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The jet radial structure and particle transverse momentum (pT) composition within jets are presented in 
centrality-selected Pb–Pb collisions at √sNN = 2.76 TeV. Track-based jets, which are also called charged 
jets, were reconstructed with a resolution parameter of R = 0.3 at midrapidity |ηch jet| < 0.6 for transverse 
momenta pT, ch jet = 30–120 GeV/c. Jet–hadron correlations in relative azimuth and pseudorapidity 
space (�ϕ, �η) are measured to study the distribution of the associated particles around the jet axis 
for different pT,assoc-ranges between 1 and 20 GeV/c. The data in Pb–Pb collisions are compared to 
reference distributions for pp collisions, obtained using embedded PYTHIA simulations. The number 
of high-pT associate particles (4 < pT,assoc < 20 GeV/c) in Pb–Pb collisions is found to be suppressed 
compared to the reference by 30 to 10%, depending on centrality. The radial particle distribution relative 
to the jet axis shows a moderate modification in Pb–Pb collisions with respect to PYTHIA. High-pT
associate particles are slightly more collimated in Pb–Pb collisions compared to the reference, while 
low-pT associate particles tend to be broadened. The results, which are presented for the first time 
down to pT, ch jet = 30 GeV/c in Pb–Pb collisions, are compatible with both previous jet–hadron-related 
measurements from the CMS Collaboration and jet shape measurements from the ALICE Collaboration at 
higher pT, and add further support for the established picture of in-medium parton energy loss.

© 2019 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

At energy densities above approximately 0.5 GeV/fm3 and tem-
peratures above approximately 160 MeV [1], Quantum Chromody-
namics (QCD) calculations on the lattice predict the existence of 
a phase transition from normal nuclear matter to a new state of 
matter called the Quark–Gluon Plasma (QGP), where the partonic 
constituents, quarks and gluons, are no longer confined in hadrons. 
There is compelling evidence from observations reported by exper-
iments at the Relativistic Heavy Ion Collider (RHIC) [2–5] and at 
the Large Hadron Collider (LHC) [6–17] that the QGP is created in 
nuclear collisions at high collision energies.

A unique way to characterize the properties of the QGP is to 
utilize jets as a probe of the medium. Hard scatterings are ex-
pected to occur early in the collision evolution, producing high 
transverse momentum (pT) partons that propagate through the 
expanding medium and eventually fragment into jets of hadrons. 
High-pT partons lose energy in interactions with the medium due 
to elastic scattering and induced gluon radiation [18,19]. Besides a 
reduction of the jet energy, this can result in a broadening of the 
transverse jet profile and a softening of the fragmentation [20].

� E-mail address: alice -publications @cern .ch.

Jet quenching has been observed at RHIC [21–34] and at the 
LHC [8,16,17,35–47], e.g. via inclusive yield and correlation mea-
surements of high-pT hadrons and reconstructed jets. These mea-
surements provide insights into the mechanisms of parton energy 
loss in the medium and eventually into the medium itself.

More differential measurements of the jet modification in a 
medium, i.e. measurements of modifications of jet angular profile 
and particle composition, can provide complementary information 
to observables that focus on the overall yield change like nuclear 
modification factors. Measurements of correlated associated par-
ticle production relative to jets or high-pT particles allow for a 
detailed measurement of the redistribution of quenched energy 
around the jet. An excess of low-pT particles in and around the 
jet up to large distances, as well as a suppression of high-pT parti-
cles, have been reported [17,48–50]. Two-particle correlations and 
jet–hadron correlations show an angular broadening of low-pT par-
ticles below 3 GeV/c in heavy-ion collisions with respect to pp 
collisions [50]. For low-pT two-particle correlations, measurements 
also indicate an asymmetry in the shape of the near-side jet peaks: 
they are broader in �η compared to �ϕ [48,49]. The variables 
�η and �ϕ are the distance in pseudorapidity η and azimuth ϕ
relative to the near-side jet. At the same time, measurements of 
the radial moment of jets point to a general collimation of jets in 
Pb–Pb collisions [51].
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Using jets instead of high-pT particles as a reference (trigger) to 
study angular correlations—as done in this analysis—should have 
the advantage that jet properties better reflect the initial parton 
energy. This analysis extends the study of jet–hadron correlations 
into a regime of low track-based jet pT, ch jet not yet explored with 
these techniques at the LHC.

In this paper, we study the correlation of charged particles 
(associates) with the direction of reconstructed track-based jets 
(triggers) in the �ϕ-�η plane in the same event. The jets are 
reconstructed using charged particles above a certain transverse 
momentum pT,const. The analysis focuses on two aspects of the 
modification of jets within the medium created in Pb–Pb collisions 
compared to a PYTHIA [52] reference. First, the overall modifica-
tion of the associated particle yield and its jet-energy dependence 
is studied. Second, the modification of the radial distribution of 
associated particles with respect to the jet axis is studied by com-
paring the Pb–Pb results to the PYTHIA reference. Both aspects 
are analyzed in detail for several jet transverse momenta pT, ch jet
and low and high pT of associated charged particles. PYTHIA is 
used as vacuum baseline, because the size of the pp dataset at √

s = 2.76 TeV is insufficient for this analysis.
The paper is structured as follows. In Sec. 2, details on the 

detector and general data reconstruction will be given. The corre-
lation analysis, which serves as basis for this paper, is presented in 
Sec. 3. Subsequently, jet reconstruction will be described in Sec. 4, 
followed by a discussion on the embedded PYTHIA reference in 
Sec. 5. Before the results will be presented in Sec. 8, the observ-
ables are introduced in Sec. 6 and systematic uncertainties are 
discussed in Sec. 7. A summary concludes the paper in Sec. 9.

2. Experimental setup

For a complete description of the ALICE detector and its perfor-
mance see Refs. [53] and [54], respectively.

The data were recorded in 2011 for Pb–Pb collisions at 
√

sNN =
2.76 TeV using a set of centrality triggers based on the hit multi-
plicity measured by the V0 detector, which consists of segmented 
scintillators covering the full azimuth over 2.8 < η < 5.1 (V0A) and 
−3.7 < η < −1.7 (V0C). Events were selected with V0 multiplic-
ities corresponding to the 0–50% most central events using the 
centrality determination as described in Ref. [55]. The accepted 
events, reconstructed as described in Ref. [56], were required to 
have a primary reconstructed vertex within 10 cm of the center of 
the detector along the beam axis. For this analysis, a total of 12M 
events were used.

The analysis presented here relies mainly on the central ALICE 
tracking systems, which are located inside a large solenoidal mag-
net with a field strength of 0.5 T. They consist of the Inner Tracking 
System (ITS), a high-precision six-layer cylindrical silicon detector 
system with the inner layer at a radius of 3.9 cm and the outer 
layer at 43 cm from the beam axis, and the Time Projection Cham-
ber (TPC) with a radial extent of 85–247 cm, which provides up to 
159 independent space points per track.

To ensure a good track-momentum resolution for jet recon-
struction, all reconstructed tracks were required to have at least 
three hits in the ITS. For tracks without any hit in the Silicon Pixel 
Detector (SPD), which provides the two innermost layers of the ITS, 
the location of the primary vertex was used in addition to the hits 
in the TPC and ITS. This improves the track-momentum resolution 
and reduces the azimuthal dependence of the track reconstruction 
efficiency due to the non-uniform SPD response. Accepted tracks 
were required to be measured with 0.15 < pT < 100 GeV/c in 
|η| < 0.9, and to have at least 70 TPC space-points and no less 
than 80% of the geometrically findable space-points in the TPC.

The single-track tracking efficiency was estimated from the de-
tector response of HIJING [57] events reconstructed to detector 
level using GEANT3 [58] for the particle transport. In the 0–10% 
centrality class, it is about 56% at 0.15 GeV/c, about 83% at 
1.5 GeV/c and then decreases to 81% at 3 GeV/c, after which it 
increases and levels off to about 83% at above 6.5 GeV/c. For the 
10–30% most central collisions, the tracking efficiency follows a 
similar pT-dependence pattern, with absolute values of the effi-
ciency that are 1 to 2% higher compared to the 0–10% most central 
collisions. The momentum resolution, which was estimated on a 
track-by-track basis using the covariance matrix of the track fit, is 
about 1% at 1 GeV/c and about 3% at 50 GeV/c. The contamination 
by secondary particles [59] produced in particle-material interac-
tions, conversions, and weak-decay products of long-lived particles 
is on the level of few percent.

3. Correlation analysis

The two-dimensional associated per-trigger yield Y (�ϕ, �η)

measures the distribution of particles relative to the jet axes 
in bins of �ϕ , �η, event centrality, and trigger and associate 
transverse momenta pT, assoc [60]. This distribution serves as the 
basis of the analysis and is formed using so-called same and 
mixed event correlations. Correlations from the same event are 
the actual correlations of trigger jets and associated particles, 
calculated for each selected event. In the mixed event tech-
nique, jets are correlated with particles from a pool containing 
tracks from different events with similar trigger jet pT, vertex 
z, and centralities. For vertex z, there are six bins in this pool, 
whose boundaries are given by (−10, −5, −2, 0, 2, 5, 10) in cm. 
The boundaries for the centrality percentile binning are given by 
(0, 1, 2, 3, 4, 5, 10, 20, 30, 40, 50).

The mixed-event-corrected associated per-trigger yield for given 
jet pT-range, associate pT-range, and centrality selection is defined 
as

Y (�ϕ,�η) = 1

Ntrig

d2Nassoc

d�ηd�ϕ

= 1

Ntrig

∑
cent,z

(
d2Nsame

d�ηd�ϕ

/
α

d2Nmixed

d�ηd�ϕ

)
, (1)

where the ratios in the sum are formed differentially in bins of 
centrality and vertex z.

The factor α in Eq. (1) is chosen such that the mixed-event 
correlations are normalized to unity in the region |�η| < 0.2, 
|�ϕ| < 0.2 around the near-side jet peak where the efficiency for 
pairs of parallel jets and associates is largest. The contribution of 
the statistical uncertainty of this normalization to the total statis-
tical uncertainty is negligible. The finite tracking efficiency and the 
contamination by secondaries (see Sec. 2) are taken into account 
and a correction has been performed for associated tracks differ-
entially in η, pT, centrality, and vertex z for same and mixed event 
correlations in Eq. (1). The efficiency maps were created using 
Monte Carlo simulations for the same track definition and detec-
tor conditions. However, this correction turns out to be negligible 
for all observables except for the absolute jet-associated yields, be-
cause its effect mostly cancels in the used relative observables, 
which will be defined in Sec. 6.

In addition to the correction for detector inhomogeneities and 
acceptance effects, the correlation also needs to be corrected for 
background. The underlying background for the chosen observables 
mainly consists of the uncorrelated particle background baseline 
from soft processes and the flow modulation in the correlation 
function. The background was found to be independent of �η
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Fig. 1. Illustration of per-trigger yields for the two different jet definitions (further discussed below): high-pT associates of jets with pT, const ≥ 0.15 GeV/c and pT, ch jet = 60–80
GeV/c (left) and low-pT associates of jets with pT, const ≥ 3.0 GeV/c and pT, ch jet = 30–40 GeV/c (right). No background subtraction was applied.
within |η| < 0.9 [61] and is therefore estimated as a function of 
�ϕ for the whole �η-range as B(�ϕ). To avoid including parts of 
the jet signal, B(�ϕ) is calculated in 1.0 < |�η| < 1.4, where the 
contribution from the jet is expected to be small, based on mea-
surements in pp collisions.

The background is directly subtracted from the correlation func-
tion. The background-corrected per-trigger yield serves as a basis 
for all subsequent measurements. It is defined as

Ycorr(�ϕ,�η) = Y (�ϕ,�η) − B(�ϕ). (2)

To illustrate the impact of the background on the per-trigger 
yields, the uncorrected per-trigger yields can be found in Fig. 1
for high- and low-pT associates. The background is nearly neg-
ligible for high-pT associates and it is sizeable for low-pT asso-
ciates. In the illustrated example for low-pT associates, the signal 
to signal+background ratio, i.e. the percentage of the signal in 
the measured observable, is roughly 0.1 within a radius of r < 0.3
around the near-side jet peak. Note also that the background cor-
rection removes all �η-independent correlations, including the 
away-side ridge which is not investigated in the presented anal-
ysis.

4. Jet reconstruction

The measurement of jets in heavy-ion collisions is challeng-
ing since a single event can contain multiple, possibly overlapping, 
jets from independent hard nucleon–nucleon scatterings. In addi-
tion, low transverse momentum particles originating from soft pro-
cesses lead to a fluctuating background which strongly influences 
the jet reconstruction. The relative effect is largest for low-pT jets 
and most central events. Consequently, jet reconstruction in heavy-
ion collisions requires a robust jet definition, and a procedure to 
correct for the presence of the large background [62].

Jets were reconstructed using the anti-kT or the kT algo-
rithms [63] in the FastJet package [64] with a resolution parameter 
of R = 0.3. Only those jets whose axis was reconstructed within 
|η| < 0.6 were kept in the analysis to assure the nominal jet cone 
is fully contained within the track acceptance of |η| < 0.9. This 
limits the effect of the acceptance boundaries on the measured jet 
spectrum. Jets reconstructed by the anti-kT algorithm were used 
to quantify signal jets, while jets reconstructed by the kT algo-
rithm were used to quantify the contribution from the underlying 
event [65].

Two different jet definitions are used in this analysis: for mea-
surements at high associate-pT, jets are measured with a con-
stituent cut pT,const ≥ 0.15 GeV/c, measurements at low asso-
ciate-pT are performed for jets measured with a constituent cut 

pT,const ≥ 3.0 GeV/c. Jets with pT,const ≥ 0.15 GeV/c are recon-
structed using all charged particles available for jet reconstruction 
and, thus, the fragmentation bias is as small as possible. This bias 
is caused by only including certain particles of the jet and could 
lead to a sample of harder fragmenting jets when leaving out par-
ticles at low pT. On the other hand, using all charged particles 
available for jet reconstruction also includes particles in the corre-
lation analysis which were already used in the jet finding process. 
The jet finding algorithm selects regions in momentum space with 
large energy flow. This implies that the distribution of charged par-
ticles inside the jet is biased. For example, the radial distribution 
of particles with respect to the jet axis will show a small depletion 
at distances just outside the jet cone radius R . This particularly af-
fects the shape of the jet, i.e. how the constituents are distributed 
relative to the jet axis, leading to an autocorrelation bias.

Therefore, the jets themselves and in particular their shapes are 
intimately connected to the jet definition. For high-pT associates, 
the autocorrelation bias cannot be avoided and has to be accepted 
as a part of the jet definition.

Low-pT associates are broadly distributed up to large distances 
relative to the jet. Since the jet finding algorithm clusters the jets 
roughly into cones with a nominal radius of R = 0.3, it strongly 
affects the shape of the jet. When measuring properties of low-pT
associates, we avoid the autocorrelation bias by adapting the jet 
definition: Trigger jets and associates can be decoupled by us-
ing jets with constituents above a certain threshold and asso-
ciates below the threshold. Therefore, for measurements at low 
associate-pT, jets are reconstructed with pT,const ≥ 3 GeV/c. Using 
a geometrical matching procedure that is performed on two collec-
tions of the differently defined jets which are reconstructed in each 
event it was checked that the jet axes for both jet definitions do 
not strongly change. For instance, for jets with pT,const ≥ 3 GeV/c
and pT, ch jet > 30 GeV/c the mean and standard deviation of the 
matched jet distance distribution are approximately given by 0.016
and 0.014, respectively. However, it must be emphasized that these 
jet definitions select two different jet samples and that the au-
tocorrelation bias was avoided here at the expense of a possible 
fragmentation bias.

The transverse momentum of reconstructed jets including con-
stituents as low as 0.15 GeV/c is affected by the contribution from 
the underlying event. In order to suppress the contribution of such 
background to the measurement of the jet momentum, we fol-
lowed the approach described in Refs. [65,66], which addresses the 
average additive contribution to the jet momentum on a jet-by-jet 
basis. The underlying background momentum density ρ was esti-
mated event-by-event using the median of praw

T, jet/Ajet, where praw
T, jet
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Table 1
True jet populations pT, true in GeV/c corresponding to given pT, ch jet-ranges for different event centrality classes. The ranges are given such that they contain at least 68% of 
the jet population. The most probable values of the distributions are given in parentheses.

pT, const-cut 0.15 GeV/c 3 GeV/c

pT, ch jet (GeV/c) 40–60 60–80 80–120 30–40 40–60

0–5% 11–87 (44) 22–111 (64) 49–144 (94) 7–59 (32) 21–88 (46)
5–10% 11–86 (46) 24–112 (66) 52–146 (94) 8–61 (32) 22–89 (46)
0–10% 11–86 (46) 25–113 (68) 54–147 (94) 10–63 (32) 24–91 (48)
10–30% 13–86 (50) 33–117 (70) 63–149 (98) 15–69 (32) 30–94 (48)
30–50% 25–91 (52) 47–118 (82) 75–147 (98) 23–73 (32) 36–95 (52)
is the uncorrected jet transverse momentum and Ajet is the area 
of jets reconstructed with the kT algorithm.

The average raw background momentum density 〈ρ〉 decreases 
towards more peripheral collisions. It is 〈ρ〉 ≈ 110, 65, and 25
GeV/c in the 0–10%, 10–30%, and 30–50% most central Pb–Pb
collisions, respectively. The background momentum density is a 
detector-level quantity that depends on the tracking efficiency and 
track definition. For signal jets reconstructed with the anti-kT algo-
rithm and constituents above 0.15 GeV/c, the background density 
scaled by the area of the reconstructed signal jet was subtracted 
from the raw reconstructed transverse momentum (praw

T, jet) of the 
signal jet according to pT, ch jet = praw

T, jet − ρ · Ajet.
Due to region-to-region variations of the background, the 

background-corrected jet transverse momenta are affected by 
residual fluctuations. To give an estimate for these fluctuations 
for the jet definition used, cones with radius R = 0.3 are ran-
domly placed in each event. In these cones, the track momenta are 
summed and the background is subtracted to calculate δpT:

δpT =
∑
cone

pT, track − ρ · A, (3)

where A is the area of the cone.
For the 0–10%, 10–30%, and 30–50% most central collisions, 

the standard deviation of the δpT-distribution as a measure for 
the magnitude of the fluctuations has been evaluated to 6.7, 5.1, 
and 3.3 GeV/c, respectively. Since the δpT-distribution also con-
tains the jet signal, the standard deviation of the full distribution is 
impacted by it. A lower limit of these fluctuations is given by per-
forming a Gaussian fit of the left-hand side of the δpT-distribution. 
The Gaussian widths were evaluated to 5.5, 4.0, and 2.3 GeV/c
for the 0–10%, 10–30%, and 30–50% most central collisions. The 
sample of jets that only uses constituents above 3 GeV/c is not 
corrected for the underlying event as the constituent cut already 
strongly suppresses the contribution from the background such 
that it is negligible.

In addition to background fluctuations, also the finite detec-
tor resolution and single particle efficiency influence the mea-
surement. To quantify both effects, the ratio of reconstructed jet 
momentum pT, rec and true jet momentum pT, true was calculated 
taking into account the detector resolution by using a response 
matrix and background fluctuations given by the δpT distributions. 
The response matrix was created from Monte Carlo simulations for 
which the true jet momentum is known by geometrically match-
ing particle-level PYTHIA jets with the corresponding detector-level 
jets reconstructed using a full detector model in GEANT3. More de-
tailed studies have been performed for jets on the same dataset in 
Ref. [66].

There are two effects contributing to the jet momentum res-
olution: detector effects and underlying event fluctuations. The 
detector effects lead to a jet momentum response that is peaked 
at pT, rec = pT, true, but has a tail to lower values of detector level 
momentum due to tracking inefficiency. The tracking efficiency 

changes by only a few percent from peripheral to central events. 
Background fluctuations produce an approximately Gaussian re-
sponse, with a width that depends strongly on centrality. The com-
bined effect leads to a standard deviation in the jet momentum 
resolution of 30% (20%) for jets with pT, ch jet = 30 GeV/c and 27% 
(27%) for jets with pT, ch jet = 120 GeV/c for the 0–10% (10–30 and 
30–50%) most central events.

It should be emphasized that pT, ch jet refers to the jet trans-
verse momentum at detector level, corrected for background only. 
Since within-event fluctuations of the background are not cor-
rected for, the mean of the given pT, ch jet-range is slightly higher 
than that of the underlying true pT distribution for more cen-
tral collisions where fluctuations are dominant. Hence, due to the 
steeply-falling jet spectrum, fluctuations lead to a shift of the spec-
trum to larger values. For more peripheral collisions where de-
tector effects are dominant, there is the opposite effect, i.e. the 
spectrum is shifted to smaller values. The fraction of purely com-
binatorial jets in the momentum ranges used in the analysis was 
found to be negligible.

To give a rough estimate of the true jet populations for a 
given reconstructed jet momentum range, projections of the re-
sponse matrices, introduced above, are used [67]. For measured 
pT, ch jet-distributions, approximate ranges are given in Table 1 as a 
measure for the true jet momentum distributions. The true pop-
ulations are defined as the smallest possible ranges around the 
pT, ch jet-range in which at least 68% of the jet population can be 
found.

5. Construction of PYTHIA baseline

In this analysis, reconstructed detector-level PYTHIA-jets serve 
as vacuum baseline, because the size of the pp dataset at 

√
s =

2.76 TeV is insufficient for this purpose.
To account for the fluctuations of the underlying event in Pb–Pb

collisions, PYTHIA jets embedded in real Pb–Pb collisions are used 
as a reference. Jets reconstructed in this reference dataset still 
show the same baseline jet properties but also include the effect 
of background fluctuations from the Pb–Pb event. To create this 
reference dataset, the following procedure is applied. Events are 
simulated with PYTHIA6 (Perugia-0 [68], version 6.421) followed 
by transport in the detector using GEANT3 and full response simu-
lation and reconstruction simulating the same detector conditions 
as in the Pb–Pb dataset. The reconstructed tracks are embedded 
into Pb–Pb events, i.e. they are combined with tracks from Pb–Pb
events. In order to simulate the same conditions as in Pb–Pb, the 
tracking efficiency in pp is decreased to the level expected in 
Pb–Pb. Since the tracking efficiency in pp is higher than in Pb–Pb, 
2% of the PYTHIA tracks are randomly discarded before they are 
embedded [54]. Jet finding algorithms are applied to the PYTHIA 
event and also to the combined PYTHIA + Pb–Pb event. Jets found 
in the combined event are only accepted for the reference dataset 
if they can be matched geometrically with those in the PYTHIA 
event. A matched embedded jet needs to be less than R = 0.3
away from a PYTHIA jet.
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Due to the very high particle occupancy of the Pb–Pb collision 
system, the probability to reconstruct a PYTHIA jet in the embed-
ded event is much lower than the probability to reconstruct a jet 
of same momentum by overlapping a jet that already existed in 
the Pb–Pb event, even after applying a geometrical matching pro-
cedure. Therefore, without any further intervention, the embedded 
jet sample would consist mostly of Pb–Pb-jets overlapping low-pT
PYTHIA jets.

Two approaches have been tested which ensure that the jet 
sample shows Pb–Pb-event-like fluctuations of a PYTHIA jet, and 
not jets from the Pb–Pb event. The analysis baseline technique uses 
a cut on the fraction of the jet pT that originates from the matched 
jet in PYTHIA. The applied cut values are motivated by the under-
lying true jet distribution that shows two separated populations: 
jets mostly consisting of particles from PYTHIA or from Pb–Pb. The 
cut value was chosen to achieve the best separation of the two dis-
tributions. In the 0–10% most central collisions, it is required that 
at least 20% of the jet constituents’ pT originate from the PYTHIA 
jet. For more peripheral collisions, this fraction is increased to 25%. 
For jets with pT, const ≥ 3 GeV/c, which were measured down to 
30 GeV/c, a cut of 50% is applied. However, this procedure might 
impose a bias on the implicitly accepted background fluctuations. 
Therefore, variations around these nominal values were considered 
for the evaluation of systematic uncertainties. Alternatively, a jet 
veto technique has been used: an embedded jet is not accepted 
if it overlaps with an already existing jet of sizeable transverse 
momentum pT, ch jet in the Pb–Pb event. Several veto cut values 
between 15 and 40 GeV/c were tested. Eventually, it turns out that 
both approaches yield very similar results. The reconstructed jets 
which survive the MC percentage cut serve as an input to the next 
analysis steps which are the same as in the data analysis.

6. Observables

In this analysis, two features of particle jets are probed in 
Pb–Pb collisions: changes in the particle pT composition of jets 
and their radial distribution relative to the jet axis.

To probe relative changes in the charged particle pT composi-
tion of jets in a surrounding cone with R = 0.3, the jet-associated 
yield ratio is measured. The ratio is formed from the integrated 
jet-associated per-trigger yields YPbPb and Yemb which represent 
the integrals of the per-trigger yield in the jet cone for a given 
pT, assoc-range as introduced in Eq. (2). Technically, the integral 
is the sum over the entries of all (�η, �ϕ)-bins whose center 
is within distances of up to R = 0.3 around the jet axis in the 
background-corrected per-trigger yield histogram.

The jet-associated yield ratio is defined by RY = YPbPb/Yemb. 
It directly compares integrated jet-associated per-trigger yields in 
Pb–Pb to the same yields for embedded PYTHIA jets. An enhance-
ment or suppression in associated yields is directly seen as a devi-
ation from unity in the ratio.

The relative radial particle distribution around the jet is directly 
derived from the jet-associated yields. It shows the relative distri-
bution of particle yields inside the jet cone. Thus, it is a measure 
for the broadening or collimation of constituents with certain mo-
menta in or around the jet cone. As for the jet-associated yield 
ratio, this measurement is performed for high- and low-pT jet-
associated yields. The radial shape is normalized to represent a 
probability distribution. It is defined in bins of r = √

�η2 + �ϕ2, 
the distance to the jet axis, to exploit the radial symmetry of the 
jet peak. In Refs. [48,49], an asymmetric broadening of the near-
side jet peak is observed in two-particle correlations. It is strongest 
for low associate and trigger momenta and vanishes for higher mo-
menta. Therefore, in the analysis presented here, the influence of 
this asymmetry on jet–hadron correlations was tested to check the 

radial symmetry of the jet peak. Even for the lowest accessible 
jet and associated track momenta, no jet peak asymmetry was ob-
served. Measurements in �η and �ϕ lead to the same conclusions 
within statistical precision, which justifies the presentation of the 
jet radial shape in bins of r. The correlation function which is used 
to obtain the shape is originally binned in η and ϕ . The binning 
was chosen fine enough to avoid significant binning effects.

For a given centrality-bin, and trigger and associate pT, it is 
defined by the following formula:

S(rmin, rmax) = 1

A

rmax∫
rmin

Ycorr(r)dr, (4)

where Ycorr(r) represents the background-corrected per-trigger 
yield, rmin and rmax the bin edges, and A = ∫ rrange

0 Ycorr(r)dr the 
integral for the self-normalization of the radial shape. The up-
per limit in the integral used for the self-normalization is chosen 
to reflect the different ranges of the shown radial shape and is 
rrange = 0.3 for the jets with pT, const ≥ 0.15 GeV/c and rrange = 0.9
for jets with pT, const ≥ 3 GeV/c. The statistical uncertainty is cal-
culated taking into account the self-normalization.

7. Systematic uncertainties

Several sources of systematic uncertainties contribute to the full 
uncertainty of the measurement and the evaluated individual un-
certainties are combined using a quadratic sum, assuming they are 
uncorrelated. Uncertainties for the following analysis aspects have 
been taken into account: the non-jet-related background correction 
technique, the mixed-event correction, the selection of embedded 
jets, the tracking efficiency, and the impact of using a PYTHIA 
reference instead of a measured reference in pp at the same en-
ergy. The uncertainties are partly correlated point-to-point. The 
discussed uncertainties are summarized in Tables 2–4.

To correct for the non-jet-correlated background in the corre-
lation function, the background is evaluated on the sidebands and 
subtracted in �ϕ , as described in Sec. 3. Different underlying back-
ground methods for the correlation functions have been tested: for 
systematic uncertainties, the definition of the sideband range was 
varied to 1.1 < |�η| < 1.3 instead of 1.0 < |�η| < 1.4. In addition, 
a simpler method that approximates the background by a constant 
baseline (B(�ϕ = const)) has been used.

The mixed-event acceptance/inhomogeneity correction is a 
small correction. Two variations are considered for systematic 
uncertainties. First, the mixed-event correction is calculated in-
clusively for all �ϕ . Second, the normalization of the mixed-event 
correlations is performed for |�η| < 0.3 and full |�ϕ| instead of 
using the plateau in |�η| < 0.2 and |�ϕ| < 0.2.

In the embedding, a cut motivated by studying the underlying 
true jet distributions is applied on the fraction of jet pT origi-
nating from the PYTHIA event, as described in Sec. 5. Instead of 
cutting at 20% for 0–10% centrality, and 25% for other centralities, 
the cut is varied to 15% and 25% for 0–10% centrality, and to 20% 
and 30% for other centralities. As described above, for jets with 
pT, const ≥ 3 GeV/c a baseline cut value of 50% is used. For sys-
tematic variation, the cut is performed at 15% and 60% for 0–10% 
centrality, 20% and 60% for other centralities.

The detector has a finite single track reconstruction efficiency, 
which is only known with finite precision. Since all observables are 
corrected for the tracking efficiency, they are all directly affected 
by its uncertainty. Detailed studies of the tracking efficiency uncer-
tainty have been performed to evaluate the size of its systematic 
uncertainty [54,66]. The studies indicate that the (absolute) un-
certainty is 4% for Pb–Pb collisions, mainly due to an imperfect 
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Table 2
Table of systematic uncertainties for jet-associated yields in Pb–Pb, embedded PYTHIA, and their ratio for high-pT associates (4–20 GeV/c) and low-pT associates (1–2 GeV/c) 
and for the 0–10% most central collisions. Uncertainties are given as relative uncertainties in percentages.

pT, assoc (GeV/c) Observable 4–20 1–2

pT, ch jet (GeV/c) 40–60 60–80 80–120 30–40 40–60

Background (%) Pb–Pb 0.3–0.6 0.7–1.5 1.5–2.0 6.9 8.0
Embedded 0.3–0.7 0.7–1.0 1.0–1.1 6.8 6.7
Ratio 0.4–0.7 0.1–0.7 0.4–1.6 6.9 9.6

Mixed event correction (%) Pb–Pb 0.2 0.3 0.5 0.2 0.2
Embedded 0.7 0.4 0.4 0.1 <0.1
Ratio 0.7 0.5 0.3 0.2 0.2

Embedding (%) Pb–Pb – – – – –
Embedded 0.1–2.3 0.1–0.4 0.1–0.3 5.0 2.7
Ratio 0.1–2.3 0.1–0.4 0.1–0.3 4.6 2.7

Tracking efficiency (%) Pb–Pb 4.0 4.0 4.0 4.0 4.0
Embedded 4.0 4.0 4.0 4.0 4.0
Ratio – – – – –

Tracking PYTHIA (%) Pb–Pb – – – – –
Embedded 2.0 2.0 2.0 2.0 2.0
Ratio 2.0 2.0 2.0 2.0 2.0

PYTHIA vs. pp (%) Pb–Pb – – – – –
Embedded 5.0 5.0 5.0 2.0 2.0
Ratio 5.0 5.0 5.0 2.0 2.0

Total (%) Pb–Pb 4.0–4.1 4.1–4.3 4.3–4.5 8.0 9.0
Embedded 6.8–7.2 6.8 6.8 9.8 8.7
Ratio 5.5–5.9 5.4–5.5 5.4–5.6 8.8 10.3

Table 3
Table of systematic uncertainties for jet radial shapes for high-pT associates (4–20 GeV/c) in Pb–Pb and embedded PYTHIA for the 0–10% most central collisions. Uncertainties 
are given as relative uncertainties in percentages. Note that relative uncertainties grow for higher r values.

Data sample Pb–Pb Embedded PYTHIA

pT, ch jet (GeV/c) 40–60 60–80 80–120 40–60 60–80 80–120

Background (%) 0.1–6.5 0.1–13.0 0.1–19.2 0.0–6.9 0.0–10.8 0.0–14.5
Mixed event corr. (%) <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
Embedding (%) – – – 1.0–13.9 0.4–3.1 0.1–0.8
PYTHIA vs. pp (%) – – – 2.0 2.0 2.0

Total (%) 0.1–6.5 0.1–13.0 0.1–19.2 2.2–15.7 2.0–11.5 2.0–14.6
Table 4
Table of systematic uncertainties for jet radial shapes for low-pT associates 
(1–2 GeV/c, 2–3 GeV/c) in Pb–Pb and embedded PYTHIA for jets with pT, ch jet =
40–60 GeV/c and for the 0–10% most central collisions. Uncertainties are given as 
relative uncertainties in percentages. Note that relative uncertainties grow for higher 
r values.

Data sample Pb–Pb Embedded PYTHIA

pT, assoc (GeV/c) 1–2 2–3 1–2 2–3

Background (%) 1.6–7.5 0.4–8.8 2.2–11.9 1.0–4.2
Mixed event corr. (%) <0.1 <0.1 <0.1 <0.1
Embedding (%) – – 1.2–7.4 0.8–11.3
PYTHIA vs. pp (%) – – 2.0–10.0 2.0–10.0

Total (%) 1.6–7.5 0.4–8.8 6.2–13.0 4.5–15.7

description of the ITS-TPC matching efficiency. Another uncertainty 
from the tracking efficiency correction enters this analysis due to 
the usage of PYTHIA simulations. The tracking efficiency of the 
PYTHIA data is artificially lowered by 2% before embedding to ac-
count for the lower tracking efficiency in Pb–Pb collisions. As a 
conservative estimate, a relative uncertainty of 100% is assigned 
to this value. Both components of the tracking efficiency uncer-
tainty are taken into account as independent contributions to the 
uncertainty, i.e. added in quadrature to the full uncertainty. These 
uncertainties are directly used as uncertainties for the yields, see 
Table 2. For the jet-associated yield ratio, the uncertainty on the 

tracking efficiency in Pb–Pb cancels, because it is correlated in 
Pb–Pb and the embedded PYTHIA reference. For the radial shape 
distribution, a change in the tracking efficiency has no impact ei-
ther, since these observables are relative quantities that do not 
depend on the global magnitude of the tracking efficiency. As an 
alternative approach to estimate the impact of these two uncer-
tainties of the tracking efficiencies on the observables, the full 
analysis was redone using corrections that assume the above given 
lower tracking efficiencies. There was no significant impact on the 
presented results.

Finally, an uncertainty is assigned since PYTHIA is used as a 
baseline instead of a measured pp reference. Including this uncer-
tainty, the conclusions are also valid for a pp reference and not 
only for an embedded PYTHIA reference. In order to do so, the 
presented observables were calculated and compared for PYTHIA 
events and pp collisions at 7 TeV. Within the statistical precision 
of this comparison, it is only possible to give an estimate for the 
inclusive pT, ch jet-range. The relative deviations of each observable 
between both datasets enter directly as a systematic uncertainty 
and are on the level of a few percent, cf. Tables 2–4.

8. Results

Figs. 2 and 3 depict the jet-associated yields (left) and yield 
ratios (right) for high-pT and low-pT associated particles, respec-



210 ALICE Collaboration / Physics Letters B 796 (2019) 204–219
Fig. 2. Centrality dependence of jet-associated yields (left) and yield ratios (right) for high-pT associates. Boxes represent systematic uncertainties, error bars represent 
statistical uncertainties. Observables are corrected for acceptance and background effects.

Fig. 3. Centrality dependence of jet-associated yields (left) and yield ratios (right) for low-pT associates. Boxes represent systematic uncertainties, error bars represent 
statistical uncertainties. Observables are corrected for acceptance and background effects.
tively. Both quantities are shown as a function of event centrality 
and for several selected jet transverse momenta.

The jet-associated yield ratio shows a suppression with a signif-
icance of several standard deviations in the centrality range 0–50% 
for the considered high-pT associated particles. In the probed 
jet momentum range, no significant pT, ch jet-dependence is ob-
served. The centrality-dependent linear slope of the distribution 
for pT, ch jet = 40–60 GeV/c is more than one standard deviation 
away from zero, taking into account statistical and systematic un-
certainties added in quadrature, indicating that there is a slightly 
stronger suppression for more central collisions in this case. As a 
cross check, the same observable was also measured for jets with 
several higher minimum pT, const-cuts, i.e. 1, 2, and 3 GeV/c, which 
are less affected by the underlying event. They lead to similar con-
clusions.

The jet-associated yield ratio for low-pT associates has much 
larger statistical and systematic uncertainties than the ratio of 
high-pT constituents, thus it is not possible to draw a definite con-
clusion.

The measured jet relative radial shapes are presented in Figs. 4
and 5. The top panels show the self-normalized distributions, 
the difference and the ratio of the shapes in Pb–Pb and em-
bedded PYTHIA can be found in the two lower panels. The jet 
radial shapes of high-pT associates are measured for pT, ch jet =
40–60 GeV/c, 60–80 GeV/c, and 80–120 GeV/c. Shapes of low-pT
associates are presented for jets with pT, ch jet = 30–40 GeV/c and 
pT, const >3 GeV/c for associates with pT, assoc = 1–2 GeV/c and 
pT, assoc = 2–3 GeV/c.

In general, the radial shape measurements indicate that all jet-
associated yields are similarly distributed relative to the jet axis 
in Pb–Pb and embedded PYTHIA. The yields of high-pT associates 
appear to be slightly more collimated near the core for jets in 
Pb–Pb, though the absolute effect is small. While the shape is not 
significantly changed for jet transverse momenta between 40 and 
60 GeV/c in Pb–Pb compared to the reference, there is a visible 
collimation for higher jet momenta above 60 GeV/c. This can be 
seen best in the difference distributions �PbPb−emb of Fig. 4 which 
show that a larger fraction of the associated yield can be found 
near the core in Pb–Pb collisions.

The ratio distributions show that the collimation effect per-
sists up to r = 0.2, which is best visible for jets with pT, ch jet =
60–80 GeV/c. In the CMS measurement [50], no significant change 
of the near-side jet peak width is observed in Pb–Pb for high-pT
associates and jets above 120 GeV/c. However, the magnitude 
of the effect observed here is compatible with the observations 
within uncertainties. Also note that the CMS data hints as well to a 
small collimation of the peak for higher-pT associates (4–8 GeV/c). 
Possible effects which might lead to a collimation include a relative 
change in the quark/gluon content in Pb–Pb compared to the refer-
ence [69], as well as a suppression of large-angle soft radiation in 
the coherent jet energy loss picture [70,71]. Low-pT jet-associated 
yields presented in Fig. 5 are measured up to a distance of r = 0.9
relative to the jet since in this case the associates are decoupled 
from the trigger jets.

For pT, assoc = 1–2 GeV/c, a hint of a broadening of the radial 
shape is observed for jets with momenta between 30 and 40 GeV/c
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Fig. 4. Jet relative radial shape distributions, differences, and ratios for the 0–10% most central collisions for high-pT constituents, shown for different jet transverse momenta. 
Boxes represent systematic uncertainties, shaded boxes include uncertainties from PYTHIA/pp comparison, and error bars represent statistical uncertainties. Observables are 
corrected for acceptance and background effects.
for the given definition. The broadening is visible in the differ-
ence distribution of the left plot in Fig. 5: in Pb–Pb collisions, 
a smaller fraction of particles can be found directly next to the 
jet axis. For higher associate transverse momenta, i.e. pT, assoc =
2–3 GeV/c, there is no significant modification of the low-pT radial 
shape of jets in Pb–Pb collisions within the large current experi-
mental uncertainties. A robust measurement of this observable for 
pT, ch jet = 40–60 GeV/c or higher momenta is not possible due to 
the insufficient size of the dataset. For higher jet momenta above 
120 GeV/c, CMS measures a significant broadening of the near-side 
jet peak.

9. Summary

The presented results constitute the first attempt to study jet–
hadron correlations with track-based jets down to transverse mo-
menta of 30 GeV/c in Pb–Pb collisions — a challenging regime 
due to the large underlying event and its fluctuations. The jet ra-

dial shapes and the change in the particle pT composition were 
measured in Pb–Pb collisions at 

√
sNN = 2.76 TeV for high- and 

low-pT associates and compared to embedded PYTHIA simula-
tions. The number of high-pT associates in Pb–Pb collisions is 
suppressed compared to the reference by roughly 30 to 10%, de-
pending on centrality. The radial particle distribution relative to 
the jet axis shows a moderate modification in Pb–Pb collisions 
with respect to PYTHIA. High-pT associate particles are slightly 
more collimated in Pb–Pb collisions compared to the reference. 
For jets with pT, const ≥ 3 GeV/c, the radial distributions of low-pT
associates were measured. A hint of a broadening of the low-pT
radial shapes is observed for pT, assoc = 1–2 GeV/c. The shape for 
pT, assoc = 2–3 GeV/c does not show a significant modification 
within its large uncertainties. The results are in line with both 
previous jet–hadron-related measurements from the CMS Collab-
oration and jet shape measurements from the ALICE Collaboration 
at higher pT and add further support for the established picture of 
in-medium parton energy loss.
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Fig. 5. Jet relative radial shape distributions, differences, and ratios for the 0–10% most central collisions for two different low-pT constituent ranges. Boxes represent 
systematic uncertainties, shaded boxes include uncertainties from PYTHIA/pp comparison, and error bars represent statistical uncertainties. Observables are corrected for 
acceptance and background effects. The y-axis scale of the ratio is chosen to focus on r < 0.3, where the deviation of the ratio from unity is significant.
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R. Sahoo 49, S. Sahoo 66, P.K. Sahu 66, J. Saini 141, S. Sakai 133, S. Sambyal 99, V. Samsonov 96,91, 
A. Sandoval 72, A. Sarkar 73, D. Sarkar 141,143, N. Sarkar 141, P. Sarma 41, V.M. Sarti 103, M.H.P. Sas 63, 
E. Scapparone 53, B. Schaefer 94, J. Schambach 119, H.S. Scheid 69, C. Schiaua 47, R. Schicker 102, 
A. Schmah 102, C. Schmidt 105, H.R. Schmidt 101, M.O. Schmidt 102, M. Schmidt 101, N.V. Schmidt 94,69, 
A.R. Schmier 130, J. Schukraft 34,88, Y. Schutz 34,136, K. Schwarz 105, K. Schweda 105, G. Scioli 27, 
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