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Efficient neural-network based variational Monte Carlo scheme for direct optimization
of excited energy states in frustrated quantum systems
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We examine applicability of the valence bond basis correlator product state ansatz, equivalent to the
restricted Boltzmann machine quantum artificial neural-network ansatz, and variational Monte Carlo method for
direct optimization of excited energy states to study properties of strongly correlated and frustrated quantum
systems. The energy eigenstates are found by stochastic minimization of the variational function for the
energy eigenstates, which allows direct optimization of particular energy state without knowledge of the lower
energy states. This approach combined with numerous tensor network or artificial neural-network ansatz wave
functions then allows further insight into quantum phases and phase transitions in various strongly correlated
models by considering properties of these systems beyond the ground-state properties. Also, the method is in
general applicable to any dimension and has no sign instability. An example that we consider is the square
lattice J1-J2 antiferromagnetic Heisenberg model. The model is one of the most studied models in frustrated
quantum magnetism since it is closely related to the disappearance of the antiferromagnetic order in the high-Tc
superconducting materials and there is still no agreement about the properties of the system in the highly
frustrated regime near J2/J1 = 0.5. For the J1-J2 model, we write the variational ansatz in terms of the two site
correlators and in the valence bond basis and calculate the lowest energy eigenstates in the highly frustrated
regime near J2/J1 = 0.5 where the system has a paramagnetic phase. We find that our results are in good
agreement with previously obtained results, which confirms applicability of the method to study frustrated spin
systems.

DOI: 10.1103/PhysRevB.102.085104

I. INTRODUCTION

Simulating frustrated quantum spin systems is among the
most challenging computational tasks and is one of the central
problems in condensed matter physics. Approximating the
wave function of the system with a tensor network (TN) or
artificial neural network (ANN) ansatz and employing Monte
Carlo sampling to efficiently compute expectation values
proved recently to be a very efficient approach to study a vari-
ety of strongly correlated models [1–23]. The approach can be
applied to systems of any spatial dimensionality and is free of
sign problems, and therefore overcomes the limitations of two
other main numerical techniques used to simulate correlated
quantum spin systems, the density-matrix renormalization
group (DMRG) method [24–27] and quantum Monte Carlo
(QMC) [28]. While the DMRG method gives very accurate
results only in one dimension, the QMC suffers from the sign
problem for frustrated (fermionic) quantum systems.

The tensor network states (TNS) and variational Monte
Carlo (VMC) approach has so far been mostly used to study
the ground-state properties of various quantum correlated
systems. The main reason for this limitation was the lack of
a robust and efficient excited-state variational principle analo-
gous to the ground-state variational principle where the func-
tion that can be efficiently minimized is the energy E (ψ ) =
〈ψ |H |ψ〉/〈ψ |ψ〉. Recently, Zhao and Neuscamman proposed
an efficient variational principle for the direct optimization
of excited states [29–34], which can be used at polynomial
cost with numerous approximate ansatz wave functions. The

method allows us to target a particular eigenstate without
knowledge of the lower energy states by tuning the value of
the energy shift parameter included in the variational function
for the eigenstates and has so far been mostly used to study
molecular excitations.

In this paper, we examine and confirm applicability of
the mentioned variational principle combined with a suitable
TNS or ANN ansatz to study properties of strongly correlated
and frustrated quantum systems beyond one dimension for
which other numerical techniques are limited and VMC-based
calculations are one of the few remaining possibilities to study
such systems. Although the proposed VMC scheme with
flexible ansatz used in our calculations is in general applicable
to systems with or without frustration and in any dimension, it
is therefore the most relevant to demonstrate applicability of
the scheme to mentioned numerically challenging cases not
easily accessible with other numerical methods.

Specifically, we calculate the lowest energy eigenstates for
the square lattice J1-J2 antiferromagnetic Heisenberg model
in the highly frustrated regime near J2/J1 = 0.5, where the
system has a paramagnetic phase. The J1-J2 model is one
of the most studied models in frustrated quantum magnetism
[27,35–46]. It is closely related to the disappearance of the
antiferromagnetic order in high-Tc superconducting materials
[47,48] and is therefore of great importance. The model has
also been proposed as a possible model that supports topolog-
ically ordered chiral spin-liquid state [49–51] or Z2 spin liquid
state [43,52–56].
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The model has so far been studied using several methods,
among which are, for example, exact diagonalization (ED)
[37,57,58], variational methods [12,42,45,59–61], DMRG
[27], the Green’s function Monte Carlo with stochastic re-
configuration (GFMCSR) technique [41], and the cluster up-
date algorithm for tensor product states (TPSs) [35]. Prop-
erties of the phase(s) in the highly frustrated regime near
J2/J1 = 0.5 and presence of deconfined quantum critical point
[16,35,62–66] at the transition from antiferromagnetic
to paramagnetic phase have been debated for decades
[27,35–45,49–56] and there is still no general agreement.

Here we demonstrate that VMC method for direct opti-
mization of excited energy states combined with appropriate
TN or ANN ansatz can provide further insight into quantum
phases and phase transitions in complex models such as the
frustrated Heisenberg J1-J2 model. The method is applicable
in any dimension, allows studying properties of the system
beyond the ground-state properties, and in general has no sign
instability.

Our calculations are performed with correlator product
state (CPS) ansatz [9,10,14,15] in the valence bond (VB)
basis [42–45,47,59,67–72] as an ansatz for the energy eigen-
states. Here the CPS ansatz is built from two-site correlators
associated with the pairs of sites. The ansatz is equivalent
to the restricted Boltzmann machine (RBM) representation
of the wave function where the number of hidden units
equals the number of different pairs of sites. RBMs are types
of generative stochastic artificial neural networks (ANNs)
[5,6,8,17–21] that can learn a distribution over the set of their
inputs. The inputs here are spin configurations and the wave
function corresponds to the complex probability distribution
that the network tries to approximate. Correlations in ANNs
are included by hidden units and are nonlocal in space.
Because of their nonlocal geometry, ANNs can describe some
of the states that cannot be described by traditional TNSs, for
example, chiral spin liquid states or lattice fractional quantum
Hall states.

Variational function for the energy eigenstates is
minimized using a stochastic optimization scheme
[10,14–16,44,73,74] which requires knowledge only of
the first derivatives of the variational function with respect
to the variational parameters in the CPS ansatz. We calculate
the lowest energy eigenstates in the total spin zero sector for
the system sizes with N = 36 and 64 lattice sites and with
periodic boundary conditions. Our results for the energy gap
between the first excited energy state and the ground state in
the total spin zero sector is in good agreement with results
obtained previously with other methods. This demonstrates
general applicability of the method to study properties of
complex interacting many-body systems.

We also note that statistical error present in the stochastic
algorithm can result in significant error for energy eigenstates
for smaller system sizes. However, influence of the error can
be controlled by increasing the system size and does not
affect results for the energy gap where the error cancels when
subtracting values of the eigenenergies.

The paper is organized as follows. In Sec. II, we define CPS
variational ansatz in terms of two-site correlators and in the
VB basis. In Sec. III, we describe the stochastic optimization
scheme for efficient minimization of the variational function

for energy eigenstates. Our numerical results for the system
sizes N = L × L lattice sites with L = 6 and 8 and periodic
boundary conditions are presented in Sec. IV. In the final
section, Sec. V, we draw our conclusions, summarize results,
and discuss possible directions for future research.

II. VALENCE BOND BASIS CORRELATOR
PRODUCT STATES

We consider the square lattice J1-J2 antiferromagnetic
Heisenberg model

H = J1

∑
〈i, j〉

�Si �S j + J2

∑
〈〈i, j〉〉

�Si �S j, (1)

where �Si are spin-1/2 operators, and J1 and J2 are antifer-
romagnetic couplings for neighboring and next-neighboring
sites, respectively.

In general, in the usual basis of the Stot
z = ∑N

i=1 Sz
i eigen-

states, an eigenstate of the Hamiltonian (1) can be written in
the form

|ψ〉 =
∑
{�s}

W ({�s})|{�s}〉, (2)

where |{�s}〉 = |s1, . . . , sN 〉 and si ∈ {−1/2, 1/2} are eigenval-
ues of the local Sz

i operator. Since the total magnetization
along the z axis is a good quantum number, i.e., the Hamil-
tonian (1) commutes with the operator Mz = Stot

z ,

[H, Mz] = 0, (3)

all calculations can be performed in the canonical ensemble,
i.e., for a chosen Mz sector. The eigenstates can then also be
written in the form

|ψ〉Mz =
∑
{�s}

W ({�s})PMz |{�s}〉, (4)

where the projection operator PMz projects to the spin config-
urations with

∑N
i=1 Sz

i = Mz.
The ground state and the lowest excited energy state in the

highly frustrated regime near J2/J1 = 0.5 are in the Mz = 0
sector [36,37,45] and we therefore restrict our calculations to
Mz = 0. Then the most suited basis for the spin rotationally
invariant Hamiltonians is the VB basis [42–45,47,67–72]. A
VB configuration |α〉

|α〉 = ∣∣(iα1 , jα1
)(

iα2 , jα2
)
. . .

(
iαN/2, jαN/2

)〉
(5)

is a product of two-spin singlets

(i, j) = 1√
2

(|↑i ↓ j〉 − |↓i ↑ j〉), (6)

and any total singlet state with Stot
z = 0 can be written in the

VB basis

|ψ〉 =
∑

α

W (α)|α〉, (7)

where VB configurations α correspond to all possible pairings
of N spins into N/2 valence bonds.

The VB basis is an overcomplete basis and the overlap
between the VB states is [42–44,47,69–71]

〈α|β〉 = (−1)nα+nβ 2Nl −N/2 = ±2Nl −N/2, (8)
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FIG. 1. Transposition graph (c) 〈α|β〉 of two valence bond states
(a) |α〉 and (b) 〈β|. The valence bond basis (5) is an overcomplete
basis and the overlap between two valence bond states is 〈α|β〉 =
±2Nl −N/2, where Nl is the number of loops in the transposition graph
and N is the number of lattice sites. Here N = 16 and Nl = 2.

where Nl is the number of loops in the transposition graph
obtained when the VB states |α〉 and |β〉 are superimposed
(Fig. 1) and the overall sign depends on the convention for as-
signing directions to the bonds (nα and nβ denote the number
of valence bonds in |α〉 and |β〉 in the opposite direction than
defined to be + direction). Because of the overcompleteness
of the VB basis, the expansion coefficients W (α) in Eq. (7) are
not unique. This is, however, not a problem for any practical
calculations.

Also, the trial wave function does not have to be con-
structed from the largest possible set of VB states in which
all spins are joined by valence bonds in all possible ways.
A more restricted (and still overcomplete) basis can be ob-
tained by dividing the system into two groups of sites, A
and B, and keeping only VB states with bipartite bonds
which connect sites from different groups A and B. The
overcompleteness property can be written as (i, k)( j, l ) →
(i, j)(k, l ) − (i, l )(k, j) [68] and VB states with nonbipartite
AA and BB bonds can be therefore written in terms of VB
states with AB bonds.

For a bipartite lattice, the typical choice of the sites A and
B corresponds to the two sublattices in the bipartite lattice.
For a square lattice, AB labels are usually assigned to form
checkerboard or collinear patterns. If in addition the direction
of each singlet (i, j) in a VB state is fixed such that i ∈ A and
j ∈ B, it can be shown that all expansion coefficients W (α)
can be taken to be real and positive [67,69]. That corresponds
to Marshall’s sign rule [75,76] in the absence of frustration
when the wave function is written in the standard basis of
eigenstates of the Sz

i operator (2).
The Marshall’s sign rule exists in two limits, J2/J1 = 0 and

J2/J1 = ∞, and it can be shown that the sign rule survives
the frustration in the J1-J2 model on the square lattice for
a relatively large range of the parameter J2/J1 values away
from the points J2/J1 = 0 and J2/J1 = ∞ [77,78]. Also, for
any J2/J1 exists in principle a positive-definite expansion of

the wave function in the VB basis, since W (α) can be made
positive by simply reversing the order of the indices in one
singlet in that particular state. However, in general there is no
practically useful rule for fixing the order.

Within the CPS approach [10,14,15], the coefficients in
Eq. (2) or Eq. (7) are written in terms of correlator coefficients
associated with groups of sites. The CPS ansatz can then be
used as a basis for VMC simulations where the coefficients
are optimized using one of the efficient optimization methods,
for example, the stochastic optimization scheme described in
the following section, which requests only the first energy
derivatives.

Here we consider two-site CPS where a correlator is asso-
ciated with a pair of sites

W (α) = (−1)nα

∏
i, j

Ci j . (9)

In the previous calculations for the J1-J2 model, compu-
tational cost was reduced by assuming symmetries for the
coefficients in an ansatz wave function, for example, 2×2
sublattice structure and translational invariance of the coef-
ficients in terms of the sublattice period [45]. Since it is better
to use a flexible ansatz wave function without any constraint
on coefficients Ci j we do not take into consideration any
symmetries and we also do not impose any constraint between
Ci j and Cji. Amplitudes Ci j can than be taken to be real
and positive. We consider L × L square lattices with periodic
boundary conditions where i = (x, y) and x, y = 1, . . . , L. For
the L × L square lattice, with N = L2 lattice sites, the number
of coefficients Wα is N!, and the two-site CPS ansatz (9) leads
to N (N − 1) variational parameters.

CPS states in VB basis can be used to describe both
ordered and disordered phases [69,70]. The flexible wave
function without any constraint used in our calculations can
describe antiferromagnetic, valence-bond-crystal as well as
spin-liquid states, and excitations above these ground states
in total magnetization M tot

z = 0 sector, on equal footing. A
Neel-ordered ground state with spin correlations decaying
with a power law as a function of distance requires long-range
amplitudes Ci j while a disordered state requires larger decay
rate of amplitudes Ci j with distance |i − j|.

Namely, power-law correlations and low-energy nonzero
spin excitations in a state with nonzero staggered magnetiza-
tion can be generated only if longer bond amplitudes are taken
into account. Low-energy excitations arise from breaking
valence bonds or simply rearranging the bonds. While the
excitations that rearrange valence bonds can have low energy
even in the short-range RVB state, the excitations that break
valence bonds have low energy only for RVB states with
long-range valence bonds. If two spins that are far apart form
a valence bond, those spins are only weakly bound into a
singlet that can be broken into free spins with relatively little
energy and can therefore be more easily excited into a state
with nonzero spin. Longer bonds correspond to weaker singlet
pairing energies. Therefore, the states that have a significant
weight from long-range valence bonds have more low-energy
spin excitations than states with mainly short-range valence
bonds.

For example, for J2 = 0, Liang et al. demonstrated how
tuning decay rate of bond amplitudes that decrease with
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distance can smoothly transform a Néel state into a disordered
state for J2 = 0 [69]. Their results showed that short-bond
wave functions have short-range spin-spin correlations with
an exponential decay at large distances. An algebraic decay of
correlation functions and a nonzero staggered magnetization
can be generated only if longer bond amplitudes are taken into
account in the trial wave function, and a Néel ordered ground
state therefore requires an algebraic decay of the bond length
probability.

Also, this CPS ansatz is equivalent to the RBM representa-
tion of the wave function with M = N (N − 1)/2 hidden units
[5,21]. Boltzmann machines are types of generative stochastic
artificial neural networks that can learn a distribution over
the set of their inputs [5,6,8,17–21]. Here the network inputs
are spin configurations and the wave function corresponds to
a complex probability distribution that the network tries to
approximate.

III. STOCHASTIC OPTIMIZATION OF THE
VARIATIONAL FUNCTION FOR ENERGY EIGENSTATES

So far, variational calculations have been mostly restricted
to studying the ground-state properties of various systems
with the energy as a function that can be efficiently mini-
mized,

E (ψ ) = 〈ψ |H |ψ〉
〈ψ |ψ〉 , (10)

where H is the Hamiltonian of the system. Optimization of
an excited energy state would then require knowledge of all
energy states with energy lower than the energy of the chosen
excited state.

However, Zhao and Neuscamman [30–34] recently intro-
duced an efficient variational principle for direct optimization
of excited states that does not require knowledge of lower
energy states. They have defined a function

�(ψ,ω) = 〈ψ |(ω − H )|ψ〉
〈ψ |(ω − H )2|ψ〉 = ω − E

(ω − E )2 + σ 2
, (11)

where

σ 2 = 〈ψ |(H − E )2|ψ〉
〈ψ |ψ〉 (12)

is the variance, whose global minimum is an excited energy
state with the energy immediately above the energy shift ω

that is placed between distinct eigenvalues of H .
To efficiently evaluate and optimize �(ψ,ω) using the

variational Monte Carlo scheme, �(ψ,ω) is rewritten in the
form

�(ψ,ω) =
∑

m P(m)wm∑
m P(m)w2

m

, (13)

where m = (α, α′) denotes a pair of two VB configurations
|α〉 and |α′〉,

wm ≡ 〈α′|(ω − H )|α〉
〈α′|α〉 (14)

and

P(m) = Wα′Wα〈α′|α〉∑
α,α′ Wα′Wα〈α′|α〉 . (15)

FIG. 2. Local two-bond updates. First site i1 is randomly chosen,
then one of four diagonal neighbor sites i2 is chosen randomly, and
the ends of bonds are exchanged: (i1, j1)(i2, j2) → (i1, j2)(i2, j1).
The reconfiguration is accepted with probability (19).

P(m) is always positive since the coefficients Ci j are taken
here to be real and positive.

Similarly to the overlap of two VB configurations (8), ma-
trix elements of relevant operators can be typically calculated
by considering loops in the transposition graph [67–70]. The
spin-spin correlations and 〈α′|H |α〉/〈α′|α〉 can be computed
from the relation

〈α′|�Si �S j |α〉
〈α′|α〉 = 3

4
φiφ jδλi,λ j , (16)

where φi = +1 if sites i and j belong to two different groups
of sites (A and B), φi = −1 if sites i and j belong to the
same group of sites (A or B), and δλi,λ j = 1 if λi = λ j and
zero otherwise. Here λi is a label for the loop to which site
i belongs, and matrix element (16) vanishes if sites i and j
belong to different loops.

Within the VMC scheme, the phase space considered as
ensemble of pairs m = (α, α′) is summed over according to
probability distribution P(m) and

�VMC(ψ,ω) =
∑

m∈ζ wm∑
m∈ζ w2

m

, (17)

where elements of ζ are sampled via a METROPOLIS walk. In
evaluating the sums in Eq. (17), a new pair of valence bonds m′
is generated starting from a valence bond pair m with a chosen
update scheme, and METROPOLIS acceptance probability for
such update is

Pacc = min

[
Wm′

Wm
2�Nl , 1

]
, (18)

where Wm = Wα′Wα and �Nl = Nl (m′) − Nl (m) denotes
change in the number of loops in the transposition graph
(Fig. 1). Here Monte Carlo sampling is performed by nonlocal
bond-loop updates [70] instead with local two-bond updates
[69,70], since nonlocal updates sample the phase space in the
highly frustrated regime much more efficiently. In a local two-
bond update, a new configuration in the MC move is generated
by exchanging the ends of two bonds (i1, j1) and (i2, j2) as
illustrated in Fig. 2. First site i1 is randomly chosen, then one
of four diagonal neighbor sites i2 is chosen randomly, and the
ends of bonds are exchanged (i1, j1)(i2, j2) → (i1, j2)(i2, j1).
The METROPOLIS acceptance probability is then

Pacc = min

[
Ci1, j1Ci2, j2

Ci1, j2Ci2, j1

2�Nl , 1

]
(19)

and �Nl can be +1, −1, or 0 corresponding to the cases when
two loops join in one, one loop splits into two, or number of
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FIG. 3. Nonlocal bond-loop updates. The first step in a bond-
loop update discussed in the text creates two defects (one site with
two bonds and one empty site). Since such defects cannot be present
in a valence bond state, one of these defects is further moved by
subsequent bond moves until it annihilates with the second defect
and the loop closes.

loops is preserved. However, local two-bond updates usually
involve long bonds through reconfiguration and the sampling
process becomes inefficient when long bond amplitudes have
small weights. Since the values of longer bond amplitudes de-
crease with decrease of antiferromagnetic ordering, nonlocal
bond updates can be much more efficient sampling schemes,
particularly in the highly frustrated regime where the disap-
pearance of antiferromagnetic ordering is predicted. Within a
bond-loop update scheme, one end of a randomly chosen bond
is moved, resulting in two defects that correspond to an empty
site and one site with two bonds (Fig. 3). Since such defects
cannot be present in a VB state, one of these defects is further
moved by subsequent bond moves until it annihilates with the
second defect and the loop closes.

In the algorithm, the bonds are represented by an array
of links between sites, here denoted by v, such that if sites
i and j are connected by a VB then v(i) = j and v( j) = i.
In the bond-loop update algorithm, starting from a randomly
selected lattice site j0 with v( j0) = i, a new lattice site j is
chosen according to probability distribution

Pi j = Ci j∑
j Ci j

, (20)

proportional to corresponding weight Ci j . After the bond
emerging from i is moved to an acceptable j, v(i) changes
from v(i) = j0 to v(i) = j, and the original link between sites
i and j0 is destroyed and no longer needed.

The original site j0 now has no bond attached to it (unless
j = j0, which immediately terminates bond-loop update and a
new loop update starts from a different randomly chosen site)
and the new site j has two VBs on it, corresponding to two
defects in VB configuration. To remove such defects which
cannot be present in a VB state, the end of the old bond i
is moved by repeating the same steps as for the initial bond
move only with j0 replaced by j. This procedures are repeated
until it happens that j = j0, which results in annihilation of
the double-bond and no-bond defects and closing of the loop.
Since the loops can be large, bond-loop updates can be much
more efficient than local two-bond updates.

To optimize �(ψ,ω), we further use a stochastic opti-
mization scheme [10,14–16,44,73,74] which requests only
knowledge of the signs of the first derivatives of �(ψ,ω) with
respect to parameters Ci j which are updated according to

ln Ci j → ln Ci j − rδ(k)sign

(
∂�

∂Ci j

)
, (21)

where r ∈ [0, 1) is a random number and δ(k) is the opti-
mization step for given iteration k. Without a random number,
this kind of update scheme is known as Manhattan learning
[79,80], previously introduced in the context of neural net-
works. Here, a random number is introduced because it was
shown that it speeds up the convergence [44].

Similarly as in simulated annealing methods [81], the op-
timization step δ(k) is reduced in each iteration k to reach the
optimum solution. Here, the annealing scheme that ensures
convergence of the method is

δ(k) = δ0
1

kν
(22)

with 0.5 < ν < 1, as demonstrated previously for the energy
minimization [44]. We find that taking δ0 = 0.5 and ν = 0.75
works well. Alternatively, a geometric form δ(k) = δ0ν

k for
the annealing scheme can also be used with ν = 1 − ε and
ε 
 1 [44].

First derivatives ∂�/∂Ci j can be efficiently evaluated us-
ing the variational Monte Carlo scheme using the following
expression,

∂�

∂Ci j
= 1

〈O2〉
∂〈O1〉
∂Ci j

− 〈O1〉
〈O2〉2

∂〈O2〉
∂Ci j

, (23)

where 〈O1〉 = 〈ψ |ω − H |ψ〉/〈ψ |ψ〉 ≡ 〈ω − H〉 and 〈O2〉 =
〈(ω − H )2〉,

∂〈Ok〉
∂Ci j

= 〈�i jOk〉 − 〈�i j〉〈Ok〉 (24)

for k = 1 or 2, and

�i j = 1

Ci j

∂Wm

∂Ci j
= bi j

Ci j
. (25)

Here, bi j denotes the number of times the coefficient Ci j

appears in the product Wm = WαWα′, where the amplitude Wα

for the VB configuration |α〉 is given by Eq. (9). Since we
do not include any symmetries, a coefficient Ci j appears in
each VB configuration only once. Therefore bi j = 1 if Ci j

appears in only one of the VB configurations (α or α′) or
bi j = 2 if Ci j appears in both VB configurations (α and α′).
The first derivatives can be calculated from the same sample
as �VMC(ψ,ω) (17) obtained by a Markov chain in the
METROPOLIS algorithm.

The variational algorithm starts from randomly chosen
values for the coefficients Ci j (between 0 and 1), then � and
its gradient vector are evaluated for particular value of the
parameter ω, and all coefficients Ci j are updated according
to (21). In each iteration, the same procedure is repeated,
starting from the coefficients Ci j from the previous iteration,
until convergence of � is reached. The value of energy E is
calculated using coefficients obtained by minimizing �.

In each iteration k, the variational function � and its
derivative are estimated from F (k) × N sampled values,
where N is the number of lattice sites. F (k) is called the
number of sweeps per sample. In each sweep, a random lattice
site is chosen and a move to a new configuration obtained by
a bond-loop update is proposed N times. In addition to careful
tuning of the gradient step δ(k) to achieve the convergence,
the number of sweeps F (k) per iteration is increased to reduce
effects of noise on the calculation of the first derivatives.
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Namely, the derivatives become smaller as the � minimum is
approached and require more sampled values in order not to be
dominated by noise. Here, the number of sweeps is increased
linearly for each iteration, F (k) = F0 × k.

Also, the procedure of evaluating � and updating the
coefficients Ci j (21) is repeated G(k) = G0 × k times, where
increasing G corresponds to a slower cooling rate. Here, we
take G0 = 20, F0 = 20 for L = 6, and F0 = 10 for L = 8.
The minimization routine is performed for 100 iterations,
and after the minimization is complete the values of �, and
corresponding energy E for each value of ω, are calculated by
repeating the procedure for a single iteration with zero step
size and large F and G to obtain more accurate estimates of �

and E .

IV. NUMERICAL RESULTS FOR THE SQUARE LATTICE
J1-J2 ANTIFERROMAGNETIC HEISENBERG MODEL

Before proceeding to numerical results for the square lat-
tice J1-J2 antiferromagnetic Heisenberg model, it is important
to clarify consequences of using approximate ansatz for the
wave functions that correspond to the energy eigenstates. For
the exact wave function, σn = 0 and �(ψ,ω) diverges at
ωn = En. However, for an ansatz wave function, variance σ

has a nonzero value and the optimized ansatz, its energy, and
value of �(ψ,ω) depend on particular choice of ω.

If the approximate ansatz wave function is very close to the
exact wave function, energy dependence on a precise choice
of ω is small and the function �(ψ,ω) has a finite minimum
near ωn = En − σn for the nth eigenstate with energy En [29].
Value of ωn = En − σn corresponds to the analytic solution for
the minimum of �(ψ,ω), when E and σ are held fixed. Con-
sequently, for a finite and small σn, the value of ωn at which
minimum of �(ψ,ω) changes states no longer occurs at the
energy of lower energy eigenstate and is shifted downward to
the value of ω close to ωn = En − σn. However, in the cases
where the wave-function approximation leads to a bit larger
value of variance σ , as happens in our many-body calculation,
a stronger dependence of energy and � on ω may arise and
�(ψ,ω) no longer simply has a form with finite minimum
near ωn = En − σn. In any case, as proposed by Zhao and
Neuscamman [29], to calculate energy of the nth eigenstate
we choose value of ω within the range En−1 � ω � En for
which the smallest value of � is obtained with minimization
procedure for each ω in that range.

To summarize, there are three steps in our calculations to
find energy eigenvalues En above the ground state: (1) for each
ω, minimize �(ψansatz, ω) and from the optimized ansatz cal-
culate corresponding energy E = 〈ψansatz|H |ψansatz〉; variance
σ can then be calculated from the values of E and �; (2) find
ωmin

n within the range En−1 � ω � En for which �(ψansatz, ω)
has the smallest value; and (3) find nth energy eigenvalue that
corresponds to the energy obtained from the optimized ansatz
at ωmin

n .
For the ground state, it is important to point out that

optimizing the energy E = 〈ψ |H |ψ〉/〈ψ |ψ〉 and �(ψ,ω) is
different and leads to a different optimized ansatz wave func-
tion since for the � minimization the wave function depends
both on energy and its variance. Therefore, to calculate the
energy difference En − E0 even for the ground state, we need

FIG. 4. � as a function of the energy shift parameter ω for the
ground state and the first excited energy state (Mz = ∑N

i=1 Sz
i = 0

sector) for J2/J1 = 0.5 (J1 is set to J1 = 1) and the system sizes
N = L × L with (a) L = 6, (b) L = 8, and with periodic boundary
conditions. Here, |ψ ansatz〉 is optimized using a stochastic optimiza-
tion method to minimize �(ψ ansatz, ω) for each value of ω. Red
lines denote minimal value of �(ω), �min

1 , for ω within the range
E0 � ω � E1. Energy of the first excited energy state obtained by
optimization procedure is calculated using the optimized ansatz that
minimized � at ωmin

1 , where �(ωmin
1 ) = �min

1 .

to take the value of E0 obtained by minimizing � at ω = ω0

such that �(ψ0, ω0) ≈ �(ψ1, ω1), where ω0 is in the range
of values ω � E0. In this many-body case, where a stronger
dependence of � on ω appears, such choice of ω0 is equivalent
to the choice of ω0 close to the value where � has a finite
minimum in the paper written by Zhao and Neuscamman
[29] where in their calculation of molecular excitations energy
dependence on particular choice of ω was very small. The
value of E0 obtained by minimizing E corresponds to the
minimum of �(ψ,ω → ∞).

Our results obtained by minimizing � for J2/J1 = 0.5
(where J1 is set to J1 = 1) and the system sizes N = L × L
with L = 6, 8 and periodic boundary conditions are shown in
Figs. 4–6. Statistical error present in the stochastic algorithm
is controlled by increasing the system size [10,15] since
having a larger number of parameters allows the optimization
method more freedom in finding the minimum of �(ψ,ω)
for a given value of ω and consequently better estimates for
the energy eigenvalues. It is therefore difficult to obtain good
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FIG. 5. Energy E as a function of the energy shift parame-
ter ω calculated by taking the optimized ansatz that minimizes
�(ψ ansatz, ω) for each value of ω. The results are for the system
sizes N = L × L with (a) L = 6, (b) L = 8, and periodic boundary
conditions. Here, J2/J1 = 0.5 and J1 is set to J1 = 1. Blue lines
denote the ground-state energies obtained by exact diagonalization
and the cluster update algorithm for tensor product states [35].

estimates of � and E for small system sizes. This is clearly
visible in our results since we obtain much better energy
estimates for L = 8 than for L = 6 as will be clarified further
in this section. However, we obtain quite good estimates for
energy gaps in both cases since the statistical error equiva-
lently affects calculation of all energy states and cancels in
the energy gap calculation.

We calculate the energy of the first excited energy state
as energy of the optimized ansatz at the value of ω within
E0 � ω � E1 range where the optimized value of �(ψ,ω)
is minimal. For L = 6, the ground-state energy obtained
by exact diagonalization is E0(L = 6)/L2 = −0.50380965
[35,45] and we find that for ω � E0 value of �(ψ,ω) is min-
imal at ω1 = −17.89. Energy of the corresponding optimized
ansatz at ω1 = −17.89 is E ansatz

1 /L2 = −0.4386. The value
of E ansatz

0 that corresponds to � minimization is determined
by minimizing �(ψ,ω) for a range of values ω < E0 and
then finding the value ω0 such that �(ψ0, ω0) ≈ �(ψ1, ω1).
For L = 6, we find that ω0 = −18.42 and E ansatz

0 /L2 =
−0.45168. The ground-state energy obtained by � minimiza-
tion therefore significantly differs from the exact ground-
state energy for the smaller system size with L = 6 with

FIG. 6. Variance σ 2 as a function of the energy shift parameter
ω for J2/J1 = 0.5 (J1 = 1) and the system sizes N = L × L with
(a) L = 6, (b) L = 8, and periodic boundary conditions. Gray lines
denote values of ω for which the energy eigenvalues for the ground
and first excited states are calculated.

(EED
0 − E ansatz

0 )/EED
0 ≈ 0.1. However, the energy gap � =

E ansatz
1 − E ansatz

0 ≈ 0.471 is very close to the value obtained
by exact diagonalization and GFMCSR technique [41,45].

For L = 8, influence of the statistical error in the stochas-
tic algorithm is much smaller, and therefore better esti-
mates for E0 and E1 are obtained from minimization of
�. For the first excited-energy state, the minimum of �

is found at ω = −31.75 and corresponding energy esti-
mate is E ansatz

1 /L2 = −0.488457. The value of ω0 for which
�(ψ0, ω0) ≈ �(ψ1, ω1) is ω0 = −32.1 for L = 8 and the
ground-state energy estimate is E ansatz

0 /L2 = −0.493472. This
value differs only by ≈1% from the value obtained by
the cluster update algorithm for TPSs [35] (ETPS

0 /L2 =
−0.4984(2), (E ansatz

0 − ETPS
0 )/ETPS

0 ≈ 0.00993). For the en-
ergy gap, we obtain � = E ansatz

1 − E ansatz
0 ≈ 0.321 (�/L2 ≈

0.005), which is in agreement with previously obtained re-
sults calculated with the GFMCSR technique [41] and VMC
combined with the quantum number projection [45].

We also note that variance (Fig. 6) of the optimized ansatz
wave function obtained by minimization of � is quite large.
This could perhaps be corrected by choosing a more complex
ansatz wave function that would better mimic correlations
built into exact eigenvalues, which is one of the directions for
future research.
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V. CONCLUSIONS

We have investigated applicability of the VMC method
for direct optimization of energy eigenstates combined with
appropriate ansatz for many-body wave function to study
properties of complex strongly correlated and frustrated quan-
tum systems. To demonstrate the applicability of the model,
we have calculated energy gaps for the square lattice J1-J2

frustrated Heisenberg model related to high-Tc superconduct-
ing materials. Our results are in good agreement with results
obtained previously by other methods, particularly for larger
system size where the influence of the statistical error included
in the stochastic optimization scheme used in our calculations
is smaller. The results therefore confirm applicability of the
method to study properties of strongly correlated systems
beyond the ground-state properties. This allows further insight
into quantum phases and phase transitions in various corre-
lated models.

Directions for our future research are more detailed cal-
culations of the system properties for several values of the
parameter J2/J1 close to quantum critical point, which is
argued to be a deconfined quantum critical point [35]. We
also plan to perform further calculations with several different,
more complex ansatz states that could approximate correla-
tions built into exact eigenstates better than the ansatz used
in the present calculation (for example, RBM wave function
with increased number of hidden units).
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