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ABSTRACT

Context. Eclipsing, spectroscopic double-lined binary star systems are excellent laboratories for calibrating theories of stellar interior
structure and evolution. Their precise and accurate masses and radii measured from binary dynamics offer model-independent con-
straints and challenge current theories of stellar evolution.
Aims. We aim to investigate the mass discrepancy in binary stars. This is the significant difference between stellar components’ masses
measured from binary dynamics and those inferred from models of stellar evolution via positions of the components in the Teff− log g
Kiel diagram. We study the effect of near-core mixing on the mass of the convective core of the stars and interpret the results in the
context of the mass discrepancy.
Methods. We fitted stellar isochrones computed from a grid of mesa stellar evolution models to a homogeneous sample of eleven
high-mass binary systems. Two scenarios are considered where individual stellar components of a binary system are treated indepen-
dent of each other and where they are forced to have the same age and initial chemical composition. We also study the effect of the
microturbulent velocity and turbulent pressure on the atmosphere model structure and stellar spectral lines, and its link with the mass
discrepancy.
Results. We find that the mass discrepancy is present in our sample and that it is anti-correlated with the surface gravity of the star.
No correlations are found with other fundamental and atmospheric parameters, including the stellar mass. The mass discrepancy can
be partially accounted for by increasing the amount of near-core mixing in stellar evolution models. We also find that ignoring the
microturbulent velocity and turbulent pressure in stellar atmosphere models of hot evolved stars results in the overestimation of their
effective temperature by up to 8%. Together with enhanced near-core mixing, this can almost entirely account for the ∼30% mass
discrepancy found for the evolved primary component of V380 Cyg.
Conclusions. We find a strong link between the mass discrepancy and the convective core mass. The mass discrepancy can be solved
by considering the combined effect of extra near-core boundary mixing and the consistent treatment in the spectrum analysis of hot
evolved stars. Our binary modelling results in convective core masses between 17 and 35% of the stellar mass, which is in excellent
agreement with the results from gravity-mode asteroseismology of single stars. This implies larger helium core masses near the end
of the main sequence than have been anticipated so far.

Key words. methods: data analysis – methods: numerical – techniques: spectroscopic – binaries: eclipsing – binaries: spectroscopic –
stars: general

1. Introduction

The theory of stellar interior structure and evolution (SSE)
plays a crucial role in contemporary astrophysics. Many research
fields rely on predictions of this theory and are hence extremely
dependent on how well physical conditions can be described
throughout the star, both instantaneously and as a function of
time. Historically, the theory of SSE was calibrated on surface
atmospheric properties of stars, meaning that the whole pro-
cess was largely driven by observational constraints that were
only available at the outer (atmospheric) boundary. The situa-
tion significantly improved in the case of the Sun with the advent
of helioseismology (e.g. Leighton et al. 1962; Evans & Michard
1962a,b,c; Christensen-Dalsgaard & Gough 1976; Harvey et al.

1996; Gough et al. 1996; Christensen-Dalsgaard 2002), which
allowed more than 70% of the outermost part of the Sun to be
probed through the detection and interpretation of its acoustic
waves stochastically driven by convection (Claverie et al. 1979;
Duvall & Harvey 1983).

Helioseismology has provided an enormous improvement in
the calibration of the models for low-mass stars with a radia-
tive core (Christensen-Dalsgaard 2002). This was achieved from
adapting the input physics and parametrised transport profiles in
models of the Sun to solve discrepancies in the solar oscillation
frequencies and those predicted by non-rotating non-magnetic
1D models. This seismically calibrated solar model is nowadays
applied to the thousands of low-mass and evolved intermediate-
mass stars observed with the Kepler (Borucki et al. 2010)
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and TESS (Ricker et al. 2015) space missions. The frequen-
cies of their pressure (p-) modes allow us to determine the
radii, masses and and ages of solar-like stars from scaling
them with respect to the frequencies of the helioseismic solar
model, leading to relative precisions for the stellar radii, masses,
and ages of ∼2, ∼5, and ∼15%, respectively (Chaplin et al.
2014; Hekker & Christensen-Dalsgaard 2017). Higher preci-
sions require improving the input physics, starting from the
non-rotating non-magnetic solar-scaled model and adopting its
ingredients to include more realistic descriptions for the trans-
port processes due to convection, atomic diffusion, rotation,
and magnetism so as to meet the asteroseismic measurements
(e.g. Silva Aguirre et al. 2017; Verma & Silva Aguirre 2019;
Eggenberger et al. 2019a,b; Fuller et al. 2019).

Asteroseismic evaluations of intermediate- and high-mass
stars in the core-hydrogen burning phase are based on a similar
principle to helio- and asteroseismology of low-mass stars. How-
ever, evaluations of intermediate- and high-mass stars cannot
rely on the scaling of solar-like models, since they have a convec-
tive core and a radiative envelope. For an extensive discussion of
the methodology and a summary of achievements so far, we refer
to Aerts (2019). For the current work, we distill the two most
pertinent results obtained from some 40 intermediate-mass stars
covering M ∈ [1.3, 8] M� deduced from non-radial gravity (g)
modes, which probe the region just outside the convective core:
(1) stars with a convective core are near-rigid rotators through-
out the entire core-hydrogen burning phase across the modelled
range of veq/vcrit ∈ [0, 70]% (Aerts et al. 2019); (2) asteroseis-
mic derivations of the mass of the convective core, Mcc, via
the estimation of near-core mixing levels, lead to the broad
range of Mcc/M ∈ [3, 20]%. These studies pinpoint the need
for more massive convective cores during the main-sequence
phase compared with those predicted by standard stellar evolu-
tion models, even when limiting to the slowest rotators in the
sample.

Much in the spirit of helioseismology, the asteroseismic stud-
ies of intermediate- and high-mass stars purposefully do not
specify the physical reason for the extra mixing near the con-
vective core but rather interpret the deviations between g-mode
frequencies predicted for 1D non-rotating non-magnetic stellar
models and those detected in the space-based data. It is notewor-
thy to mention that the mixing profiles predicted from various 1D
rotating stellar models differ by a lot, but they also do not lead to
appropriate values of g-mode frequencies when compared with
space asteroseismic data of such quantities (Aerts et al. 2018). In
particular, the predicted levels of chemical mixing at the bottom
of the deep envelopes of the models due to rotational instabili-
ties are orders of magnitude too high to be in agreement with the
asteroseismic data.

Eclipsing doubled-lined spectroscopic binaries offer a
completely independent way to calibrate the interiors of
intermediate- and high-mass stars. The ability to infer model-
independent masses and radii of stars with very high precision
and accuracy makes binary stars ideal candidates for benchmark-
ing SSE models as well as asteroseismic analyses. Valle et al.
(2018) performed a theoretical study as to the ability to recover
stellar ages and the overshooting efficiency based on simu-
lated binary star data. The authors assumed typical observational
uncertainties on stellar mass and effective temperature of ≤1%
and ±150 K, respectively. Moreover, they also found that recov-
ered ages and efficiencies of near core mixing are biased towards
lower values in all considered scenarios. Valle et al. (2018) also
concluded that the above observational uncertainties typically
allow one to distinguish between models without convective core

overshooting and those with an intermediate amount of convec-
tive core overshooting.

Pols et al. (1997) already showed that SSE models require
systematically enhanced near-core mixing at post-main-
sequence stage of evolution to accommodate stellar masses mea-
sured from binary dynamics. Lastennet & Valls-Gabaud (2002)
report an overall agreement between model predictions and
mass and radius measurements for 60 detached binary systems,
emphasizing a large degeneracy between the age and metallic-
ity in the models due to lack of observational constraints for
the metallicity. More recently, Higl & Weiss (2017) presented a
study of detached eclipsing binaries in a wide range of stellar
masses. These authors report the need to introduce extra near-
core mixing in the form of overshooting for stars with a convec-
tive core.

Binary and multiple stellar systems are also found to be
extremely synergistic with intrinsically variable pulsating stars.
An example of such a synergy is the class of “heart-beat stars”
(Thompson et al. 2012) – highly eccentric binaries with variable
component(s), where the pulsational variability is being trig-
gered by tidal forces (e.g. Welsh et al. 2011; Hambleton et al.
2013a,b; Guo et al. 2019). In addition to providing a stellar pul-
sation excitation mechanism, tides are also known to be impor-
tant (Fuller 2017; Guo et al. 2017) and can affect self-excited
oscillations of stars, as evidenced recently by the TESS mission
(e.g. Bowman et al. 2019).

2. The mass discrepancy

The SSE models of stars born with a convective core are not well
calibrated. A striking example is the mass discrepancy observed
in massive stars which has remained unsolved for almost three
decades. The original formulation of the problem comes from
Herrero et al. (1992), who presented a spectroscopic analysis
of 25 luminous Galactic stars and made a comparison between
spectroscopically inferred masses and those derived from mod-
els of stellar evolution. The spectroscopic masses are derived by
exploiting the spectroscopically determined surface gravities and
radii that come from the absolute visual magnitude MV of the
star and the integral of stellar flux V (Eq. (1) in Herrero et al.
1992). The evolutionary masses are in turn obtained by fitting
evolutionary tracks to the position of the star in the Hertzsprung-
Russell (HR) diagram, where stellar luminosity is derived from
the radius and the spectroscopically inferred effective tempera-
ture of the star. From a comparison of the component masses
within the sample, the authors concluded that SSE models over-
predict the masses of the stars and that there is a tendency of the
effect to get more pronounced as the surface gravity log g of the
star decreases (see Fig. 16 in Herrero et al. 1992).

The conclusions of Herrero et al. (1992) are confirmed by
independent studies of eclipsing, spectroscopic double-lined
(SB2) binaries. In this particular case, it is the dynamical ver-
sus evolutionary mass discrepancy that is being reported. While
the former mass measurement is model-independent and comes
from binary dynamics, the latter mass inference is based on fit-
ting positions of individual stellar components in the HR dia-
gram with evolutionary tracks.

2.1. Case study: V380 Cyg

The binary V380 Cyg comprises an evolved early B-type primary
star and a main-sequence B-type secondary. It is amongst the most
prominent cases of massive binaries exhibiting the mass discrep-
ancy. The system was originally studied by Guinan et al. (2000)
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based on time-series of multi-color ground-based photometric
data and of high-resolution optical échelle spectroscopy. The
authors emphasised the difficulty to explain the position of the
more evolved primary in the HR diagram with evolutionary tracks
that correspond to the dynamical mass, spectroscopically mea-
sured metallicity, and no extra mixing in the near-core regions of
the primary. Large amounts of extra near-core mixing in the form
of convective penetration corresponding to αov = 0.6 was pro-
posed by Guinan et al. (2000) as a possible solution to the mass
discrepancy in the V380 Cyg system. The need for a large amount
of extra mixing in the near-core region has been confirmed quasi-
independently by the authors from measurements of the apsidal
motion of the star and subsequent inference of the internal struc-
ture constant k.

The system was revisited by Pavlovski et al. (2009) based
on photometric data of Guinan et al. (2000) and newly obtained
multi-instrument extended time-series of optical échelle high-
resolution spectroscopy. The authors used the method of spec-
tral disentangling (spd; Simon & Sturm 1994) as implemented
in the FDBinary software package (Ilijic et al. 2004) to dis-
entangle composite spectra of the binary system into individ-
ual spectral contributions of the two components. Atmospheric
characteristics inferred from the disentangled spectra were used
with a grid of Geneva evolutionary models to derive evolutionary
masses of the two stars. In line with the findings by Guinan et al.
(2000), the authors report a mass discrepancy in excess of 10%
for the more evolved primary component, by comparing its
dynamical mass to a set of evolutionary masses inferred from
the SSE model grids of Schaller et al. (1992), Claret (1995), and
Ekström et al. (2008). In particular, Pavlovski et al. (2009) con-
clude that the current numerical implementation of rotation in
SSE models does not solve the mass discrepancy observed in
V380 Cyg.

V380 Cyg was one of the brightest and most massive stars
observed by the Kepler space mission in its Guest Observer
Programme (PI: A. Tkachenko). Hence, it was reanalysed once
again by Tkachenko et al. (2014) based on about three months of
nearly continuous Kepler space photometry and newly obtained
time-series of optical échelle spectroscopy from the hermes
spectrograph mounted on the Flemish Mercator telescope on La
Palma (Raskin et al. 2011). Similar to the previous studies, the
authors report a mass discrepancy in excess of 30% for the pri-
mary component. The measurements could only be explained by
assuming a stellar mass at 3σ of its dynamical value, by signifi-
cantly increasing the initial rotation rate compared to the current
one, and by adopting a high value of αov = 0.6 in their grid of
mesa evolutionary models computed according to Paxton et al.
(2013). In addition, Tkachenko et al. (2014) also report the
detection of stochastic oscillations intrinsic to the primary com-
ponent, as well as rotational modulation in the high-resolution
spectroscopy.

2.2. Ensemble study results

Schneider et al. (2014) presented a homogeneous Bayesian anal-
ysis of a sample of 18 eclipsing binaries from the Torres et al.
(2010) sample and relied on Bonn stellar evolution models with
rotation. The authors stressed that rotation implies a larger radius
of a few percent and hence can not be ignored. Furthermore,
Schneider et al. (2014) focused on the consequences of rota-
tional mixing in stellar ageing, while assuming that stars with
fractional main-sequence ages less than 35% are unaffected by
convective core overshooting. Under these conditions, they were
able to find a good isochrone fit for component stars cooler than

25 000 K. Here, we take a similar approach but lift the assump-
tion that stars do not experience near-core mixing in the first
stage of the main sequence, since asteroseismology has shown
young massive stars experience near-core boundary mixing (see
Aerts 2019, for a summary of measured near-core and envelope
mixing levels). Moreover, we consider models with near-core
mixing without specifying its origin in terms of physical pro-
cess, again following recent results from asteroseismology. We
evaluate the models for a sample of eclipsing binaries with high-
resolution spectroscopy analysed in a homogeneous way so as to
eliminate systematic bias in the data that is used as input for the
modelling. In this respect, our study can be seen as a follow-up
study of the one by Schneider et al. (2014), but where we utilize
non-rotating models with interior mixing prescriptions guided
by asteroseismology.

The idea of probing the amount of near-core mixing in
intermediate- and high-mass binaries in the form of convec-
tive core overshooting has been further elaborated upon by
Claret & Torres (2016, 2017, 2018, 2019) in their series of
papers on a sample of some 50 eclipsing SB2 systems. Their
sample has been compiled from the catalogue of Torres et al.
(2010) and the catalogue of the Optical Gravitational Microlens-
ing Experiment (OGLE)1. The selection requirements concerned
precise and accurate (3% and better) masses, radii, and effec-
tive temperatures of stars, with additional selection criteria being
evolutionary stage and availability of the surface chemical com-
position measurements. Grids of non-rotating evolutionary mod-
els were computed with the Granada (Claret 2004, 2012) and
mesa (Paxton et al. 2011, 2013, 2015) codes for variable ini-
tial mass, metallicity, and overshooting parameter αov( fov). The
authors allowed for variable metallicity and an age tolerance
of up to 5% when fitting isochrones to the sample of the indi-
vidual binary components, deducing the best fit overshooting
parameter dictated by the stars’ positions in the HR diagram.
Irrespective of the assumed functional form of the overshoot-
ing, the authors find a clear dependence of the latter on stellar
mass with an almost linear transition from no overshooting to
approximately αov( fov) = 0.2 (0.02) Hp in the mass range from
∼1.2−2.0 M�. The distribution flattens beyond ∼2.0 M� and no
further increase of the overshooting parameter with increas-
ing stellar mass is deduced. In addition, Claret & Torres (2016)
report systematically smaller metallicities as inferred from their
evolutionary models compared to spectroscopic measurements
in the literature, and suggest this is due to outdated value for
the helium abundance Y = 0.24 adopted in their grid of models
(Claret & Torres 2017).

The sample of detached eclipsing binaries presented by
Claret & Torres (2016, 2017, 2018) has been revisited by
Costa et al. (2019) based on a new grid of rotating PARSEC
models and using a Bayesian method of analysis. The authors
report a large spread in the derived values of the overshoot-
ing parameter for stars with masses above some 1.9 M�. Fur-
thermore, Costa et al. (2019) demonstrate that the above spread
can be well explained by stars having a uniform distribu-
tion of initial rotation in the range between 0 and 0.8 of the
break-up value and a fixed mild amount of core overshooting.
Daszyńska-Daszkiewicz & Miszuda (2019) present a study of
38 detached systems compiled from the literature where they
focus on age determination by simultaneously matching the
stars’ positions in the radius-age and the Teff− log g Kiel dia-
grams. The authors rely on visual inspection and come to the
conclusion that it is necessary to adjust values of the initial

1 http://ogle.astrouw.edu.pl/
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Table 1. Observed fundamental and atmospheric parameters of the sam-
ple targets.

Object/ M R log Teff log g v sin i veq/vcrit

parameter (M�) (R�) (dex) (dex) (km s−1) (%)

V578 Mon(1) 14.54(8) 5.41(4) 4.477(7) 4.133(18) 117(4) 21.0(9)
10.29(6) 4.29(5) 4.411(7) 4.185(21) 94(2) 17.9(7)

V453 Cyg(2) 13.90(23) 8.62(9) 4.459(8) 3.710(9) 107.2(2.8) 23.6(1.0)
11.06(18) 5.45(8) 4.442(10) 4.010(12) 98.3(3.7) 19.3(1.1)

V478 Cyg(2) 15.40(38) 7.26(9) 4.507(7) 3.904(9) 129.1(3.6) 25.4(1.3)
15.02(35) 7.15(9) 4.502(9) 3.907(10) 127.0(3.5) 25.1(1.3)

AH Cep(2) 16.14(26) 6.51(10) 4.487(8) 4.019(12) 172.1(2.1) 32.6(9)
13.69(21) 5.64(11) 4.459(10) 4.073(18) 160.6(2.3) 30.9(9)

V346 Cen(3) 11.78(13) 8.26(16) 4.417(5) 3.675(17) 165.2(2.8) 39.0(1.3)
8.40(10) 4.19(8) 4.352(6) 4.118(16) 89.1(2.3) 17.7(7)

V573 Car(3) 15.14(39) 5.41(5) 4.504(5) 4.151(7) 184.6(2.7) 31.4(1.1)
12.38(20) 4.48(5) 4.458(5) 4.229(7) 155.4(3.1) 26.5(9)

V1034 Sco(3) 17.07(12) 7.49(7) 4.508(7) 3.921(8) 169.8(2.6) 31.9(8)
9.60(5) 4.20(4) 4.412(5) 4.173(9) 94.5(3.3) 17.8(7)

V380 Cyg(4) 11.43(19) 15.71(13) 4.336(6) 3.104(6) 98(2) 32.6(1.1)
7.00(14) 3.82(5) 4.356(22) 4.120(11) 38(2) 8.0(6)

CW Cep(5) 13.00(7) 5.45(5) 4.452(7) 4.079(10) 105.2(2.1) 19.3(5)
11.94(7) 5.09(5) 4.440(7) 4.102(10) 96.2(1.9) 17.8(6)

U Oph(5) 5.09(5) 3.44(1) 4.220(4) 4.073(4) 110(6) 25.4(1.6)
4.58(5) 3.05(1) 4.183(3) 4.131(4) 108(6) 24.7(1.5)

V621 Per(6) 9.44(46) 8.92(14) 4.354(5) 3.513(11) 32.3(2.7) 8.7(1.2)

Notes. Error bars are given in parentheses in terms of the last digit(s).
The superscript in the first column identifies the study the parameters
have been taken from. For each object, the first and second line corre-
sponds to the primary and secondary component.
References. (1)Garcia et al. (2014); (2)Pavlovski et al. (2018); (3)Pavlovski
et al. (in prep.); (4)Tkachenko et al. (2014); (5)Johnston et al. (2019a);
(6)Southworth et al. (in prep.).

metallicity and convective core overshooting in order to repro-
duce the observed properties and common ages for 33 out of
38 binary systems.

In this paper, we study the mass discrepancy in eclipsing
binaries by focusing on a sample of (mostly) high-mass stars.
The stellar sample itself is presented in Sect. 3, while the adopted
methodology is summarised in Sect. 4. Our method is based on
isochrone fitting. Our analyses of the individual binary compo-
nents assuming that they are effectively single stars are presented
in Sect. 5.1. In these analyses, we investigate the influence of the
assumed functional form of extra mixing and of the adopted tem-
perature gradient in the near-core region, without pinpointing its
physical cause (Sects. 5.1.1 and 5.1.2). In practice, we consider
both an exponentially decaying and a constant near-core mix-
ing profile for the core-boundary mixing (CBM). For each of
these cases, and for each star, we report the most important con-
sequence of the adopted CBM profile and the associated mass
of the convective core. Further analyses enforcing an equal age
condition for the two stellar components of each binary are sum-
marised in Sect. 5.2. We take a closer look at the V380 Cyg sys-
tem in Sect. 6 before closing the paper with the discussion and
conclusions in Sect. 7.

3. Stellar sample

Our stellar sample comprises eleven intermediate- and high-mass
eclipsing SB2 binary systems and is presented in Table 1. A
distinct property of this sample and of our approach compared
to previous studies in the literature is that the fundamental and
atmospheric parameters of all stars from the sample were obtained
with the same methodology (Pavlovski et al. 2018). This concerns
the use of the most recent versions of the Wilson-Devinney

(wd, Wilson & Devinney 1971), phoebe2 (Prša & Zwitter 2005;
Prša 2018), and jktebop3 (Southworth et al. 2004) codes for
the analysis and interpretation of (eclipsing) binary light curves.
The method of spectral disentangling as implemented in the
FDBinary code (Ilijic et al. 2004) has been employed to obtain
spectroscopic orbital elements as well as disentangled spectra of
individual stellar components for each binary system from the
sample. The suite of surface/detail (Giddings 1981; Butler
1984) codes with model atoms listed in Pavlovski & Southworth
(2009) were used for NLTE analyses of the obtained disentangled
spectra to infer atmospheric characteristics of individual binary
components. In cases when the LTE assumption was adequate, the
gssp software package4 (Tkachenko 2015) has been employed
for the analysis of stellar spectra. The use of consistent method-
ology allowed us to compile a homogeneous sample of 21 stellar
components. Only the primary component of the V621 Per sys-
tem is included as the low light contribution of the secondary
component prevents the determination of precise atmospheric
parameters for this star from the corresponding disentangled spec-
trum. Our approach is not subject to any systematic uncertain-
ties that are typically expected when employing different analysis
methods.

In addition to the log Teff and log g, Table 1 also contains
the measured projected surface (v sin i) and equatorial (veq)
rotational velocities, which assumes the rotation axes to be per-
pendicular to the orbital axis, for the stars included in our sam-
ple. From the M and R estimates, we computed the ratio of the
equatorial rotational velocity to the critical Keplerian rotational
velocity adopting the Roche model. In general, two critical rota-
tion rates occur from solving for an effective gravity equal to
zero at the equator. For our targets, however, the gravity is not
affected by a strong radiation-driven wind, leading to one unique
value for the critical rotation rate. This is given by the expression
vcrit =

√
2GM/3Rp, with Rp the polar radius (Maeder 2009). It

can be seen from Table 1 that our sample stars rotate modestly,
with veq/vcrit between 8% and 39%. This justifies the use of 1D
stellar evolution models in our analysis.

Our sample is represented graphically in Fig. 1 in which the
positions of all 21 individual stellar components are shown in
the Teff− log g Kiel diagram. Evolutionary tracks for 1D models
covering a stellar mass range from 6−22 M� are also shown. One
can see that, in addition to its homogeneity, our sample covers
a wide range of stellar masses and evolutionary stages, which
makes it suitable to study the mass discrepancy problem.

4. Methodology

In this section, we provide an overview of the adopted method-
ology, which includes a grid of SSE models. We also discuss the
multi-faceted analysis approach in a concise way.

4.1. 1D Stellar evolution models

Even with the computational power currently available, stel-
lar evolution models necessarily remain 1D simplifications of
3D gaseous spheres (e.g. Cristini et al. 2016). The first steps
of a solid calibration of stellar interiors from the bridging of

2 http://phoebe-project.org/1.0
3 https://www.astro.keele.ac.uk/~jkt/codes/jktebop.
html
4 https://fys.kuleuven.be/ster/meetings/binary-2015/
gssp-software-package
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22 18 14 10 6

Fig. 1. Positions of individual binary components from our sample in
Table 1 in the Teff− log g Kiel diagram. Blue squares and red triangles
refer to the primary and secondary components, respectively. Evolu-
tionary tracks are computed with solar metallicity Z = 0.014 and for an
exponentially decaying CBM profile with fov = 0.02 Hp. Stellar mass is
indicated in M� units.

3D simulations and 1D stellar models are being taken from
gravity-mode asteroseismology for stars in the mass range of
our work (Arnett & Moravveji 2017). The level of sophistication
adopted in 1D numerical models of stars with a convective core
is diverse, even for the simplest phase of core-hydrogen burning
upon which we focus here.

While the simplest of these 1D models rely on mass conser-
vation and on only the pressure force and gravity in the momen-
tum equation, they already suffer from the simplified treatment
of convection as a time-independent phenomenon described by at
least one free parameter. More complex main-sequence models
include any of the Coriolis, Lorentz, and tidal forces, as well as
mass loss from a radiation-driven wind (see the monographs by
Maeder 2009; Kippenhahn et al. 2012). Moreover, the transport
equations to describe the change of the mass fractions of indi-
vidual chemical elements as a function of time cannot be derived
from first principles. These equations include parametrised pro-
files for the various phenomena of chemical mixing, involving
many free parameters, several of which are connected with rota-
tional or magnetic instabilities (e.g. Heger et al. 2000; Palacios
2013). Finally, a variety of choices in numerical implementa-
tions to solve the SSE equations and the chosen set of boundary
conditions occurs. As a result of these complexities, major dif-
ferences of orders of magnitude occur in the mixing profiles of
stellar models with rotation, as illustrated by comparing Fig. 5
in Chieffi & Limongi (2013) with Fig. 29 in Paxton et al. (2013)
and Fig. 3 in Georgy et al. (2013), to list a few.

Consequently, SSE tracks of rotating models in the HR
diagram differ a lot. For this reason, we present a complemen-
tary approach to the one by Schneider et al. (2014), by inves-
tigating the mass-discrepancy problem from non-rotating mod-
els guided by recent asteroseismic results. Our sample is ideally
suited to perform a calibration of stellar interiors independently
from asteroseismology, because it covers well the considered
rotation rate of the asteroseismology sample. Just as for aster-
oseismology of intermediate-mass stars, a good procedure is to
assess deviations between the observed diagnostic properties of
the binaries in our sample and the theoretical predictions for

Table 2. Summary of the grid of mesa stellar evolution models
employed for the analysis of our sample stars.

Parameter Range
Min Max Step

Mass (M�) 1.2 2.0 0.05
2.0 5.0 0.10
5.0 10.0 0.25

10.0 15.0 0.50
15.0 25.0 1.00

Diffusive CBM with parameter
fov (Hp) & ∇rad

0.005 0.04 0.005

Core extension with parameter
αov (Hp) & ∇ad

0.05 0.40 0.05

Metallicity Z (mass fract.) 0.006 0.018 0.004

Notes. The grid comprises over 5500 models. We fix the metallicity
parameter Z in the analysis, as argued in the text.

those diagnostics from 1D models. Given the slow rotation rates
of our sample stars and the comparative asteroseismology sam-
ple, we consider non-rotating non-magnetic stellar models with
extra CBM without pinpointing its physical cause.

4.2. MESA model grid

We rely on a recent grid of mesa models (Paxton et al.
2011, 2013, 2015, 2018, 2019) but extend it towards higher
masses compared to the original one presented in Johnston et al.
(2019b). The corresponding mesa inlist is optimised for
intermediate- and high-mass stars as dictated by the properties
of their gravity (g-) mode oscillations. For example, the input
physics includes radiative envelope mixing as determined by
Rogers & McElwaine (2017) from 2D hydrodynamical simula-
tions of internal gravity waves (IGWs, Rogers et al. 2013) in
the form of Denv(r) ∝ ρ−1/2. It has been implemented in mesa
in a diffusive approximation by Pedersen et al. (2018) and was
shown to have a significant and detectable effect on C, N, and O
surface abundances in stars in the mass range under study. Such
an envelope mixing profile replaces the defaultmesa implemen-
tation which is assumed to be radially constant and is set by the
parameter log Dmix. Though our study does not use any astero-
seismic information, it relies on input physics calibrated by most
recent asteroseismic findings summarised in Aerts (2019). We
use the Ledoux criterion for convection, set the mixing-length
parameter αmlt to the solar calibrated value of 1.8, assume a
chemical mixture following the cosmic standard for abundances
by Przybilla et al. (2008) and Nieva & Przybilla (2012), and set
the initial helium and hydrogen fractions to Y = 0.276 and
X = 0.71, respectively. The level of envelope mixing near the
convective core amounts to log Dmix = 1 cm2 s−1 in our analysis.
We refer the reader to Pedersen et al. (2018) and Johnston et al.
(2019b) for details on the chosen input physics as well as for the
full mesa inlists and run_star_extras routines.

Global characteristics of the employed grid of mesa mod-
els are summarised in Table 2. We adopt fov = 0.04 and
αov = 0.40 as upper limit for the CBM parameter following
asteroseismic findings for single stars in the considered mass
range (e.g. Aerts 2013, 2019; Pápics et al. 2014; Moravveji et al.
2016; Buysschaert et al. 2018). Even though the grid covers a
range in metallicity values, we choose to fix the parameter Z
to its solar value (corresponding to 0.014 in mass fraction),
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Fig. 2. Left: effect of the initial stellar mass M and of an exponentially decaying core-boundary mixing profile with parameter fov on evolutionary
tracks. Mass (M = 10 (black), 12 (red), and 15 M� (blue)) and mixing ( fov = 0.005 (solid), 0.020 (dashed), and 0.040 Hp (dotted)) sequences are
shown with color and line style, respectively. Solar metallicity Z = 0.014 is assumed. Right: effect of the initial stellar mass M and the metallicity
Z on evolutionary tracks. The mass sequence is the same as in the left panel; line styles show the metallicity sequence Z = 0.010 (dashed), 0.014
(solid), and 0.018 (dotted) in mass fraction units. A fixed parameter fov = 0.005 Hp is assumed. Note the difference in X, Y-axes in the two panels.

consistent with the surface abundances measured from high-
resolution spectroscopy for all stars in our sample. By fixing the
metallicity and the functional form of the envelope mixing, we
restrict ourselves to three free parameters when fitting the posi-
tion of a star in the Kiel diagram: initial stellar mass M, amount
of CBM ( fov or αov), and stellar age. Fixing the metallicity of the
star also eliminates a number of model degeneracies, in partic-
ular the metallicity-initial mass and metallicity-CBM degenera-
cies. As demonstrated in Fig. 2, lowering the metallicity of the
star has a similar effect on the evolutionary track to increasing
its initial mass and, to a certain extent, to increasing the CBM
level. In all of these cases, evolutionary tracks experience a shift
towards higher effective temperatures in the Kiel diagram, while
the CBM also leads to an extension of stellar lifetime on the main
sequence (left panel in Fig. 2).

4.3. Multi-faceted analysis outline

Here, we summarize our multi-faceted analysis approach. The
four solutions outlined below are first computed for the single-
star scenario assuming no relation between individual binary
components, followed by the scenario where both components of
a given binary system are forced to have the same age. In either
case, we make use of individual stellar masses determined from
binary dynamics as a strong observational constraint to report
and quantify the mass discrepancy where applicable. Our four
solutions are:

Reference model (RM) solution. We fix the initial metal-
licity Z to the solar value of 0.014 which is consistent with
the spectroscopic metallicity measurements for all our targets.
At this stage, we ensure the amount of extra near-core mixing
is minimal corresponding to fov = 0.005 for the exponentially
decaying CBM profile. The effective temperature Teff , surface
gravity log g, and (dynamical) stellar mass M are the three
parameters that determine the χ2-merit function in this particular
case. Given the high precision of the dynamical mass measure-
ments, the solution is largely determined by the mass with less

weight given to the Teff and log g parameters. This allows us to
form a baseline solution (i.e. reference model) with respect to
which the mass discrepancy is quantified in the solution below.

Initial mass (IM) solution. Same as the RM solution except
that we exclude the (dynamical) stellar mass from the χ2-merit
function, that is, we fitted the position of the star in the Kiel
diagram as a constraint. This particular solution allows us to
quantify the discrepancy between the measured dynamical mass
and the one obtained from fitting the position of the star in the
Kiel diagram with stellar evolution models (evolutionary mass,
hereafter).

Core boundary mixing (CBM) solution. Same as the RM
solution but relaxing the CBM parameter fov, yet including Teff ,
log g, and the dynamical stellar mass in the χ2-merit function.
Similarly to the RM solution case scenario, χ2 is dominated
by the dynamical stellar mass due to the high precision of this
parameter. However, the fit includes an extra free parameter,
which is the amount of near-core mixing.

Initial mass-core boundary mixing (IM-CBM) solution.
Same as the IM solution except that the (best fit) CBM param-
eter fov is adopted (instead of it being fixed it to the minimal
value) and the stellar mass is relaxed for those systems where no
satisfactory fit could be obtained in the previous solution.

5. Results

In this section, we discuss our results regarding the mass dis-
crepancy across the stellar sample as well as the connection
with the near-core mixing. The latter is assumed to have two
possible functional forms and associated temperature gradients.
The default implementation in mesa is the exponentially decay-
ing efficiency of mixing in the near-core region with radiative
temperature gradient, following the prescription of Freytag et al.
(1996) and Herwig et al. (1997). An alternative implementation
of CBM concerns a step-like functional form with the adiabatic
temperature gradient – a prescription that has most often been
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used in the binary community when addressing the mass dis-
crepancy problem (e.g. Guinan et al. 2000). In this particular
case, the near-core region is mixed instantaneously, mimicking
the effect of convective penetration and hence implying a global
increase in the size and mass of the convective core. The imple-
mentation of this penetration formalism in mesa is detailed in
Michielsen et al. (2019) to which we refer for details. The extent
of the CBM region is parametrised by the fov (αov) parameter
in the case of the exponentially decaying and step-like profile,
respectively. In the following, the two functional forms of the
CBM and their effect on the mass discrepancy are discussed
separately.

5.1. Single-star case scenario

As outlined in Sect. 4.3, the mass discrepancy is explored and
quantified relative to the reference model, which is detailed in
Table 3 (the “RM solution” column). In this model, ages and
convective core masses are determined under the assumption of
the minimum amount of near-core mixing, using stellar masses
measured from binary dynamics. We fail to reproduce the stel-
lar positions in the Kiel diagram for almost the entire sample,
with the V578 Mon and U Oph binary systems and the lower
mass companion star of V346 Cen being the exceptions. Fur-
thermore, we enforce the dynamical mass values for the primary
components of the V380 Cyg and V621 Per systems because of
large inconsistencies between their dynamical mass measure-
ments and positions of the stars in the Kiel diagram. Since we
fail to reproduce dynamical masses for the majority of the tar-
gets with our reference model there is a strong indication of the
mass discrepancy and the need for increased core masses in these
stars.

The IM solution (cf. Sect. 4.3) quantifies the above discrep-
ancy, with results being detailed in Table 3 and visualised in
Fig. 3. We keep the amount of extra near-core mixing at the min-
imal level and only require the ability to reproduce the position
of the star in the Kiel diagram. Satisfactory fits are obtained for
all but two stars in our sample, that is, the more massive (pri-
mary) components of V380 Cyg and V621 Per. These two stars
are by far the most evolved targets in the entire sample with the
two lowest surface gravity values (cf. Table 1). The two evident
conclusions that can be drawn from Fig. 3 (top row) are: (1)
the evolutionary mass of the star is systematically overestimated
compared to its dynamical mass and the difference is cumula-
tive with age; and (2) the mass of the convective core of the star
follows a similar trend as the stellar mass itself.

The conclusions above are also evidenced by the high abso-
lute values of the Spearman’s rank correlation coefficients ρ and
the associated low p-values of the null hypothesis that there is
no correlation between the two variables under consideration.
Given that the mass of the convective core of non-standard mod-
els is regulated by the amount and efficiency of near-core mixing,
we investigate this aspect in Sects. 5.1.1 and 5.1.2 in more detail.

It is worth mentioning that the increase of the initial (evolu-
tionary) mass of the star in the IM solution makes the star appear
younger (bottom left panel of Fig. 3). We find strong statistical
evidence of the effect getting more pronounced the larger the
mass discrepancy is (bottom right panel of Fig. 3). Finally, we
also note that the above mentioned (more massive) primary com-
ponents of the V380 Cyg and V621 Per systems are not shown in
Fig. 3 as their positions in the Kiel diagram could not be repro-
duced in the IM solution. These findings are in line with the con-
clusions by Tkachenko et al. (2014) who find that increasing the
initial stellar mass in evolutionary models alone is not sufficient

to remedy the mass discrepancy for the more evolved primary
component of V380 Cyg. Here, we find the same result for the
primary component of V621 Per as well.

5.1.1. CBM in the diffusive exponentially decaying
approximation

Given the strong link between the mass discrepancy and the mass
of the convective core of the star, we explore further a proba-
ble connection of the effect with the amount and efficiency of
the near-core mixing. The CBM solution (cf. Sect. 4.3) aims to
reproduce stellar positions in the Kiel diagram under the assump-
tion of their dynamical masses while allowing for a variable
parameter fov in an exponentially decaying CBM profile. The
CBM solution is different from the RM solution in that we relax
this parameter, letting the mass of the convective core increase
due to the enhanced mixing in the near-core regions, while keep-
ing a tight constraint on the total mass.

The CBM solution is detailed in Table 3 (the “CBM solu-
tion” column) where the convergence towards the upper grid
limit of the fov parameter is immediately evident for almost the
entire stellar sample. This is not an unexpected outcome given
the extra supply of fresh hydrogen to the convective core and
the associated increase in core mass. In that sense, the CBM
(to a certain extent) mimics the effect of varying initial stellar
mass, which is central to the stellar mass-CBM degeneracy dis-
cussed in Sect. 4.2 (cf. Fig. 2). Indeed, comparison with the RM
solution (reference model) values in the left column of Fig. 4
demonstrates that: (1) the mass of the convective core of the star
increases with the inclusion of extra CBM in stellar evolution
models, and the increase is a clear function of the surface grav-
ity of the star (top left panel with p below 0.001); and (2) all
stars get systematically older with the inclusion of CBM (bottom
left panel), which is again expected given that more near-core
mixing implies an increase of the stellar lifetime on the main
sequence. This was already represented in the isochrone clouds
in Johnston et al. (2019b).

The right column of Fig. 4 compares the best CBM solution
with the one that assumes a minimum amount of the near-core
mixing but allows for a variable initial stellar mass (the IM solu-
tion; cf. Sect. 4.3 and the “IM solution” column in Table 3). One
can clearly see from the top right panel in Fig. 4 that there is
no significant difference between the obtained convective core
masses (p exceeding 0.99), strengthening our claim that allow-
ing the CBM parameter to vary is equivalent to allowing the ini-
tial mass to vary. The fov parameter has a non-negligible effect
on stellar age as we find our sample to be systematically older.
There is also a weak indication of the age difference increas-
ing with the surface gravity of the star (bottom right panel with
p < 0.25).

An important observation from Table 3 (the “CBM solution”
column) is that the positions of stars in the Kiel diagram of only
about half of our sample stars are well reproduced with a vari-
able CBM parameter. The remaining half of the sample either
requires more mass in the convective core at a given age of the
star or a younger age. In other words, the mass discrepancy prob-
lem appears to be a combined effect of the age and the mass of
the convective core of the star in stellar evolution models. The
above is demonstrated in our IM-CBM solution (cf. Sect. 4.3)
where we adopt the best fit value of the fov parameter from the
previous solution and relax stellar mass for systems that could
not be fitted with variable CBM alone. Increasing the initial mass
of the star makes its core slightly more massive and it makes
the star younger at its (fixed) position in the Kiel diagram. This
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Fig. 3. Stellar mass (top left), convective core mass (top right), and stellar age (bottom left) difference between the IM solution (cf. Sect. 4.3 and
Table 3, column IM solution) and the RM solution (cf. Sect. 4.3 and Table 3, column RM solution) as a function of stellar surface gravity. The age
difference as a function of the stellar mass difference between these two solutions is shown in the bottom right panel. All differences are expressed
in percent relative to the RM solution values; the solid line depicts a linear fit in each of the four cases. The Spearman’s rank correlation coefficient
(ρ) and the p-value of null hypothesis that there is no correlation between the two sets of variables are listed in each panel.

particular combination allows us to reproduce the atmospheric
parameters for the remainder of the sample, including the pri-
mary components of V621 Per and V380 Cyg – the two most
evolved stars in our sample.

Our solution is detailed in Table 3 (the “IM-CBM solu-
tion” column) and is compared with the IM and CBM solutions
in the left and right columns of Fig. 5, respectively. The pri-
mary components of V621 Per and V380 Cyg are not included
in the comparison because the IM solution did not reveal satis-
factory fits for both stars and the mass discrepancy could not
be quantified for them. One can see that the convective core
mass has generally increased by ∼5−10% (top left panel) while
the stars have generally become older (bottom left panel) com-
pared to the IM solution. One also notices a strong negative cor-
relation between the increase of the convective core mass and
surface gravity of the star (p < 0.001), while the relationship
for the age difference is not statistically significant (p > 0.99).
At the same time, the sample is generally younger than the
CBM solution (bottom right panel), yet the increase in the con-
vective core mass is evident (top right panel). A noteworthy
feature in the right panels of Fig. 5 is the two populations
of stars – those clustering at zero value on the ordinate axis
and rest of the sample. This bimodality is simply the result of
adopting the exact parameters from the CBM solution for stars

whose atmospheric properties and dynamical masses are repro-
duced with extra amount of the near-core mixing and did not
require any further change of the initial mass in stellar evo-
lution models. In other words, these are the systems that no
longer show the mass discrepancy after introducing the exponen-
tially decaying CBM in a diffusive approximation with the free
parameter fov.

Finally, Fig. 6 (left panel) shows the mass discrepancy as a
function of the surface gravity of the star, where the discrepancy
is determined with respect to the dynamical mass of the star.
Similar to the previous case, two stellar populations are evident:
(1) stars clustering at the zero mass discrepancy have positions
in the Kiel diagram that are well reproduced by adopting their
dynamical masses in combination with extra near-core mixing
(cf. CBM solution); and (2) the rest of the sample requires higher
evolutionary masses in addition to the CBM to reproduce the
atmospheric properties of the respective stars. For this latter sub-
sample, the mass discrepancy amounts to some 10% on average
with no statistically significant dependence on the surface grav-
ity of the star. The two most evolved stars in the sample are the
primary components of V621 Per and V380 Cyg, which are also
included in Fig. 6 and show a mass discrepancy ∆M ∼ 25%
and ∼30%, respectively. The mass discrepancy for the other
19 stars is reduced compared to the case of minimum amount
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Fig. 4. Convective core mass (top row) and age (bottom row) changes due to the inclusion of extra near-core mixing in the models (cf. Table 3,
column CBM solution). Left and right columns: comparisons against the RM solution (cf. Sect. 4.3 and Table 3, column RM solution) and the IM
solution (cf. Sect. 4.3 and Table 3, column IM solution), respectively.

of the near-core mixing (cf. the IM solution), which is evidenced
by the right panel of Fig. 6. Just as the mass discrepancy itself,
the reduction is the largest for more evolved stars, that is, those
with the lowest measured surface gravities.

5.1.2. Step-like CBM with instantaneous mixing

Subsequently, we test a different functional form of the CBM,
having a different temperature gradient in that zone. More pre-
cisely, the exponentially decaying formalism is replaced with
a step function with the temperature gradient in the near-
core region also changed from radiative to fully adiabatic (i.e.
convective penetration; Zahn 1991). The results corresponding
to this form of CBM are summarised in Table 4, while Fig. 7
shows a comparison between the two functional forms of the
CBM. Left and right panels show the change of the convective
core mass and age, respectively, where the parameter in question
corresponding to the exponential functional form is subtracted
from the one based on the step formalism. One can see that there
is no statistically significant change in the age of the stellar sam-
ple while the mass of the convective core is consistently lower
by about 5−10%. As evidenced by p > 0.99, neither the mass of
the convective core nor the age of the star show any significant
correlation with stellar surface gravity.

Similarly to the case of the exponentially decaying CBM, we
reach the upper grid limit for the αov parameter in the majority of

cases, as evidenced from Table 4. The two parameters, fov and
αov, differ by a factor of ten for almost all stars in the sample
(the IM solution column in Tables 3 and 4). The fact that we do
not reach the same mass of the convective core in the case of
the αov parameter suggests a somewhat larger conversion factor
between the parametrisations, when interpreted in terms of effi-
ciency of the mixing as to increasing the mass of the convective
core. This is fully consistent with Claret & Torres (2017), who
found the scaling αov/ fov = 11.36 ± 0.22 based on their study of
56 individual stellar components of binary systems, while earlier
studies by Moravveji et al. (2016) and Valle et al. (2017) sug-
gested αov/ fov ≈ 13 and 12, respectively.

5.2. Binary equal age-case scenario

So far, our results have been obtained under the assumption
that the individual stellar components are single stars with
their masses and surface gravities being obtained in a model-
independent way. In reality, they are members of binary star sys-
tems which puts further strong constraints on stellar evolution
models, namely that both components of a binary system should
have the same age.

In this section, we repeat the sequence of analyses outlined
in Sect. 4.3 for the single-star case scenario in Sect. 5.1, but
also forcing an equal age condition for both stellar components
of each binary system in the sample. The obtained results are
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Fig. 5. Same as Fig. 4 but for the IM-CBM solution (cf. Sect. 4.3 and Table 3, column IM-CBM solution). Left and right columns: comparison
against the IM (cf. Table 3, column IM solution) and CBM (cf. Table 3, column CBM solution) solutions, respectively.
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Table 4. Same as the CBM solution in Table 3 but for the step functional
form of the core-boundary mixing with adiabatic temperature gradient
in the mixing region.

Object/ M αov Age Mcc
parameter (M�) (Hp) (Myr) (M�) (%)

V578 Mon 14.55(9) (A) 0.40(−40) 4.13(77) 4.96(12) 34.1(1.0)
10.30(6) (A) 0.40(−40) 5.7(1.5) 3.00(13) 29.1(1.5)

V453 Cyg 14.05(15) (B) 0.40(−6) 12.30(30) 3.84(15) 27.3(1.4)
11.12(15) (B) 0.40(−15) 12.20(60) 2.96(16) 26.6(1.8)

V478 Cyg 15.61(21) (B) 0.40(−10) 8.20(29) 5.00(22) 32.0(1.9)
15.25(22) (B) 0.40(−10) 8.65(28) 4.77(22) 31.3(1.9)

AH Cep 16.27(18) (B) 0.40(−25) 5.45(40) 5.72(35) 35.2(2.5)
13.80(14) (B) 0.40(−15) 7.83(40) 4.30(20) 31.2(1.7)

V346 Cen 12.00(5) (B) 0.05(5) 15.80(5) 0.00(1) 0.0(1)
8.41(10) (A) 0.05(+35) 13.3(1.5) 2.04(15) 24.3(2.1)

V573 Car 15.86(28) (B) 0.40(−30) 3.04(34) 5.75(21) 36.2(2.1)
12.52(17) (B) 0.20(20) 1.82(45) 4.22(27) 33.7(3.3)

V1034 Sco 17.17(13) (B) 0.40(−10) 7.01(18) 5.84(21) 34.0(1.5)
9.66(7) (B) 0.40(−25) 7.57(72) 2.64(7) 27.3(1.0)

V380 Cyg 11.43(19) (B),(1) 0.20(5) 17.9(2) 2.00(15) 17.5(1.6)
7.07(14) (B) 0.40(35) 22.0(3.0) 1.58(20) 22.3(3.4)

CW Cep 13.01(7) (A) 0.40(−35) 7.20(70) 4.00(32) 30.7(2.7)
11.95(8) (A) 0.40(−35) 7.60(75) 3.55(34) 29.7(3.1)

U Oph 5.10(5) (A) 0.25(15) 53.5(4.0) 0.96(7) 18.8(1.6)
4.60(5) (A) 0.30(15) 61.2(3.5) 0.87(3) 18.9(9)

V621 Per 9.44(46) (B),(1) 0.40(−10) 24.3(2) 1.86(10) 19.7(2.1)

Notes. (A/B)Within/outside error box. (1)Dynamical mass was enforced.

summarised in Table A.1 in columns designated RM, IM, CBM,
and IM-CBM solutions and in Figs. A.1–A.4. The distributions
look somewhat different from those for the single star-case sce-
nario due to some systems showing considerably different ages
for their individual stellar components (e.g. AH Cep in Table 3,
the RM solution column). Enforcing the equal-age condition for
these systems propagates into the other free parameters in the
fitting, like initial mass and amount of near-core mixing. This
results in unsatisfactory fits for a total of four stellar components
(primary/secondary component of the V380 Cyg/V346 Cen sys-
tem and both components of V573 Car) in our ultimate IM-CBM
solution (cf. Table A.1) compared to none in the single star-
case scenario. Figures A.1–A.4 confirm our main conclusions
from Sect. 5.1 that: (1) the (convective core) mass discrepancy
tends to increase as the surface gravity of the star decreases; (2)
the mass discrepancy can be partially accounted for by increas-
ing the amount of the near-core mixing and the mass of the
convective core; and (3) because of the link between the mass
discrepancy and stellar age, the near-core mixing should not be
increased infinitely as it makes the star older with increasing
convective core mass. For this reason, we have limited the fov
and αov values to those covered from asteroseismic inference of
single pulsators in the mass regime under study (for both convec-
tive penetration and diffusive exponential CBM; Aerts 2019).

6. Revisiting the case of V380 Cyg

As discussed in the previous sections, the primary components
of V380 Cyg and V621 Per are by far the most evolved stars in
our sample. We consider the evolved primary component of the
V380 Cyg system as representative of the class in this section
and provide a possible scenario of why the mass discrepancy
shows a strong negative correlation with the surface gravity of
the star. A notable characteristic of the primary component of
V380 Cyg is its high value of the required microturbulent veloc-

ity ξ = 15 ± 1 km s−1 as measured by Tkachenko et al. (2014)
from high-resolution optical spectra. Having high values of the
microturbulent velocity is a common phenomenon in massive
evolved stars as demonstrated by Cantiello et al. (2009) from
samples of high-mass stars in the Galaxy and in the LMC.
The authors also report a strong anti-correlation between the
observed microturbulent velocities and stellar surface gravities,
namely ξ tends to increase as log g decreases. This is related
to the formation of a sub-surface convection zone in high-
mass stars that gives rise to the microturbulent velocity field.
Microturbulence results predominantly in radial velocities and
accompanying spectral line variations and should not be con-
fused with macroturbulent broadening, which requires horizon-
tal velocities to be dominant over radial ones in the line-forming
region. A connection between macroturbulent line broadening
and the horizontal velocities due to internal gravity waves has
been suggested (Aerts & Rogers 2015).

In this section, we take a closer look at the problem of
high microturbulence in the primary component of V380 Cyg
and discuss it in the context of the mass discrepancy prob-
lem. Standard spectrum analysis procedures are based on grids
of pre-computed atmosphere models that are fed into spectrum
synthesis algorithms to allow comparison between observed and
theoretical spectra in arbitrary wavelength intervals. Though
spectral synthesis algorithms often allow for optimisation of
all fundamental atmospheric parameters of stars, including the
microturbulent velocity parameter ξ, atmosphere model grids are
typically available for only a few values of microturbulent veloc-
ity, with ξ = 2 km s−1 being the most commonly adopted value.
A similar approach was also used by Tkachenko et al. (2014),
where the authors adopted the grid of ξ = 2 km s−1 atlas9 mod-
els (Kurucz 1993) and determined the optimal microturbulent
velocity along with other atmospheric parameters, by varying it
in the spectrum synthesis code. Despite the large inconsistency
between the derived microturbulent velocity of ξ = 15±1 km s−1

from the observed spectrum and ξ = 2 ± 1 km s−1 adopted in the
atlas9 atmosphere models, no further iterations have been done
to maintain self-consistency in the spectrum analysis procedure.

Including microturbulence in stellar atmosphere models
leads to an increase of the turbulent pressure, which in turn
impacts the gas pressure to meet the condition of total pres-
sure conservation. This alters the temperature at a given optical
depth, hence influencing the entire structure of the stellar atmo-
sphere model. We demonstrate this effect in Fig. 8 (left panel)
where the temperature difference between atmosphere models
with ξ = 15 km s−1 and ξ = 2 km s−1 is plotted as a function of
the logarithm of the Rosseland optical depth. For these calcula-
tions (performed with the LLmodels stellar atmosphere model
code; Shulyak et al. 2004), we assume an atmosphere model
corresponding to the primary component of V380 Cyg, that is
Teff = 21 500 K, log g = 3.1 dex, and [M/H] = 0.0 dex. One can
see that the temperature difference associated with an increase of
microturbulence and inclusion of turbulent pressure is significant
in the line forming regions, and unavoidably affects both shapes
and strengths of individual lines in the stellar spectrum. The lat-
ter effect is illustrated in the right panel of Fig. 8, where we
plot stellar spectra synthesised with the gssp code from atmo-
sphere models with ξ = 15 km s−1 (dashed red line) and with
ξ = 2 km s−1 (solid black line), along with their difference (dot-
ted blue line), where the latter is subtracted from the former. We
also added a Gaussian noise to both spectra to simulate S/N∼ 100
for a realistic illustration.

Analyzing the spectrum of a hot star where spectral lines
are altered by a significant contribution from turbulent pressure
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Fig. 7. Relative change in the convective core mass (left) and age (right) of the star between solutions assuming a step-like and an exponentially
decaying functional form of the CBM. The Y-axes are in percent relative to the value dictated by the solution with the exponentially decaying
CBM.
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Fig. 8. Left: temperature difference between a model atmosphere computed with a microturbulent velocity of ξ = 15 and 2 km s−1, as a function
of the logarithm of the Rosseland optical depth. Right: differences in spectral line profiles associated with the change of microturbulent velocity
in the model atmosphere from ξ = 2 km s−1 (solid black line) to ξ = 15 km s−1 (dashed red line). The difference spectrum (dotted blue line) was
vertically shifted for clarity. Gaussian noise was added to both spectra to simulate a signal-to-noise ratio S/N∼ 100.

with a grid of ξ = 2 km s−1 atmosphere models leads to large
systematic uncertainties in parameters such as Teff and log g.
Given that the latter parameter is computed from the dynamical
mass and radius in the case of binary stars, Teff is the param-
eter that suffers the most. In order to illustrate this quantita-
tively, we employ a grid of ξ = 2 km s−1 atmosphere mod-
els to analyze the spectrum shown with the solid black line in
Fig. 8 and having the following parameters: Teff = 21 500 K,
log g = 3.1 dex, ξmodel = 15 km s−1, ξspectrum = 15 km s−1,
[M/H] = 0.0 dex, and v sin i = 100 km s−1. In this process, we
keep log g fixed to 3.1 dex assuming it is known from the dynam-
ical mass and radius of the star. The obtained best fit parame-
ters are: Teff = 23 190 ± 210 K, ξspectrum = 14.1 ± 1.0 km s−1,
[M/H] =−0.01± 0.05 dex, and v sin i = 98.5 ± 3.4 km s−1. One
can see that, though the other parameters agree with their input
values within 1σ uncertainties, Teff is overestimated by ∼1700 K,
that is, some 8%.

The left panel of Fig. 9 shows mesa evolutionary tracks cor-
responding to four single-star-case scenario solutions detailed in
Table 3. One can see that the tracks corresponding to the dynam-
ical masses of the stars (11.43± 0.19 M� and 7.00± 0.14 M�

for the primary and secondary, respectively) are significantly off
from their spectroscopic positions and that increasing near-core
mixing does not solve the problem. It is essential to introduce a
mass discrepancy of ∼30% (∼20%) for the primary (secondary)
component to maintain consistency between evolutionary tracks
and spectroscopically measured parameters, where a high value
of the parameter fov ≈ 0.04 Hp is also essential to use for the
more evolved primary. The mass discrepancy gets substantially
reduced when Teff of the primary is corrected by 8% of the
measured value in order to account for the effect of the micro-
turbulent velocity in the stellar atmosphere model (Fig. 9, right
panel). In practice, the mass discrepancy nearly vanishes for the
primary of V380 Cyg when its dynamical mass and high fov are
assumed. The argument of microturbulence in atmosphere mod-
els does not apply to the secondary component of V380 Cyg as
it is an unevolved star. However, using a wrong value for Teff for
the primary has a significant effect on determining Teff of the low
flux contributing secondary, both in the spectrum analysis of the
disentangled spectra and in the photometric analysis of the light
curve. Indeed, Tkachenko et al. (2014) report a significant differ-
ence of ∼2000 K between spectroscopic and photometric values
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Fig. 9. Left: four solutions obtained for the V380 Cyg system and detailed in Table 3. The corresponding mesa evolutionary tracks are shown with
solid (dashed) lines for the primary (secondary) component. The RM, IM, CBM, and IM-CBM solutions are shown in black, red, blue, and green,
respectively. The more (less) evolved primary (secondary) is shown with filled square (triangle) symbols. Right: changing position of the primary
component (open square) associated with a reduced Teff by 8%. The color coding is the same as in the left panel.

of Teff for the secondary and adopt the mean value as a compro-
mise. It is essential to perform a full re-analysis of the system
in a self-consistent way in order to answer the question whether
accounting for the effect of microturbulence in atmosphere mod-
els and of missing convective core mass in SSE models resolves
the mass discrepancy for V380 Cyg.

Stellar evolution dictates the formation of a sub-surface con-
vection zone in high-mass stars as they approach the Terminal
Age Main-Sequence (TAMS), giving rise to a higher microturbu-
lent velocity field (e.g., Cantiello et al. 2009). Ignoring the effect
of microturbulence by fixing it to 2 km s−1 in stellar atmosphere
models implies overestimation of the effective temperature of the
star by means of a spectroscopic analysis. As demonstrated in
Figs. 2 and 9, increasing the initial mass of the star in stellar
evolution models shifts the corresponding track to higher tem-
peratures (Fig. 2, left panel). Hence, one introduces the mass
discrepancy by overestimating the effective temperature of the
star and the effect is expected to be more pronounced for evolved
main-sequence stars. The latter correlation in terms of the depen-
dence of the mass discrepancy on the surface gravity of the star
is exactly what we find in our stellar sample (see, e.g. top left
panels in Figs. 3 and A.1).

7. Discussion and conclusions

In this paper, we presented the mass discrepancy problem as
observed in intermediate- and high-mass eclipsing SB2 binary
stars. Discovered in a large sample of single stars (Herrero et al.
1992), the problem obtained further acknowledgement in the
stellar astrophysics community when it was observed in binary
stars, largely because of the model-independent way of measur-
ing accurate stellar masses and radii in such systems. A common
proposed solution to the mass discrepancy problem until now
was a significant increase of near-core mixing in the form of
convective core overshooting, either adopting a step formalism
with an adiabatic temperature gradient (e.g. Guinan et al. 2000)
or an exponentially decaying diffusive mixing with a radiative
temperature gradient in the overshoot zone (e.g. Tkachenko et al.
2014).

In order for the mass discrepancy problem to be properly
addressed, a homogeneously analysed sample of binary stars

whose components cover a large range in stellar mass and evo-
lutionary stage is needed. This avoids systematic uncertainties
propagating into the analysis of the problem, hence influencing
conclusions in a largely unpredictable way. Our stellar sample
is the first that meets the homogeneity requirement and com-
prises eleven eclipsing SB2 binary systems, whose individual
stellar components are slow to moderate rotators covering the
mass range from M ≈ 4.5 M� to M ≈ 17 M� and evolutionary
stage from the ZAMS to the TAMS. The analysis is performed
both in the single-star scenario where the binary components are
treated independent of each other, and in the binary-star scenario
where we enforce the equal-age condition for the two stellar
components of the same binary system. The results of these
two analyses are qualitatively alike and can be summarised as
follows:

– the mass discrepancy is clearly present in our stellar sample
and there is strong statistical evidence (p < 0.01) of it being
anti-correlated with surface gravity;

– a strong relationship exists between the convective core mass
and the mass discrepancy. More precisely, there is strong
evidence that SSE models without extra near-core mixing
underestimate the convective core mass. Statistical evidence
is found that the problem becomes more pronounced as the
star evolves during the main-sequence;

– because of its ability to supply the convective core with
fresh hydrogen and to increase its mass, enhanced near-core
boundary mixing can partially account for the observed mass
discrepancy. The mass discrepancy turns out to be a convec-
tive core mass–stellar age correlation/problem in stellar evo-
lution models;

– the mass discrepancy does not correlate with any other fun-
damental or atmospheric parameters of stars than their sur-
face gravity (proxy for age/low density atmosphere);

– neglecting high microturbulent velocity values and turbulent
pressure in stellar atmosphere models of hot stars results in
an overestimation of the effective temperature of a star up to
some 8%, when its dynamical log g value is assumed. This
effect is larger for more evolved stars, that is, those that show
lower surface gravities and are located closer to the TAMS.
In practice, stars appear hotter than they are, which partially
contributes to the mass discrepancy problem.
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Fig. 10. Convective core mass as a function of total mass for ZAMS models (full line) and models for the central hydrogen mass fractions of
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ranges in Table 2. The sample stars are added with color coding according to their veq/vcirt (left) and their Xc (right).

We conclude that the mass discrepancy problem in binary stars is
the combined effect of a convective core mass-stellar age corre-
lation in stellar evolution models and the neglect of high micro-
turbulent velocities and turbulent pressure in stellar atmosphere
models in spectroscopic analysis.

Claret & Torres (2016, 2017, 2018, 2019) report an almost
linear increase of the overshooting parameter αov( fov) from
0.0 Hp to ∼0.2 (0.02) Hp for masses between M ≈ 1.2 M� and
M ≈ 2.0 M� and report systematically lower metallicities from
stellar evolution models compared to values inferred from high-
resolution spectroscopy. In their work, the authors suggest that
the initially adopted lower helium abundance Y = 0.24 is most
likely the cause of the observed effect (Claret & Torres 2017). In
Sect. 4.2 (cf. Fig. 2, right panel), we demonstrated that lower-
ing the initial metallicity parameter Z in stellar evolution models
has a similar effect to increasing the initial mass of a star. We
estimate that for a M = 2.5 M� star (approximately at the center
of the stellar mass range studied by Claret & Torres 2016), the
effect of decreasing the metallicity parameter from Z = 0.014 to
Z = 0.010 (0.006) is similar to the effect of increasing the initial
stellar mass by 0.25 (0.35) M�, that is, 10 (15)% of the assumed
value of M = 2.5 M�. Hence, the low metallicity values dictated
by stellar evolution models for about half of the sample studied
in Claret & Torres (2016, 2017, 2019) can also be the manifes-
tation of the mass discrepancy problem in binary stars born with
a convective core. This moderate mass discrepancy gets com-
pensated by a moderate increase of the mass of the convective
core of the star that is provided by enhanced near-core bound-
ary mixing. We find low parameter values fov = 0.013 ± 0.013
and fov = 0.017 ± 0.012 for the primary and secondary com-
ponent of the U Oph system, the two lowest-mass stars in our
sample with M = 5.10 ± 0.05 M� and M = 4.60 ± 0.05 M�,
respectively.

There is a substantial overlap between targets in our sam-
ple and stars investigated by Schneider et al. (2014), yet a
quantitative comparison between the two studies proves difficult.
While Schneider et al. (2014) adopted parameters from the cat-
alogue by Torres et al. (2010), we reanalysed all the targets in
a homogeneous way to avoid systematic uncertainties, so that

the parameters can in some cases differ substantially between
the two studies. As a particular example, we find the primary
component of AH Cep to be about 6% more massive, while both
components of the V478 Cyg system are ∼1300 K hotter com-
pared to the values adopted by Schneider et al. (2014). Addi-
tionally, these authors adopted a grid of stellar evolution models
computed for a lower metallicity Z = 0.0088 (though with an
increased iron abundance so that it closely resembles the solar
value of log(Fe/H) + 12 ≈ 7.50), while we adopt a metallicity of
Z = 0.014, which is in agreement with the spectroscopic analy-
ses of the stars in our sample.

Finally, we point out that the two single B-type stars with
asteroseismic estimations of their Mcc/M have values of 21%
(Moravveji et al. 2015) and 19% (Moravveji et al. 2016), both
having a mass of M ' 3.2 M�. This is very much in line with
our results for the binaries. To illustrate the importance of extra
CBM, we plot Mcc/M versus M for our sample stars in Fig. 10,
color coded according to veq/vcrit (left panel) and main-sequence
phase according to Xc (right panel). It can be seen that Mcc/M
steadily increases as M increases, as expected from SSE theory.
We also find that there is no correlation between the rotation
rate and Mcc/M. Further, it can be seen that all the stars in our
sample, including the most evolved ones, have Mcc/M far above
the value predicted by SSE models with minimal CBM (dashed
line). The results of our work on Mcc/M, graphically represented
in Fig. 10, imply that stars have much larger helium cores near
the TAMS compared to SSE models with no extra near-core
mixing.

In the future, we plan to increase the size of our stellar sam-
ple drastically by extending it towards both lower and higher
masses. It is important to keep the sample homogeneous in terms
of data analysis to make sure systematic uncertainties associ-
ated with the use of different algorithms do not propagate to
final conclusions. Higher-mass stars than those in our current
sample tend to have strong winds driving significant mass loss
from the star. In this case, using our suite of analysis tech-
niques is not justified anymore. Furthermore, it would be impor-
tant to revisit some of the systems like V380 Cyg. As we have
shown in this study, it is essential to take into account the high
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microturbulent velocity and turbulent pressure in atmosphere
model calculations of such stars. In this context, it is also impor-
tant to balance our sample by including more stars at advanced
stages of (main-sequence) evolution, from mid main-sequence
onwards. Last but not least, searching for eclipsing, spectro-
scopic double-lined binary systems with stellar components pul-
sating in gravity-mode oscillations is another promising step
forward in calibrating stellar evolution models with binary stars
(Aerts 2019). Space-missions such as TESS (Ricker et al. 2015)
and PLATO (Rauer et al. 2014) are excellent observational facil-
ities to search for the best candidate asteroseismic binary
systems.

Acknowledgements. The research leading to these results has received fund-
ing from the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme (grant agreement N◦670519:
MAMSIE), from the KU Leuven Research Council (grant C16/18/005: PAR-
ADISE), from the Research Foundation Flanders (FWO) under grant agreements
G0H5416N (ERC Runner Up Project) and G0A2917N (BlackGEM), as well as
from the BELgian federal Science Policy Office (BELSPO) through PRODEX
grant PLATO. KP acknowledges financial support from the Croatian Science
Foundation under grant IP-2014-09-8656 (STARDUST). VT acknowledges sup-
port by the RF Ministry of Science and Higher Education in the framework of
the state task (project no. 3.7126.2017/8.9).

References
Aerts, C. 2013, EAS Pub. Ser., 64, 323
Aerts, C. 2019, Rev. Mod. Phys., submitted [arXiv:1912.12300]
Aerts, C., & Rogers, T. M. 2015, ApJ, 806, L33
Aerts, C., Molenberghs, G., Michielsen, M., et al. 2018, ApJS, 237, 15
Aerts, C., Mathis, S., & Rogers, T. M. 2019, ARA&A, 57, 35
Arnett, W. D., & Moravveji, E. 2017, ApJ, 836, L19
Borucki, W. J., Koch, D., Basri, G., et al. 2010, Science, 327, 977
Bowman, D. M., Johnston, C., Tkachenko, A., et al. 2019, ApJ, 883, L26
Butler, K. 1984, PhD Thesis, University College London
Buysschaert, B., Aerts, C., Bowman, D. M., et al. 2018, A&A, 616, A148
Cantiello, M., Langer, N., Brott, I., et al. 2009, A&A, 499, 279
Chaplin, W. J., Basu, S., Huber, D., et al. 2014, ApJS, 210, 1
Chieffi, A., & Limongi, M. 2013, ApJ, 764, 21
Christensen-Dalsgaard, J. 2002, Rev. Mod. Phys., 74, 1073
Christensen-Dalsgaard, J., & Gough, D. O. 1976, Nature, 259, 89
Claret, A. 1995, A&AS, 109, 441
Claret, A. 2004, A&A, 424, 919
Claret, A. 2012, A&A, 541, A113
Claret, A., & Torres, G. 2016, A&A, 592, A15
Claret, A., & Torres, G. 2017, ApJ, 849, 18
Claret, A., & Torres, G. 2018, ApJ, 859, 100
Claret, A., & Torres, G. 2019, ApJ, 876, 134
Claverie, A., Isaak, G. R., McLeod, C. P., van der Raay, H. B., & Cortes, T. R.

1979, Nature, 282, 591
Costa, G., Girardi, L., Bressan, A., et al. 2019, MNRAS, 485, 4641
Cristini, A., Meakin, C., Hirschi, R., et al. 2016, Phys. Scr., 91, 034006
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Appendix A: Binary equal age-case scenario

Here, we present the tables and figures supplementing our results
as to the equal age scenario presented in Sect. 5.2.
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Fig. A.1. Same as Fig. 3 but for the common age scenario. The respective binary common age RM and IM solutions are detailed in Table A.1.
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Fig. A.2. Same as Fig. 4 but for the common age scenario. The respective binary common age RM, IM, and CBM solutions are detailed in
Table A.1.
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Fig. A.3. Same as Fig. 5 but with the equal age condition enforced.
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Fig. A.4. Same as Fig. 6 but with the equal age condition enforced.
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