uc,
which is expected from the qualitative analysis, see Eqs. (5)
and (1), holds rather accurately in the temperature range
25 < T/�N < 45. At higher temperatures the deviation from
linearity becomes more pronounced due to a strong suppres-
sion of electron shuttling caused by electron parity fluctua-
tions. An obvious reason for that is temperature stimulated
population [ignored in Eq. (5)] of electronic states in the drain
(right) electrode. This impedes electron tunneling to the drain
lead thus suppressing the electric current through the device
and diminishing the power supply to the mechanical vibra-
tions. Such a blocking effect can be removed in an asymmetri-
cally biased device when (εF − μR)/T � 1, (μL − εF )/T ∼
1 (or in a device with zero temperature in the right lead).
However, in this case a strong electric field promotes electric
shuttling, and therefore, as we here focus on magnetic shut-
tling, we do not consider asymmetrically biased devices in
detail here. Nonetheless, we present the Uc(T ) dependence for
an asymmetrically biased device in Appendix B, see Fig. 3, in
order to illustrate the linear dependence predicted in Eq. (5).

IV. SUMMARY

In conclusion, we have shown that Coulomb correlations
play an important role for the nanomechanical properties of
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a magnetic shuttle device due to their ability to trigger a
spintromechanical shuttle instability. Such an instability oc-
curs when the Coulomb blockade charging energy exceeds a
critical value, which depends on temperature and the strength
of the enabling external magnetic field. The effect opens a
possibility for single-electronic manipulation of spintrome-
chanical performance.
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APPENDIX A: HAMILTONIAN, EQUATIONS FOR MATRIX
ELEMENTS OF THE DOT DENSITY OPERATOR, AND THE

CASE OF NONINTERACTING ELECTRONS

The Hamiltonian of our spintromechanical system (see
Fig. 1) consists of three terms

Ĥ = Ĥl + Ĥd + Ĥt , (A1)

where Ĥl describes noninteracting spin-polarized electrons in
the leads (we assume that the leads are fully spin-polarized
half-metals with antiparallel magnetizations)

Ĥl =
∑
k, j

εk, ja
†
k, jak, j, j = L, R =↑,↓. (A2)

Here a†
k, j (ak, j ) is the creation (annihilation) operator for an

electron with momentum k in lead j. We model the quantum
dot by a single spin-degenerate electron level. The Hamilto-
nian of the quantum dot (QD) reads

Ĥd =
∑

σ

εσ c†
σ cσ − h(c†

↑c↓ + c†
↓c↑) + Uc†

↑c↑c†
↓c↓ + Ĥm,

(A3)

Ĥm = p2

2m
+ mω2

2
x2, (A4)

where εσ = ε0 − (σ/2)J (x) is the spin- (σ = ↑,↓= +,−)
and position-dependent energy of the quantum dot spin-
split levels (ε0 is the level energy, J (x) = JL(x) − JR(x)
is the coordinate-dependent magnetic exchange energy per
unit QD spin between the QD and the leads); c†

σ (cσ )
is the creation (annihilation) operator for electron with
spin projection σ = ↑,↓ in the dot; h ≡ gμBH/2 and

H is the external magnetic field, which is perpendic-
ular to the plane of magnetization in the leads (g
is the gyromagnetic ratio, μB is the Bohr magneton),
U is the electron-electron repulsion energy. Vibrations of
the dot are described by the Hamiltonian Ĥm of a harmonic
oscillator. In what follows we will treat x and p as classical
variables.

In Eqs. (A1)–(A3) and in the analysis below we neglect
the voltage-dependent electric force on the dot in comparison
with the magnetic exchange force. This is a good approxima-
tion if the electric field E acting on the shuttle is sufficiently
weak. If E is increased there is at some point a transition
from the regime of spintromechanical shuttling discussed here
to electromechanical shuttling for which the parity effect is
obviously irrelevant. A description of this transition is beyond
the scope of the present paper.

The tunneling of electrons between lead j = L, R = −,+
and a movable QD is described by a tunneling Hamilto-
nian with coordinate-dependent tunneling amplitude t j (x) =
t j exp( jx/λ), λ is the characteristic tunneling length,

Ĥt = tL(x)
∑

k

c†
↑ak,L + tR(x)

∑
k

c†
↓ak,R + H.c. (A5)

We solve the problem of mechanical instability in our NEM
system by using the density operator method. The density
operator obeys the von Neumann equation (h̄ = 1)

i∂t ρ̂(t ) = [Ĥ, ρ̂(t )]. (A6)

In what follows we consider the regime of sequential elec-
tron tunneling in the NEM transistor (max{T, μL − μR} �
�, where � is the width of the electron energy level in
the dot, T is the temperature, μL, μR are the chemi-
cal potentials in the leads). Then the total density opera-
tor is factorized, ρ̂(t ) ≈ ρ̂d (t ) ⊗ ρ̂l , where ρ̂d (t ) is the QD
density operator and ρ̂l is the equilibrium density matrix
of the leads. By tracing out the leads’ degrees of free-
dom it is straightforward to derive a set of equations for
the matrix elements of ρ̂d in the Fock space of a single
level QD: ρ0 = 〈0|ρ̂d |0〉, ρ↑ = 〈↑ |ρ̂d | ↑〉, ρ↓ = 〈↓ |ρ̂d | ↓〉,
ρ↑↓ = 〈↑ |ρ̂d | ↓〉 = ρ∗

↓↑, ρ2 = 〈2|ρ̂d |2〉. One finds that

|ρ̇ j〉 = Âρ |ρ j〉, (A7)

where the 6 × 6 matrix Âρ has the form

Âρ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

A11 A12 A13 A14 A∗
14 0

A21 A22 0 A24 A∗
24 A26

A31 0 A33 A34 A∗
34 A36

A41 A42 A43 A44 0 A46

A∗
41 A∗

42 A∗
43 0 A∗

44 A∗
46

0 A62 A63 A64 A∗
64 A66

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A8)

with the following matrix elements Ai j :

A11 = −�L(x) f +
L − �R(x) f +

R − ϒ1L(x) + ϒ1R(x), A12 = �L(x)(1 − f +
L ) − ϒ1L(x), (A9)

A13 = �R(x)(1 − f +
R ) + ϒ1R(x), A14 = −ϒ2L(x) − ϒ2R(x), (A10)

A21 = �L(x) f +
L + ϒ1L(x), A22 = −�L(x)(1 − f +

L ) − �R(x) f U,+
R + ϒ1L(x) + ϒU

1R(x), (A11)
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A24 = −ih + ϒ2L(x) + ϒU
2R(x), A26 = �R(x)

(
1 − f U,+

R

) + ϒU
1R(x), (A12)

A31 = �R(x) f +
R − ϒ1R(x), A33 = −�R(x)(1 − f +

R ) − �L(x) f U,+
L − ϒU

1L(x) − ϒ1R(x), (A13)

A34 = ih + ϒ2R(x) + ϒU
2L(x), A36 = �L(x)

(
1 − f U,+

L

) − ϒU
1L(x), (A14)

A41 = ϒ2L(x) + ϒ2R(x), A42 = −ih + ϒ2L(x) + ϒU
2R(x), A43 = ih + ϒ2R(x) + ϒU

2L(x), (A15)

A44 = iJ (x) − 1
2�L(x)

(
1 − f +

L + f U,+
L

) − 1
2�R(x)

(
1 − f +

R + f U,+
R

) − 1
2

[
ϒ1L(x) − ϒU

1L(x) − ϒ1R(x) + ϒU
1R(x)

]
, (A16)

A46 = ϒU
2L(x) + ϒU

2R(x), A62 = �R(x) f U,+
R − ϒU

1R(x), A63 = �L(x) f U,+
L + ϒU

1L(x), (A17)

A64 = −[
ϒU

2L(x) + ϒU
2R(x)

]
, A66 = −�L(x)

(
1 − f U,+

L

) − �R(x)
(
1 − f U,+

R

) + ϒU
1L(x) − ϒU

1R(x). (A18)

In Eqs. (A9)–(A18) we introduced the following notations,

ϒ1L/R(x) = f −
L/R

J (x)�L/R(x)√
J2(x) + 4h2

,

ϒU
1L/R(x) = f U,−

L/R

J (x)�L/R(x)√
J2(x) + 4h2

, (A19)

ϒ2L/R(x) = f −
L/R

h�L/R(x)√
J2(x) + 4h2

,

ϒU
2L/R(x) = f U,−

L/R

h�L/R(x)√
J2(x) + 4h2

; (A20)

here �L/R(x) = 2πνt2
L/R(x) [ν is the density of states in the

leads],

2 f ±
L,R = fL,R(E−) ± fL,R(E+),

(A21)
2 f U,±

L,R = fL,R(E− + U ) ± fL,R(E+ + U ),

and

E± = ε0 ±
√

J2(x) + 4h2

2
, (A22)

f j (ε) = {1 + exp[(ε − μ j )/Tj]}−1. (A23)

We use the system of equations (A7) for numerical calcula-
tions (see main text).

For analytical calculations it is convenient to use linear
combinations of ρ j . Then the symmetric spin-neutral com-
bination R0 = ρ0 + ρ2 (and ρ↑ + ρ↓ = 1 − ρ0 − ρ2) is de-
coupled from the other four quantities R1 = ρ0 − ρ2, R2 =
ρ↑ − ρ↓, R3 = −i(ρ↑↓ − ρ∗

↑↓), R4 = ρ↑↓ + ρ∗
↑↓. The system

of equations for Rj ( j = 1 − 4) takes the form

|Ṙ(t )〉 = Â{x(t ),U }|R(t )〉 + |B{x(t ),U }〉, (A24)

with Â{x(t ),U } = Â�{x(t ),U } + ÂH {x(t ),U } + ÂJ{x(t ),U }.
Here we introduced matrices related to tunneling (subindex
�), the external magnetic field (subindex H), and the ex-
change interaction (subindex J)

Â�{x(t ),U } = −1

2

⎛
⎜⎜⎜⎝

F+,−
+ (x,U ) −F−,+

− (x,U ) 0 0

−F+,−
− (x,U ) F−,+

+ (x,U ) 0 0

0 0 F−,+
+ (x,U ) 0

0 0 0 F−,+
+ (x,U )

⎞
⎟⎟⎟⎠, (A25)

ÂH {x(t ),U } =

⎛
⎜⎜⎜⎝

0 0 0 −H−
+ (x,U )

0 0 2h H−
− (x,U )

0 −2h 0 0

H−
+ (x,U ) H−

− (x,U ) 0 0

⎞
⎟⎟⎟⎠, (A26)

ÂJ{x(t ),U } = 1

2

⎛
⎜⎜⎜⎝

−J−
− (x,U ) −J−

+ (x,U ) 0 0

J−
+ (x,U ) J−

− (x,U ) 0 0

0 0 −J−
− (x,U ) J (x)

0 0 −J (x) J−
− (x,U )

⎞
⎟⎟⎟⎠, (A27)

|B{x(t ),U }〉 = 1

2

⎛
⎜⎜⎜⎝

F−,−
+ (x,U ) − J+

− (x,U )

−F−,−
− (x,U ) + J+

+ (x,U )

0

2H+
+ (x,U )

⎞
⎟⎟⎟⎠. (A28)
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Here we denote

F j,k
± (x,U ) = �±(x) + j[�L(x) f +

L ± �R(x) f +
R ] + k

[
�L(x) f U,+

L ± �R(x) f U,+
R

]
, (A29)

with j, k = (+,−),

Hη
±(x,U ) = {

�L(x) f −
L ± �R(x) f −

R + η
[
�L(x) f U,−

L ± �R(x) f U,−
R

]} h√
4h2 + J2(x)

, (A30)

Jη
±(x,U ) = {

�L(x) f −
L ± �R(x) f −

R + η
[
�L(x) f U,−

L ± �R(x) f U,−
R

]} J (x)√
4h2 + J2(x)

; (A31)

and η = ±1. Notice that Hη
±(x,U )/h = Jη

±(x,U )/J (x). In
Eq. (A29) the notation �±(x) = �L(x) ± �R(x) is introduced.

In the case of noninteracting electrons, U = 0, the an-
alytic solution can be simplified for a symmetric tun-
nel junction, �L(x = 0) = �R(x = 0) = �, JL(x = 0) = JR

(x = 0). We solve the system (A24) by perturbation theory
with Ri(t ) ≈ R0

i + R1
i (t ), R1

i (t ) ∝ x(t ), assuming the displace-
ment x to be small. Then the equations for R1

1 and R1
4 are

decoupled from the equations for R1
2 and R1

3. Therefore the
analysis of the mechanical instability in this particular case is
reduced to a simpler problem—one has to solve two coupled
linear equations(

Ṙ1
2

Ṙ1
3

)
=

(−� 2h

−2h −�

)(
R1

2

R1
3

)
− α( f −

L + f −
R )

(
�/(2h)

1

)
x(t ),

(A32)

where α > 0 (the exchange force per unit QD spin) is the
derivative of the exchange energy per unit QD spin, J (x) ≈
−αx (cf. Fig. 1). Substituting the solution R1

2 into Eq. (2) of
the main text, we obtain the desired Eq. (4).

APPENDIX B: INFLUENCE OF ELECTRIC FIELD
ON MAGNETIC SHUTTLING

In our theory we neglected electric forces despite the fact
that there is a bias voltage in the system. To justify this
approach we at first compare the strength of electric and
exchange forces assuming that the electric field can be roughly
estimated as E ∼ V/d (d is the width of the gap between the
leads). We estimate the exchange force as J/l (l is the decay
length of exchange interaction). For eV ∼ 10�N the ratio
of electric to exchange force is about 0.3, therefore electric
forces can be neglected.

For a doubly occupied quantum dot the exchange inter-
action between dot and leads disappears and therefore the
electric force dominates the shuttle dynamics. For T �= 0
the electric force determines both the rate of pumping r and
the rate of damping (friction γ f ) of the mechanical vibrations.
In order to compare the rates of pumping and damping we use
a simple model of an electric shuttle comprising a one-level
quantum dot. The pumping rate of the dot center-of-mass
vibration amplitude was evaluated in Ref. [12]

r = 2�

h̄

eE
mω2λ

. (B1)

As for the damping rate it was shown in Ref. [13] that
a nonzero temperature in the source electrode leads to the
appearance of a temperature-dependent friction coefficient of

the form

γ f = h̄

4m
(eE )2 �

�2 + (h̄ω)2

1

T cosh2{(δε − μL )/(2T )} .

(B2)

The damping exceeds the pumping (2γ f > r) for electric
forces satisfying the inequality

eE > 16
T

λ
cosh2{(δε − μL )/(2T )} , (B3)

where an antiadiabatic regime (h̄ω � �) of shuttle oscillations
is considered. In what follows we omit the numerical factor in
Eq. (B3) since we use this one-level model just for estimates.
Notice that in the transition region [see Fig. 2(b) (left panel)]
the hyperbolic cosine is close to unity therefore friction is not
exponentially small and it could strongly influence electric
shuttle dynamics. Thus, two inequalities on the electric force
should hold, i.e., eE > T/λ (under this condition the damping
impedes electric shuttling) and eE  J/l (under this condi-
tion one can neglect the electric force as compared to the mag-
netic one). These inequalities for λ ∼ l result in the condition
J � T . For model parameters consistent with fullerene-based
experiments [5,14], our numerical calculations show that there
is no magnetic shuttle for large J due to the magnetic friction.
We conclude that friction, although it strongly influences the
net pumping rate (r − 2γ f ), cannot impede electric shuttling
for the range of parameters used in our model. However
the amplitude of the developed electric shuttle is

√
J/(eE l )

times smaller than the amplitude of the magnetic shuttle. This
implies the exponential decrease of an electric current that
occurs when one crosses the critical curve and turns from a
magnetic shuttling regime to an electric shuttling one.

In Fig. 3 we depict Uc(T ) dependence for an asymmetri-
cally biased device, when we assume fR(ε) → 0. One can
clearly see an accurate linear dependence in a large temper-
ature interval in full agreement with Eq. (5). Moreover, using
the value nc � 0.28 obtained in our numerical analysis, one
finds from Eqs. (5) and (1) that the slope s(nc, γ ) ≡ dUc/dT
for γ = 1 is s(γ = 1) � 1.27. This can be compared with
the slope s � 1.0 of the curve plotted for γ = 1 in Fig. 3.
We conclude that there is good agreement between the exact
numerical result and what we anticipated from our qualitative
picture of Coulomb promoted magnetic-shuttle spintrome-
chanics.
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